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INTRODUCTION

Human gut is a complex ecosystem
Many roles in health and disease

Composition is highly variable
Stage of life

Diet

Environmental exposure

Antibiotic usage

Antibiotic usage is a major cause of gut dysbiosis
Collateral damage to gut microflora
Induce changes in composition

Organisms develop resistance



INTRODUCTION

Gut microbiome recovers post antibiotic treatment

How long does the recovery take?

Varies from individual to individual
Specific groups of organisms

Recovery Associated Bacteria (RABs)'
20 species identified
Improved carbohydrate degrading capacity

Specific synergy between Bacteroides thetaiotaomicron and
Bifidobacterium adolescentis

'Nandi et al (2018) bioRxiv doi:10.1101 /350470



UNRAVELLING THE
COMPLEXITY OF
MICROBIAL INTERACTIONS
IN THE GUT

A METABOLIC PERSPECTIVE



GENOME-SCALE METABOLIC NETWORKS

Have been reconstructed for
many organisms

Present a comprehensive picture
of known metabolic reactions /
transports happening in a cell

‘Draft’ reconstructions are readily
obtained from genome
sequence /databases like

ModelSEED

Many methods exist to analyse
these networks

Image Courtesy of Sigma Aldrich, Order your copy from
sigma-aldrich.com/metpath!



WHAT CAN GENOME-SCALE METABOLIC MODELS
TELL US?
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HOW TO ANALYSE GENOME-SCALE METABOLIC
NETWORKS?

Constraint-based Modelling

* Popular for applications such as metabolic engineering
* Demands well-curated models

A Network-based (Graph-based) Modelling

* Path-finding in metabolic networks

* Predicting ‘new’ pathways based on atom-atom
mapping /reaction ‘rules’

Need Methods that

* are very scalable and accurate
* can figure all possible routes that exist




MODELLING MICROBIAL COMMUNITIES

Again, many methods to model

Constraint-based

Population-based
Agent-based

More methods being developed

Many challenges'’
Mostly draft reconstructions available

Difficult to make models talk to one another

'Ravikrishnan A & Raman K (2015) Briefings in Bioinformatics 16:1057—1068

CRC FOCUS SERIES
Computational Biology Series

SYSTEMS-LEVEL
MODELLING OF MICROBIAL
COMMUNITIES

Theory and Practice

Aarthi Ravikrishnan
Karthik Raman

CRC Press
@ o e Franc Grovp

Ravikrishnan & Raman (2018)
ISBN: 978-113859671-9



PATH-FINDING IN METABOLIC NETWORKS

CURRENT STATE-OF-THE-ART

Rahnuma: Hypergraph-based method that performs DFS on hypergraph to find
routes

: Constructs metabolic pathways between metabolites using substrate graph
representation

: Generates the pathways based on the structure transformation patterns
and its comparison with reference pathway

MetaPath: Calculates the scope of metabolic networks given a set of starting seed

: Finds possible transformations between two metabolites using reactions
from KEGG and other (predicted) reactions specific to ATLAS

: Provides organism specific data from KEGG
online tool for heterologous biosynthesis pathway design

These algorithms/methods are based on different heuristics, and aim to
infer/predict the routes of conversions from source to the target molecules

Many of these methods are no longer available (broken link etc.) or do not scale
well



GRAPH REPRESENTATIONS
OF METABOLIC NETWORKS

How to convert a metabolic network to a graph?

Substrate graph

Nodes: Metabolites

Edges connect metabolites participating in the same reaction / reactants to products
Reaction graph

Nodes: Reactions

Edges connect reactions sharing metabolites
Bi-partite graph / Hypergraphs

Nodes: two sets — metabolites and reactions

Edges: connect reactants to reaction nodes and reaction nodes to product nodes

No metabolite—metabolite or reaction—reaction links

‘Currency’ metabolites

Need to be eliminated from substrate graphs!

Else, we have a two-step glycolysis!

