

Efficacy of hand hygiene, cohorting of health care workers and patients and isolation

Martin Bootsma^{1,2} Joined work with Marc Bonten¹ Iulv 4, 2019

¹UMC Utrecht & ²Utrecht University

Outline

Introduction

Model

Results

Discussion

- ► Antimicrobial resistance problem
 - ► Size burden¹²
 - Addition/Replacement
- ▶ Nosocomial infections preventable
- ► Infection vs transmission prevention
- Horizontal vs vertical interventions

¹O'Neill. The Review on Antimicrobial Resistance 2014.

²Cassini, Lancet Infect Dis. 2019.

- Antimicrobial resistance problem
- ► Nosocomial infections preventable
- ► Infection vs transmission prevention
- ► Horizontal vs vertical interventions

- ► Antimicrobial resistance problem
- ► Nosocomial infections preventable
- ► Infection vs transmission prevention
- ► Horizontal vs vertical interventions

- Antimicrobial resistance problem
- Nosocomial infections preventable
- ► Infection vs transmission prevention
- Horizontal vs vertical interventions
 - Vertical: targeting single pathogen
 - screening & isolation
 - cohorting or decolonization of patients colonized with MRSA
 - Horizontal: targeting multiple pathogens
 - ► glove and gown use
 - improving hand hygiene adherence
 - universal chlorhexidin body washings
 - environmental cleaning
 - cohorting of patients and health care workers (HCWs)

- Antimicrobial resistance problem
- Nosocomial infections preventable
- ► Infection vs transmission prevention
- ► Horizontal vs vertical interventions
 - Vertical: targeting single pathogen
 - screening & isolation
 - . as borting or decalarization of nationts calculated with MDCA

AIM: Analyze interventions and their interaction in one framework

- improving hand hygiene adherence
- universal chlorhexidin body washings
- environmental cleaning
- cohorting of patients and health care workers (HCWs)

Cohorting of patients and HCWs

- Very often applied
- ► Horizontal vs vertical
- ▶ Mechanisms
 - Outbreaks restricted to cohorts
 - Frequency repeated contacts increased
- ► Imperfect
 - ► Physicians
 - ► Tasks requiring multiple HCWs
 - ► Breaks
- Many structures, not captured by single number

Hand hygiene and transmission

Assumptions:

- ▶ Only indirect transmission
- ► Hand hygiene may remove hand contamination
- ► Hand hygiene opportunities between patient contacts

Hand hygiene and transmission

Assumptions:

- Only indirect transmission
- ► Patients colonized/uncolonized
- ► HCWs hands contaminated/uncontaminated
- Hand hygiene may remove hand decontamination
- Hand hygiene opportunities between patient contacts
- ► For now: 1 type of HCW

Hand hygiene and transmission

Assumptions:

- Only indirect transmission
- ► Patients colonized/uncolonized
- ► HCWs hands contaminated/uncontaminated
- ► Hand hygiene may remove hand decontamination
- ► Hand hygiene opportunities between patient contacts
- ► For now: 1 type of HCW

Parameters:

- ► Probability hand decontamination successful: ξ.
- \blacktriangleright Probability acquisition by patient if hands HCW contaminated: π
- ► Probability acquisition hand contamination by HCW if patient is colonized: *p*
 - $p \approx 0.5 0.7$ for VRE¹

¹Hayden et al. ICHE 2008: 29: 149-54.

- ▶ Denote previous times of patient contact by HCW by t_{-1} , t_{-2} , t_{-3} , . . .
- ▶ $P(t_{-j})$ is the probability that patient j contacts back was colonized
- Condition on most recent acquisition by HCW

$$P(t_{-1})p(1-\xi)\pi$$

- ▶ Denote previous times of patient contact by HCW by t_{-1} , t_{-2} , t_{-3} , . . .
- $ightharpoonup P(t_{-j})$ is the probability that patient j contacts back was colonized
- Condition on most recent acquisition by HCW

