Conformational free energy landscape of misfolding and aggregation in Prion proteins: A challenge for enhanced sampling techniques

Suman Chakrabarty

SGDP

Department of Chemical, Biological & Macromolecular Sciences S.N. Bose National Centre for Basic Sciences, Kolkata Email: sumanc@bose.res.in; Web: www.namusite.com

☐ The goal: Structure – Interaction - Dynamics - Function

☐ Molecular thermodynamics (an oxymoron?!)

Unfolded

→ Folded

$$\Delta A = \Delta E - T\Delta S$$

$$= \left[\Delta E_{\text{torsion:pol}} + \Delta E_{\text{nb:pol-pol}} + \Delta E_{\text{nb:pol-wat}} + \Delta E_{\text{nb:wat-wat}} \right]$$

$$- T \left[\Delta S_{polymer} + \Delta S_{water} \right]$$

Which will win?

Free Energy Surface: Know it all!

Population ratio:

$$\frac{[A]}{[B]} = \exp\left(-DG_{A\to B}/RT\right)$$

Rate constant:

$$k = \frac{k_B T}{h} \exp\left(-DG^{\neq}/RT\right)$$

☐ Energy Landscape View of Protein Folding, Misfolding and Aggregation:

Source: Nature Structural & Molecular Biology 16, 574 - 581 (2009)

Molecular Dynamics == Newton's Equation of Motion

(i) Potential energy -> Force -> Acceleration

$$\mathbf{F}_{i} = -\frac{\partial E_{i}(\mathbf{r})}{\partial \mathbf{r}_{i}}$$

$$m_{i} \frac{\P^{2} r_{i}}{\P t^{2}} = \mathbf{F}_{i}, \qquad i = 1, 2, \dots, N$$

But do we know $E(\underline{r})$ accurately?

(ii) Acceleration -> Velocity -> Position

$$v(t + dt) = v(t) + a(t)dt + \dots$$
$$r(t + dt) = r(t) + v(t)dt + \dots$$

In an ideal world, we would just solve ...

$$H\Psi = E\Psi$$

... but the world is not ideal, quantum methods are prohibitively slow.

Molecular Mechanics (MM): We assume that classical mechanics works even at the molecular level!

Assumption: PES (E(r)) can be broken into individual pair-wise additive terms

$$E_{total} = E_{bonded} + E_{non-bonded}$$

$$E_{bonded} = E_{bond} + E_{angle} + E_{torsion}$$

$$E_{\text{non-bonded}} = E_{\text{VDW}} + E_{\text{electrostatic}}$$

Molecular Mechanics: "Force field"

$$E_{VDW} = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

☐ Bridging the gap between microscopic & macroscopic worlds:

✓ Boltzmann distribution:
$$P(r) \propto \exp \left[-E(r) / k_B T \right]$$

✓ Average observable:

$$\langle O \rangle = \int d\mathbf{r} O(\mathbf{r}) P(\mathbf{r})$$

✓ Free energy:

$$Q = \int dr \exp\left[-E(r)/k_B T\right]$$

$$A = -k_B T \ln Q$$

Nature is driven by free energy!

- > Statistical Mechanics: Connecting molecular interactions to thermodynamics
 - ✓ Sample configurational space: Molecular Dynamics / Monte Carlo

$$Q = \int dr \exp\left[-E(r)/k_B T\right]$$

- ightharpoonup Absolute free energy: $A = -k_B T \ln Q$
- Free energy surface/ potential of mean force:

$$\exp(-\beta A(X)) = \left\langle \exp(-\beta U(r)) \right\rangle_{f(r)=X}$$

$$A(X_1, X_2,...) = -k_B T \ln P(X_1, X_2,...)$$

How "rare" is a rare event?

$$k \simeq \frac{k_B T}{h} \exp\left[-\beta \Delta G^{\neq}\right]$$

Barrier (kcal/mol)	Time scale (300K)
5	< 1 ns
10	> 1 µs
15	> 10 ms
20	1 min
25	~ 3 days
30	~40 years!

Umbrella sampling: The background

With original hamiltonian: $U(\underline{r})$

$$\langle O \rangle_U = \int dr O(r) P(r)$$

With perturbed hamiltonian: U'(r) = U(r) + w(r)

For example:

$$w(\underline{r}) = -k \left[X(\underline{r}) - X_0 \right]^2$$

$$< O>_U = \frac{\langle O.\exp[bw] \rangle_{U+w}}{\langle \exp[bw] \rangle_{U+w}}$$

Metadynamics: Escaping minima

☐ History dependent bias potential: Sum of Gaussians

$$V_G(s(x),t) = w \sum_{t' \le t} \exp\left(-\frac{(s(x) - s(x_G(t')))^2}{2(\delta s)^2}\right)$$

- ➤ If Gaussians are added sufficiently slowly CVs tend to diffuse to closest local minimum
- Ability to accelerate rare events

Laio and Parrinello, *PNAS* **99**, 12562 (2002)

When you don't know what you're looking for, and where to look for it, what is your "reaction coordinate"?