10



Ravikrishnan, Nasre & Raman (2018) Scientific Reports 8:9932

thon
O / RamanlLab / MetQuest 5;% Package



METQuUEST: OVERVIEW

Novel dynamic-programming based enumeration, which assembles
reactions into producing a
from a

Employs two phases

Implemented on Python 3.6 & Python 2.7

Key Features

Requires only the topology of reaction network (rather than stoichiometry / atom
mapping)

Simple and scalable to large metabolic networks (especially those comprising >1
organism)

Efficiently handles cyclic and branched pathways

Examines multiple alternate routes of conversion

12



INPUT REPRESENTATION: BIPARTITE GRAPHS

Any given metabolic network can be represented as
a directed bipartite graph G(M, R, E)

M is the set of metabolites, R is the set of reactions, and E is the
set of edges

Directed edges connect metabolites (m; € M) to a
reaction node (r; € R) or a reaction node to product
metabolites

Reversible reactions in the network are denoted by
two separate reaction identifiers — representing the
forward and reverse reactions, respectively

Bipartite representations
and

Help in generating valid paths with biologically
meaningful conversions

13



HANDLING COMMUNITY METABOLIC NETWORKS

Directed bipartite graph G of microbial
communities (consisting of more than one
metabolic network) are also easily constructed

By connecting the graphs of individual organisms
through a common extracellular medium, based
on the overlapping set of exchange reactions

The non-common exchange reactions are
connected only to the extracellular environment

Organism 1

}"%«

Foo

Common
pool of
metabolites

Organism 2 14



METQuEST: INPUTS TO THE ALGORITHM

Input to MetQuest

a directed derived from a given metabolic network
a set

a set of

an integer of any pathway generated

Seed Metabolites
include the source metabolite(s)

as well as molecules such as co-factors and co-enzymes — commonly present in
any cell

akin to a “medium” for growth

15



DEFINITIONS

Reachable metabolite m

A metabolite m is reachable from a set S if either m is in the set S or there is a
reaction r in the reaction network whose output is m and every input of r is
producible

Branched pathway producing m

An S-to-m pathway R'is a set of reactions such that m is the output of at least one
reaction in R" and

Cyclic pathway producing m

A cyclic pathway R, from S to m is a set of reactions where m, which is the output
of at least one reaction in R'is used in its own production by another reaction in R’

Size of a pathway

It is the cardinality /number of reactions in the set R’

16



ALGORITHM WALKTHROUGH
PHASE 1: GUIDED BFS



“GUIDED™ BFS

BFS is a classic graph traversal technique that visits all the nodes of a given graph,
starting at a source node, in a breadth-first fashion

BFS employs a queue of vertices, where newly discovered vertices are enqueued, to
be processed at a later stage

We modify the standard BFS by it, based on the availability of precursor
metabolites

Starting with the set of seed metabolites S, the algorithm first finds all the reactions
from the set R, whose precursor metabolites are in S

Such reactions are marked “visited” and added to the visited reaction set R,
The metabolites produced by these reactions, m_, are then added to S

The traversal continues in a breadth-first manner, incrementally adding
to the BFS queue

18



“GUIDED™ BFS

The expansion stops when there are no further reactions that can be visited; during
the expansion, a reaction node is labelled as , if it does not (yet) have the
necessary precursors in S

Such reactions are automatically triggered if the precursor metabolites are
produced at any later stage

The traversed graph consists of all reactions that can be visited

At the end of the traversal, we obtain the scope M2 S and the set of visited
reaction nodes R,

This process of graph traversal resembles the ideas of network expansion!, and
forward propagation? reported earlier

However, we make a systematic note of the visited and stuck reaction nodes —
later exploited for efficient and exhaustive enumeration

"Handorf et al (2005) J Mol Evol 61:498
2Acuiia et al (2012) Bioinformatics 28:247 4



GUIDED BFS:
WALKTHROUGH

Input — Directed bipartite graph G
derived from metabolic network(s), seed
metabolites

Output — Scope of metabolites, Reaction
set that can be visited

S X
R
& @

Visited Stuck

@

R1

!
oG (A

o] [w]

COIOICRC)

BT

T 3
(2 (13

Scope metabolite set - {M1, A1, A2,
M2, M3, M4, M5, M6, M7, M9, M10,
M12, M8}

Visited reaction set — {R1, R2, R3, R4, 20
R6, R7, R5, RS, R10}



ALGORITHM WALKTHROUGH
PHASE 2: PATHWAY GENERATION



PATHWAY GENERATION

Generates a large Table, of size | M | X3
Enumerating all pathways of size <

For every metabolite in the scope
Goal of MetQuest: to populate all the entries of this Table
We start filling the table entries by first considering the seed metabolite set S