$$P(t_{-1})p(1-\xi)\pi+ P(t_{-2})p(1-\xi)(1-P(t_{-1})p)(1-\xi)\pi$$

- ▶ Denote previous times of patient contact by HCW by t_{-1} , t_{-2} , t_{-3} , . . .
- ▶ $P(t_{-j})$ is the probability that patient j contacts back was colonized
- Condition on most recent acquisition by HCW

$$\begin{array}{l} P(t_{-1})p(1-\xi)\pi + \\ P(t_{-2})p(1-\xi)(1-P(t_{-1})p)(1-\xi)\pi + \\ P(t_{-3})p(1-\xi)(1-P(t_{-2})p)(1-\xi)(1-P(t_{-1})p)(1-\xi)\pi \end{array}$$

- ▶ Denote previous times of patient contact by HCW by $t_{-1}, t_{-2}, t_{-3}, ...$
- $ightharpoonup P(t_{-j})$ is the probability that patient j contacts back was colonized
- ► Condition on most recent acquisition by HCW

$$P(t_{-1})p(1-\xi)\pi + P(t_{-2})p(1-\xi)(1-P(t_{-1})p)(1-\xi)\pi + P(t_{-3})p(1-\xi)(1-P(t_{-2})p)(1-\xi)(1-P(t_{-1})p)(1-\xi)\pi + \ldots = p(1-\xi)\pi \sum_{j=1}^{\infty} P(t_{-j}) \prod_{k=1}^{j-1} (1-\xi)(1-P(t_{-k})p).$$

- ▶ Denote previous times of patient contact by HCW by $t_{-1}, t_{-2}, t_{-3}, ...$
- $ightharpoonup P(t_{-j})$ is the probability that patient j contacts back was colonized
- Condition on most recent acquisition by HCW

$$\rho(1-\xi)\pi\sum_{j=1}^{\infty}P(t_{-j})\prod_{k=1}^{j-1}(1-\xi)(1-P(t_{-k})\rho).$$

- Depends on cohorting structure
- Depends on changes in colonized patients over time

Approximation

- ► Assume $P(t_{-j})$ equals $P(t_0)$ for all j > 0.
- ► Multiple events rare during the typical duration of hand contamination.

$$p(1-\xi)\pi\sum_{j=1}^{\infty}P(t_{-j})\prod_{k=1}^{j-1}(1-\xi)(1-P(t_{-k})p)=\frac{p(1-\xi)\pi P(t_0)}{1-(1-\xi)(1-P(t_0)p)}$$

- ► Assume mass action: $P(t_0) = \frac{i}{n}$
- \blacktriangleright Assume patient receives κ contacts per hour
- ▶ define $\beta = \kappa p\pi$
- ► rate acquisition: $\frac{\beta(1-\xi)\frac{j}{n}}{1-(1-\xi)(1-\frac{j}{n}n)}$.
- ► denominator due to persistence of hand contamination
- ► effect substantial if ξ in order of 0.5¹

General case

- 1. Each HCW may have a different level of hand hygiene.
- 2. Each patient may have a different susceptibility and infectivity.
- 3. Any cohorting scheme fits in the framework
- 4. The level of hand hygiene of a HCW may depend on the patients before and after the hand hygiene opportunity, e.g.,
 - 4.1 Hand hygiene higher between patients in different cohorts.
 - 4.2 Hand hygiene higher if HCW moves from a patient with known colonization to a patient without known colonization, i.e., isolation

Definitions

- ξ_{ij}^k : Probability hand hygiene is performed if HCW k moves from patient i to patient j.
- p_i^k : Probability that HCW k picks up hand contamination due to contact with patient i given that patient i is colonized.
- π_j^k : Probability that patient j acquires colonization during a contact with HCW k given that the hands of HCW k are contaminated.
- \mathcal{I}_i : $\mathcal{I}_i = 0$ if patient *i* is uncolonized and $\mathcal{I}_i = 1$ if patient *i* is colonized.
- m_{ij}^k : Probability that previous contact of HCW k was with patient i given current contact with patient j
- m_i^k : Probability that a random contact of HCW k is with patient j.