Replica Exchange Molecular Dynamics

- ✓ At each temperature, the trajectory will be discontinuous, but follow a proper Boltzmann distribution for that temperature.
- ✓ No need to know "reaction coordinate" a priori!

Acceleration of sampling / Free energy calculation

Simplified models: Avoiding unnecessary details Enhanced sampling methods: application of "bias" / pathway

- Hardware acceleration:
 - **GPUs** etc
- Make the best use of available hardware

- ✓ Coarse graining
- ✓ Multi-scale modeling
- ✓ Lattice models
- ✓ Implicit solvent
- ✓ Thermodynamic cycles

- ✓ Metadynamics
- ✓ Parallel tempering (temperature, Hamiltonian, pH etc)
- ✓ Free Energy Perturbation
- ✓ Steered MD

☐ About Prion: Structure, function, dysfunction

Mouse prion domain (124-226) PDB ID: 1AG2

- ➤ Linked to a range of neurodegenerative diseases known as transmissible spongiform encephalopathy
- ➤ **Hypothesis:** Normal cellular prion (PrP^C) misfolds into an infectious oligomeric *scrapie* form (PrP^{Sc}) which tends to aggregate in amyloid plaques.
- \triangleright Cellular prion (PrP^C) has a high α-helix (43%) and little β-sheet (3%). PrP^{Sc} should have extended β-sheet (upto 50%).
- PrPSc structure is still unknown!
- ➤ Molecular mechanism of PrP^C to PrP^{SC} conversion remains unknown.

☐ Prion misfolding / aggregation pathways

"Protein-only" hypothesis of prion Propagation:

 $PrP^c + PrP^{Sc} \longrightarrow 2 PrP^{Sc}$?

Nucleation?

Challenges:

- ✓ Structure of PrPSc
- ✓ Mechanism of poisoning

Structure of the soluble toxic intermediate (PrP^{Sc}) is not known!

Hypothesis: Rich in β sheet

Fibril formation

☐ Models of Prion propagation:

Source: Aguzzi et al, Cell 116, 313–327 (2004)

Replica Exchange Molecular Dynamics

- ✓ At each temperature, the trajectory will be discontinuous, but follow a proper Boltzmann distribution for that temperature.
- ✓ No need to know "reaction coordinate" a priori!

Structural ensemble with varying beta sheet content from REMD

- N. Chamachi and S. Chakrabarty, J. Phys. Chem. B 120, 7332 (2016)
- N. Chamachi and S. Chakrabarty, Biochemistry 56, 833 (2017)

☐ Melting curve

We expect a first-order like transition. Two states?

☐ Temperature dependence of structural parameters

Structures from higher temperature replica have:

- •Lower RMSD
- Lower number of native contacts
- •Similar R_g
- Similar number of contacts
- Higher β-content
- Higherhydrophobic SASA

☐ Free energy landscape of Prion misfolding

Misfolded states stabilized by non-native hydrogen bonds!

☐ Free energy landscape of Prion misfolding

U Hydrophobicity vs. β-content

☐ Helicity vs. β-content

What is the Origin of Marginal Stability of Prion protein?

☐ Free energy surfaces of chopped helices:

- ✓ Three different helices have been simulated
- Metadynamics has been used for enhanced sampling

Free energy profile shows that inherently the helices lack stability and tend to form beta sheet and random coil

Dimerization pathways and effect on conformational stability

Summary:

- ➤ PrP^C form is weakly stable with shallow FES, and multiple low-lying misfolded states
- > Misfolded β-sheet rich structures are more hydrophobic and aggregation prone
- ➤ H2 and H3 are inherently unstable; Initiation sites of misfolding
- \triangleright Evidence of cross β -sheet formation in dimers
- ➤ Intermolecular disulphide bond is a possible pathway for fibril formation

Challenges:

- Anti-parallel β-sheets
- •Nucleation pathway towards fibril formation in oligomers
- Mechanism of poisoning

☐ Thermodynamics and kinetics of various competing pathways of Prion aggregation:

Biomolecular Recognition and Signaling

can be understood in terms of the jiggling and wiggling of atoms"

-- Richard Feynman (1963)

Students:

Amit Kumawat*
Neharika Chamachi*
Vrushali Hande
Pragati Sharma
Nilesh Choudhury

Collaborators:

Arnab Mukherjee

Funding:

SERB, DST, India CSIR/NCL, India SNBNCBS, Kolkata

Thank you!

Further questions?

Email: sumanc@bose.res.in

Web: www.namusite.com