For every seed , the entry in corresponding cell ,
indicating that no reaction is required to produce it

For every metabolite , the entry Table[m][O]

At the end of the algorithm, for any metabolite m € M, and an integer k (0 < k <
B), the entry Table[m][k] is a set of pathways or L

If the entry is not L, each pathway in the set Table[m][k] is of size k and produces
the metabolite m starting from the seed metabolite set

Table[m][k] = L implies that m cannot be produced starting from the seed
metabolite set S using exactly k reactions

12



RESULTS



METQuesT EXCELS IN COMPARISON WITH OTHER
ALGORITHMS

Source Target Size | Output sub-network Comments
L-Arginine (C00062) L-Citrulline (C00327) 2 | RO0551, RO0665 Matches with ATLAS and EMM

- . R02491, R00209, R00237, | Matches with FMM, FMM does not report R00209
Pyruvate (C00022) ltaconate (C00490) 4| Ro2405 which produces C00024 - required by R02405"

- . R00351, R02243, R00209, | Matches with FMM, FMM does not report R00351
Pyruvate (C00022) Ttaconate (C00490) > | R00217, RO1325 which produces C00036 - required by R00351"

R02446, R00737, R01616,

L-Tyrosine (C00082) Naringenin (C00509) 5 RO1613. R0O6641 Matches with FMM, FMM does not report R06641
) . . I RO1616, R0O0697, R02253, | Matches with FMM, FMM does not report R06641
L-Phenylalanine (C00079) Resveratrol (C03582) > R06641, RO1614 which produces malonyl-CoA required by R016147
RO1658, R03245, R02245, . . s
Mevalonic acid (C00418) Amorpha-4,11-diene (C16028) 7 | RO1121, R01123, R07630, | Vo Paths found by FMM, ATLAS, however it is
natively found in S. cerevisiae™.
R02003
D-Erythrose 4-phosphate (C00279) | 3-Amino-5-hydroxy-benzoate (C12107) | 7 — No paths reported by ATLAS, FMM and our algorithm

Our output sub-networks are complete — they have all reactions necessary to produce every
reactant in the pathway

Smaller pathways of size 2 completely match with those generated by the other algorithms

However, in many cases, we identify longer pathways, since these involve metabolites generated
by branched pathways

MetQuest correctly identified the already reported pathway between C00418 (Mevalonic acid)
and C16028 (Amorpha-4,11-diene) — not identified by the other algorithms

24




METQuEST PERFORMANCE

NETWORKS OF DIFFERENT SIZES, FOR DIFFERENT 3
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METQUEST SCALES WELL TO LARGE GENOME-
SCALE/COMMUNITY METABOLIC NETWORKS

Consortium of Clostridium cellulolyticum (cc), Desulfovibrio vulgaris (dv) &
Geobacter sulfurreducens (gs)' = Directed Bipartite graph constructed

Size of the network: 14265 nodes, 29073 edges
Size of scope: 1135 metabolites

Computed pathways of size 20, to all the metabolites within the scope of
cellobiose and other seed metabolites

Verified if the results contain pathways demonstrating experimentally
proven metabolic exchanges

In all the paths, acetate, pyruvate & ethanol were most frequently
exchanged as previously shown'

'Miller LD et al (2010) BMC Microbiol. 10:149

26



UNDERSTANDING METABOLIC
INTERACTIONS IN THE
GUT MICROBIOME



UNDERSTANDING POTENTIAL FOR SYNERGY
BETWEEN ORGANISMS

How well does one organism support another?
In terms of ‘relieving’ blocked reactions

In terms of improving metabolic capabilities

|dentifying exchanges that may contribute to better
interactions

Possible targets for transporter overexpression

Fraction of blocked /stuck reactions relieved by the presence of another organism

28



METABOLIC SUPPORT INDEX
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What fraction of stuck /blocked reactions in one is relieved by the
presence of another organism?