Acquisition rates: Assume a certain state

- ► Susceptible patient *j* at risk of acquisition if HCW contaminated.
- ► Contamination picked up by previous or earlier patient.
- ► Sum over most recent pick up of hand contamination.
- ► For patient *j* to be at risk, no successful hand decontamination could have occurred afterwards.

Define the $n \times n$ -matrix A(k) with elements

$$a_{ij}^k = m_{ij}^k (1 - \mathcal{I}_i p_i^k) (1 - \xi_{ij}^k).$$

Acquisition rates: Assume a certain state

- ► Susceptible patient *j* at risk of acquisition if HCW contaminated.
- ► Contamination picked up by previous or earlier patient.
- ► Sum over most recent pick up of hand contamination.
- ► For patient *j* to be at risk, no successful hand decontamination could have occurred afterwards.

Define the $n \times n$ -matrix A(k) with elements

$$a_{ij}^k = m_{ij}^k (1 - \mathcal{I}_i p_i^k) (1 - \xi_{ij}^k).$$

 a_{ij}^k : $\mathcal{P}(\text{Previous contact of HCW } k \text{ with patient } i, \text{ no contamination picked up and no successful hand decontamination between contact with patient } i \text{ and } j \mid \text{current contact of HCW } k \text{ with patient } j)$

Acquisition rates: Assume a certain state

- ► Susceptible patient *j* at risk of acquisition if HCW contaminated.
- ► Contamination picked up by previous or earlier patient.
- ► Sum over most recent pick up of hand contamination.
- ► For patient *j* to be at risk, no successful hand decontamination could have occurred afterwards.

Define the $n \times n$ -matrix A(k) with elements

Use $(1 - \mathcal{I}_i p_i^k)$ implies approximation multiple acquisitions are rare during the typical duration of hand contamination.

up and no successful fiand decontamination between contact with patient i and j current contact of HCW k with patient j)

Acquisition rates

If HCW k has c_k contacts per unit of time, the rate β_{ij}^k at which patient i infects patient j via HCW k is:

$$\beta_{ij}^{k} = c_{k} \mathcal{I}_{i} p_{i}^{k} ((1 - \xi_{i1}^{k}) m_{i1}^{k}, (1 - \xi_{i2}^{k}) m_{i2}^{k}, \dots, (1 - \xi_{in}^{k}) m_{in}^{k}) \left(\sum_{l=0}^{\infty} (A(k))^{l} e_{j} \right) \pi_{j}^{k} m_{j}^{k} (1 - \mathcal{I}_{j})$$

 e_j :unit column vector of length n which is only non-zero at position j.

► Transmission rate β_{ij}^k depends on colonization status of other patients via the matrix A(k).

Acquisition rates

If HCW k has c_k contacts per unit of time, the rate β_{ij}^k at which patient i infects patient j via HCW k is:

$$\beta_{ij}^{k} = c_{k} \mathcal{I}_{i} p_{i}^{k} ((1 - \xi_{i1}^{k}) m_{i1}^{k}, (1 - \xi_{i2}^{k}) m_{i2}^{k}, \dots, (1 - \xi_{in}^{k}) m_{in}^{k}) \left(\sum_{l=0}^{\infty} (A(k))^{l} e_{j} \right) \pi_{j}^{k} m_{j}^{k} (1 - \mathcal{I}_{j})$$

 e_j :unit column vector of length n which is only non-zero at position j.

► Transmission rate β_{ij}^k depends on colonization status of other patients via the matrix A(k).

Acquisition rates
If $\xi_{ii}^k > 0$, the absolute value of all eigenvalues of the matrix A(k) are less than one. Therefore, we can use the geometric series for matrices:

$$\beta_{ij}^k = c_k \mathcal{I}_i p_i^k \pi_j^k m_j^k (1 - \mathcal{I}_j) ((1 - \xi_{i1}^k) m_{i1}^k, (1 - \xi_{i2}^k) m_{i2}^k, \dots, (1 - \xi_{in}^k) m_{in}^k) (1 - A(k))^{-1} e_j$$

where 1 is the $n \times n$ identity matrix. The total rate β_{ii} at which patient i infects patients i is the sum of the rates via each HCW k. If there are N HCW, we obtain:

$$\beta_{ij} = \sum_{k=1}^{N} \beta_{ij}^{k}$$
.

The overall rate β_i at which patient j becomes infected is:

$$\beta_j = \sum_{i=1}^n \beta_{ij}.$$

Cohorting schemes

- ▶ A unit with n = 8 patients,
- 4 nurses who may be cohorted
- physicians who are not cohorted.
- ▶ Next contact HCW independent of previous one: $m_{ii}^k = m_i^k$.

A: No cohorting

B: 1st-order

C: Higher-order

Higher-order cohorting

- ► Fraction x of contacts of a nurse are with his/her assigned patients
- ► Fraction $y \le 1 x$ of the contacts are with patients in the the same subunit he/she is not assigned
- ▶ Fraction 1-x-y of the contacts are with one of the four patients in the other subunit.
- $x \ge y \ge \frac{1-x}{3}.$

Higher-order cohorting

- ► Fraction *x* of contacts of a nurse are with his/her assigned patients
- ► Fraction $y \le 1 x$ of the contacts are with patients in the the same subunit he/she is not assigned
- ► Fraction 1-x-y of the contacts are with one of the four patients in the other subunit.

$ x \ge y \ge \frac{1-x}{3}.$		Patient (i)							
HCW (k)		1	2	2	1	F		7	0
HCW (<i>k</i>)		т.		3	4	5	O	/	0
1	nurse A	<u>x</u>	<u>x</u> 2	<u>y</u> 2	<u>y</u> 2	$\frac{1-x-y}{4}$	$\frac{1-x-y}{4}$	$\frac{1-x-y}{4}$	$\frac{1-x-y}{4}$
2	nurse B	$\frac{\overline{y}}{2}$	$\frac{\overline{y}}{2}$	$\frac{\overline{x}}{2}$	$\frac{\bar{x}}{2}$	$\frac{1-\dot{x}-y}{4}$	$\frac{1-\dot{x}-y}{4}$	$\frac{1-\dot{x}-y}{4}$	$\frac{1-\dot{x}-y}{4}$
3	nurse C	$\frac{1-\bar{x}-y}{4}$	$\frac{1-\bar{x}-y}{4}$	$\frac{1-\bar{x}-y}{4}$	$\frac{1-\bar{x}-y}{4}$	$\frac{\dot{x}}{2}$	$\frac{\dot{x}}{2}$	$\frac{\dot{y}}{2}$	$\frac{\dot{y}}{2}$
4	nurse D	$\frac{1-\dot{x}-y}{4}$	$\frac{1-\dot{x}-y}{4}$	$\frac{1-\dot{x}-y}{4}$	$\frac{1-\dot{x}-y}{4}$	$\frac{\overline{y}}{2}$	$\frac{\overline{y}}{2}$	$\frac{\overline{x}}{2}$	$\frac{\overline{x}}{2}$
5	physicians	$\frac{1}{8}$	<u>1</u> 8	<u>1</u> 8	$\frac{1}{8}$	$\frac{\overline{1}}{8}$	$\frac{\overline{1}}{8}$	$\frac{\overline{1}}{8}$	ED.

Cohorting

- ▶ 1st-order cohorting: $y = \frac{1-x}{3}$
- ► No cohorting, i.e., mass action, $x = y = \frac{1}{4}$.