n :
MSI(A;AUB) =1 — stuck, A;AUB
Nstuck, A;A

If all stuck reactions remain stuck, there is no benefit, i.e. MSI = 0

MSI seeks to quantify the (asymmetric)
29



METABOLIC SUPPORT: KNOWN CO-CULTURES

Ketogulonicigenium vulgare (A) and

B. megaterium is a helper strain for

0.224 0.016
Bacillus megaterium(B) K. Vulgare
Yarrowia lipolytica and C. fimi provides additional metabolites to
.. 0.120 0.018 : .
Cellulomonas fimi Y. lipolytica in a co-culture setup
Desulfovibrio vulgaris and D. vulgaris benefits the interaction with
_ _ 0.179 0.036 : :
Methanococcus maripaludis M. maripaludis
Clostridium cellulolyticum and C. acetobutylicum helps C. cellulolyticum when
. , 0.052 0.003 ) ) )
Clostridium acetobutylicum grown together in a cellulose rich medium
Pichia stipitis and Saccharomyces P. stipitis benefits the interactions with
cerevisiae 0.016 0.032 S. cerevisiae (experimental validations were
performed)
In , organism with higher MSI exhibited higher biomass in co-culture!

30



SCOPE AND PATHWAY ANALYSES POINT TO KEY
PLAYERS IN THE GUT

20 microbial species — antibiotic recovery associated
bacteria (RABs) — chosen based on a previous study'

(of 20C, =190 combinations of RAB
organisms) constructed

Microbial association network constructed based on amino
acid synthesising capabilities

Analysed all the AA production pathways for exchange of

metabolites

Two-way analyses performed—pathways originating from the source of one
organism (glucose) and ending in of the other were analysed

Metabolites exchanged between the organisms were identified (from all the
pathways)

"Nandi T et al (2018) bioRxiv doi:10.1101/350470
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MICROBIAL ASSOCIATION NETWORKS

Node size corresponds to out-

5 . degree, i.e. number of organisms
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AA PATHWAY ANALYSES REVEALS INTERESTING
INTERACTIONS/EXCHANGES

Figure shows number of
metabolites exchanged
towards AA production

Some relationships are
“two-way”

Others very one-sided

Very sensitive to the
environment: most
interactions lost in a
“high fibre” diet

Several metabolites
exchanged

Fermentation products such as
acetate, formate and L-lactate

(from)

Alistipes putredinis
Bacteroides uniformis
Alistipes shahii

Bacteroides thetaiotaomicron
Bacteroides caccae
Parabacteroides distasonis
Bifidobacterium adolescentis
Bacteroides intestinalis
Bacteroides stercoris
Bacteroides eggerthii
Parabacteroides merdae
Pseudoflavonifractor capillosus
Roseburia inulinivorans
Subdoligranulum variabile
Faecalibacterium prausnitzii
Ruminococcus bromii
Ruminococcus torques
Bifidobacterium longum
Eubacterium siraeum
Eubacterium eligens

Amino acids such as L-phenylalanine,

L-glycine and L-threonine

Need validation against experiments
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LIMITATIONS

Only a static snapshot of interactions happening in the gut

Nevertheless, graph-based approaches are very useful and complement
constraint-based models

Some predictions agree with previous experiments, but many remain to be
validated

MetQuest algorithm

Predictions are obviously heavily contingent on the quality of the input network
No weights or ranking attached to the metabolites/paths
Difficult to identify very long pathways — but they may not be very interesting!

Also, we view cellular interactions only through a metabolic lens — lots
more happening in reality!

34



SUMMARY



SUMMARY

Gut microbiome suffers post-antibiotic treatment, yet recovers

Recovery facilitated much better by certain bacteria

We developed MetQuest — a

Exhaustively identifies all possible pathways between a set of source and
target molecules (within a size)

Employs a two-phase approach: Guided BFS & Dynamic—programming
based generation of pathways

Overcomes the shortcomings of existing tools

Scales well to and identifies longer pathways

36



SUMMARY

Particularly interesting to identify happening between
micro-organisms in a community

sheds light on nature of (pairwise) interactions
between microbes

MetQuest identifies several metabolic exchanges/dependencies in gut flora
These exchanges are environment-dependent

Several metabolites exchanged
Fermentation products & Amino acids

Ongoing work: reaction rescues in gut microbiome / microbial communities

Generic algorithm/approach — can be applied to any microbial
community to identify pathways and metabolic interactions

37



AVAILABILITY/USAGE

$ pip3 install metquest
Ravikrishnan, Nasre & Raman (201 8) Scientific Reports 8:9932

Ravikrishnan, Blank, Srivastava & Raman (2019) bioRxiv

d- 10.1101/532184

-
-

- E http:/ /metquestdoc.readthedocs.io/

thon
O / RamanlLab / MetQuest 5;% Package
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