Dynamics

- ► Time scale is duration of stay (exponentially distributed)
- ► Fixed unit size
- ▶ Probability *f* to be colonized on admission
- ► Takes position in cohorting structure of previous patient
 - Vertical cohorting with admission screening needs adaptation

Kolmogorov forward equations

▶ define states

	number	state	# pos
No cohorting:	0	{00000000}	0
	1	{00000001}	1
	2	{00000011}	2
	3	{00000111}	3
	4	{00001111}	4
	5	{00011111}	5
	6	{00111111}	6
	7	{01111111}	7
	8	{11111111}	8

Kolmogorov forward equations

 $p_i(t)$: Probability that the ward is at time t in state i:

$$\begin{split} \frac{d}{dt} p_0(t) &= -nfp_0 + (1-f)p_1(t) \\ \frac{d}{dt} p_i(t) &= \begin{cases} &+ (f+\beta_{i-1})(n-i+1) & p_{i-1}(t) \\ &- ((f+\beta_i)(n-i)+(1-f)i) & p_i(t) & \text{for } 1 \leq i < n \\ &+ (1-f)(i+1) & p_{i+1}(t) \end{cases} \\ \frac{d}{dt} p_n(t) &= (f+\beta_{n-1})p_{n-1}(t) - (1-f)np_n(t) \end{split}$$

 β_i : acquisition rate if there are *i* colonized patients in the wards.

Suppose HCW k has on average c^k contacts per time unit, each patient receives on average receives c^k/n contacts per time unit from HCW k.

$$\beta_i = \sum_{k=1}^{N} \frac{c^k}{n} \frac{p^k (1 - \xi^k) \pi^k \frac{i}{n}}{1 - (1 - \xi^k) (1 - \frac{i}{n} p^k)}.$$

Steady state

- Long term effect interventions
- ► Solve $\frac{dp_i(t)}{dt} = 0$ for $0 \le i \le n$ with $\sum_{i=0}^{n} p_i = 1$

For mass action there is an explicit solution for \mathbf{p}^s :

$$ho_i^{\mathsf{s}} = rac{\left(rac{f}{1-f}
ight)^i \prod_{j=1}^i \left(rac{n-j+1}{j}
ight) \left(rac{eta_{j-1}}{f}+1
ight)}{1+\sum_{k=1}^n \left(rac{f}{1-f}
ight)^k \prod_{j=1}^k \left(rac{n-j+1}{j}
ight) \left(rac{eta_{j-1}}{f}+1
ight)}.$$

The mean prevalence, \bar{p} , in the unit equals:

$$\bar{p} := \frac{1}{n} \sum_{i=0}^{n} i p_i^s$$

Matrix representation

$$\frac{d}{dt}\mathbf{p}(t) = B\mathbf{p}(t)$$

where the matrix elements b_{ij} of the $(n+1) \times (n+1)$ matrix B satisfy

$$\begin{array}{ll} b_{i,i} & = -\left((f+\beta_i)(n-i) + (1-f)i\right) & \text{if } 0 \le i \le n \\ b_{i,i+1} & = (1-f)(i+1) & \text{if } 0 \le i < n \\ b_{i,i-1} & = (f+\beta_{i-1})(n-i+1) & \text{if } 1 \le i \le n \\ b_{i,j} & = 0 & \text{if } |i-j| > 1 \end{array}$$

- ► Last row of the matrix *B* is linearly dependent of other rows
- \blacktriangleright define matrix \tilde{B} by its elements:

$$\tilde{b}_{i,j} = b_{ij} \text{ if } i < n \\
\tilde{b}_{i,i} = 1 \text{ if } i = n$$

The stable distribution p^s is the solution of the equation:

First-order cohorting schemes

define states

number (s)	state	g	h	m-g-h	# pos
0	{{0, 0}, {0, 0}, {0, 0}, {0, 0}}	4	0	0	0
1	{{0, 0}, {0, 0}, {0, 0}, {0, 1}}	3	1	0	1
2	{{0, 0}, {0, 0}, {0, 0}, {1, 1}}	3	0	0	2
3	{{0, 0}, {0, 0}, {0, 1}, {0, 1}}	2	2	0	2
4	{{0, 0}, {0, 0}, {0, 1}, {1, 1}}	2	1	1	3
5	{{0, 0}, {0, 0}, {1, 1}, {1, 1}}	2	0	2	4
6	{{0, 0}, {0, 1}, {0, 1}, {0, 1}}	1	3	0	3
7	{{0, 0}, {0, 1}, {0, 1}, {1, 1}}	1	2	1	4
8	{{0, 0}, {0, 1}, {1, 1}, {1, 1}}	1	1	2	5
9	{{0, 0}, {1, 1}, {1, 1}, {1, 1}}	1	0	3	6
10	{{0, 1}, {0, 1}, {0, 1}, {0, 1}}	0	4	0	4
11	{{0, 1}, {0, 1}, {0, 1}, {1, 1}}	0	3	1	5
12	{{0, 1}, {0, 1}, {1, 1}, {1, 1}}	0	2	2	6
13	{{0, 1}, {1, 1}, {1, 1}, {1, 1}}	0	1	3	7
14	{{1, 1}, {1, 1}, {1, 1}, {1, 1}}	0	0	4	8

First-order cohorting schemes

- Kolmogorov equations can be defined
- ► For each state, determine $\beta_j = \sum_{i=1}^n \beta_{ij} = \sum_{i=1}^n \sum_{k=1}^N \beta_{ij}^k$
- ▶ Involves matrix-inversion of 8 × 8 matrix
- ► Still explicit expression:

$$eta_{ij} = \sum_{k=1}^{5} c_k m_i^k \mathcal{I}_i p \pi m_j^k (1 - \mathcal{I}_j) rac{1 - \xi^k}{1 - \sum\limits_{l=1}^{8} m_l^k (1 - l_l p)(1 - \xi^k)}$$

Extensions

Extension	Number of states
Horizontal 2 nd -order	21
Vertical 1 st order	75
Vertical 2 nd -order	105
Vertical, 2 pathogens, 1 st -order	5460
Vertical, 2 pathogens, 2 nd -order	10065

- ► Hand hygiene adherence nurses: 0.59¹
- ► Hand hygiene adherence physicians: 0.43¹

- ► Hand hygiene adherence nurses: 0.59¹
- ► Hand hygiene adherence physicians: 0.43¹
- ▶ 69% contact by nurses, 31% by physicians¹
- ► Patient has 97 contacts per day

- ► Hand hygiene adherence nurses: 0.59¹
- ► Hand hygiene adherence physicians: 0.43¹
- ▶ 69% contact by nurses, 31% by physicians¹
- ► Patient has 97 contacts per day
- ► $p^k = 0.15$
- ► Choose $\pi^k = \pi$ such $R_A \in \{0.5, 1, 2\}$, check assumption

¹Nijssen et al., Archives of Internal Medicine. 2003;163:2785-6♂→ ⟨♣→ ⟨♣→ ⟨♣→ ⟨♣→ ◇९०

- ► Hand hygiene adherence nurses: 0.59¹
- ► Hand hygiene adherence physicians: 0.43¹
- ▶ 69% contact by nurses, 31% by physicians¹
- ► Patient has 97 contacts per day
- $p^k = 0.15$
- ► Choose $\pi^k = \pi$ such $R_A \in \{0.5, 1, 2\}$, check assumption
- ▶ Admission prevalence high (f = 0.1) or low (f = 0.01)

¹Nijssen et al., Archives of Internal Medicine. 2003;163:2785-6♂→ ⟨♣→ ⟨♣→ ⟨♣→ ◇९०

- ► Hand hygiene adherence nurses: 0.59¹
- ► Hand hygiene adherence physicians: 0.43¹
- ▶ 69% contact by nurses, 31% by physicians¹
- ▶ Patient has 97 contacts per day
- ► $p^k = 0.15$
- ► Choose $\pi^k = \pi$ such $R_A \in \{0.5, 1, 2\}$, check assumption
- ► Admission prevalence high (f = 0.1) or low (f = 0.01)

¹Nijssen et al., Archives of Internal Medicine. 2003;163:2785-6♂→ ⟨♣→ ⟨♣→ ⟨♣→ ◇९०

- ► Hand hygiene adherence nurses: 0.59¹
- ► Hand hygiene adherence physicians: 0.43¹
- ▶ 69% contact by nurses, 31% by physicians¹
- ▶ Patient has 97 contacts per day
- ► $p^k = 0.15$
- ► Choose $\pi^k = \pi$ such $R_A \in \{0.5, 1, 2\}$, check assumption
- ► Admission prevalence high (f = 0.1) or low (f = 0.01)

¹Nijssen et al., Archives of Internal Medicine. 2003;163:2785-6♂→ ⟨♣→ ⟨♣→ ⟨♣→ ◇९०

Results

Effect horizontal cohorting, $R_A = 1$, f = 0.01

fraction contacts nurses in own cohort (x)

Dependence on R_A **and** f

—: No intervention; —: 1st-order cohorting

-: 2^{nd} -order cohorting, $y = \frac{3}{4}(1-x)$; -: 2^{nd} -order cohorting, $y = \frac{9}{10}(1-x)$

--: No transmission

Dependence on R_A **and** f

—: No intervention; —: 1st-order cohorting

-:
$$2^{\text{nd}}$$
-order cohorting, $y = \frac{3}{4}(1-x)$; -: 2^{nd} -order cohorting, $y = \frac{9}{10}(1-x)$

---: No transmission

1st-order vertical cohorting, $R_A = 2$, f = 0.01

fraction contacts nurses in own cohort (x)

1st-order vertical cohorting, $R_A = 2$, f = 0.01

Effect vertical cohorting on other pathogen

- ► Effect minimal
- ► No need for large state space

Isolation (50% effective), $R_A = 1$, f = 0.01

- ► Higher hand hygiene after contact with known colonized patients
- Detection of colonized individuals vital

fraction contacts nurses in own cohort (x)

Isolation (50% effective)

—: No intervention, —: Vertical cohorting d = 2, $\phi = 0.93$

—: Perfect vertical cohorting, ---: Vertical with isolation d=2, $\phi=0.93$

---: Perfect vertical cohorting with isolation, ---: No transmission

Hand hygiene 50% higher between cohorts

Discussion

- ► Hand Hygiene the most efficient intervention
- Important to model hand hygiene not as constant rate
- ► Higher-order cohorting not very useful due to physicians
- ► Fits (almost) into the unified stochastic modelling framework
- ► Choice 8 beds convenient, ideas remain valid
- Understaffing associated with lower compliance and lower cohorting
- ► Works for quite large unit sizes.

Dimension state space

Number of states (S)	formula	n = 1	n = 2	n = 4	<i>n</i> = 8	n = 16	n = 32
No cohorting	n+1	2	3	5	9	17	33
		Horizontal cohorting					
1 st -order cohorting	$\frac{(m+1)(m+2)}{2}$	2	3	6	15	45	153
2 nd -order cohorting	$\binom{v+5}{v}$	2	3	6	21	126	1287
hierarchical cohorting	$\frac{S(k)(S(k)+1)}{2}$	2	3	6	21	231	26,796
	Vertical cohorting						
1 st -order cohorting	$\frac{(m+1)^2(m+2)}{2}$	3	6	18	75	405	2,601
2 nd -order cohorting	$\frac{1+2v}{120} \prod_{i=1}^{5} (i+v)$	3	6	18	105	1134	21,879
hierarchical cohorting	Ø	3	6	18	105	2,079	455,532
		Vertical cohorting and 2 nd pathogen					
1 st -order cohorting	$\frac{(4+3m)}{4}\binom{m+11}{m}$	6	21	195	5,460	529,074	169,492,635
2 nd -order cohorting	Ø	6	21	195	10,065	5,956,650	123,924,869,640
hierarchical cohorting	Ø	6	21	195	10,065	13,978,755	15,885,752,699,355

Number of states for the several variants of the model. The number of patients is $n = 2m = 4v = 2^k$.

The symbol Ø indicates that we could not obtain a closed form expression.

Thank You!

Hand hygiene 50% higher between cohorts

—: No intervention ; —: Horizontal cohorting

—: Nurses: higher HH between cohorts; —: Physicians: higher HH between cohorts

-: All HCWs: higher HH between cohorts; - - -: No transmission

