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INTRODUCTION

▪Human gut is a complex ecosystem

▪Many roles in health and disease

▪Composition is highly variable

 Stage of life

 Diet

 Environmental exposure

 Antibiotic usage

▪Antibiotic usage is a major cause of gut dysbiosis

 Collateral damage to gut microflora

 Induce changes in composition

 Organisms develop resistance
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INTRODUCTION

▪Gut microbiome recovers post antibiotic treatment

▪How long does the recovery take?

 Varies from individual to individual

▪Specific groups of organisms accelerate recovery

▪Recovery Associated Bacteria (RABs)1

 20 species identified

 Improved carbohydrate degrading capacity

 Specific synergy between Bacteroides thetaiotaomicron and 
Bifidobacterium adolescentis

▪Why do these organisms work well together?
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1Nandi et al (2018) bioRxiv doi:10.1101/350470



UNRAVELLING THE
COMPLEXITY OF 

MICROBIAL INTERACTIONS
IN THE GUT

A METABOLIC PERSPECTIVE



GENOME-SCALE METABOLIC NETWORKS

▪ Have been reconstructed for 
many organisms

▪ Present a comprehensive picture 
of known metabolic reactions / 
transports happening in a cell

▪ ‘Draft’ reconstructions are readily 
obtained from genome 
sequence/databases like 
ModelSEED

▪ Many methods exist to analyse 
these networks
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WHAT CAN GENOME-SCALE METABOLIC MODELS 
TELL US?

McCloskey D et al (2013) Mol Syst Biol 9:661
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▪ Analysis of biological network 
properties

▪ Metabolic engineering1

▪ Prediction of cellular 
phenotypes

▪ Model-driven (biological 
knowledge) discovery

▪ Studies of evolutionary 
processes

▪ Interspecies interactions2

1Badri A, Srinivasan A & Raman K (2017)

In silico approaches to metabolic engineering 

ISBN 978-0-444-63667-6 pp. 161-200



HOW TO ANALYSE GENOME-SCALE METABOLIC 
NETWORKS?

7

Constraint-based Modelling

• Popular for applications such as metabolic engineering

• Demands well-curated models

Network-based (Graph-based) Modelling

• Path-finding in metabolic networks

• Predicting ‘new’ pathways based on atom-atom 
mapping/reaction ‘rules’

Need Methods that

• are very scalable and accurate

• can figure all possible routes that exist



MODELLING MICROBIAL COMMUNITIES

▪ Again, many methods to model

 Constraint-based

 Graph-based

 Population-based

 Agent-based

▪ More methods being developed 

▪ Many challenges1

 Mostly draft reconstructions available

 Difficult to make models talk to one another

▪ Metabolic interactions/exchanges in communities are of particular interest

▪ Also has applications in understanding other communities, e.g. gut 
microbiome
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1Ravikrishnan A & Raman K (2015) Briefings in Bioinformatics 16:1057–1068

Ravikrishnan & Raman (2018)

ISBN: 978-113859671-9



PATH-FINDING IN METABOLIC NETWORKS
CURRENT STATE-OF-THE-ART

▪ Rahnuma: Hypergraph-based method that performs DFS on hypergraph to find 
routes 

▪ FMM: Constructs metabolic pathways between metabolites using substrate graph 
representation 

▪ PathPred: Generates the pathways based on the structure transformation patterns 
and its comparison with reference pathway 

▪ MetaPath: Calculates the scope of metabolic networks given a set of starting seed

▪ ATLAS: Finds possible transformations between two metabolites using reactions 
from KEGG and other (predicted) reactions specific to ATLAS

▪ Metabolic Route Explorer (MRE): Provides organism specific data from KEGG 
online tool for heterologous biosynthesis pathway design

▪ These algorithms/methods are based on different heuristics, and aim to 
infer/predict the routes of conversions from source to the target molecules

▪ Many of these methods are no longer available (broken link etc.) or do not scale 
well
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GRAPH REPRESENTATIONS 
OF METABOLIC NETWORKS

▪How to convert a metabolic network to a graph?
 Substrate graph

 Nodes: Metabolites

 Edges connect metabolites participating in the same reaction / reactants to products

 Reaction graph

 Nodes: Reactions

 Edges connect reactions sharing metabolites

 Bi-partite graph / Hypergraphs

 Nodes: two sets — metabolites and reactions

 Edges: connect reactants to reaction nodes and reaction nodes to product nodes

 No metabolite–metabolite or reaction–reaction links

▪ ‘Currency’ metabolites
 Need to be eliminated from substrate graphs!

 Else, we have a two-step glycolysis!
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OUR ALGORITHM: METQUEST

/RamanLab/MetQuest

Ravikrishnan, Nasre & Raman (2018) Scientific Reports 8:9932



METQUEST: OVERVIEW

▪Novel dynamic-programming based enumeration, which assembles 
reactions into pathways of a specified size producing a given target 
from a given set of source molecules

▪ Employs two phases
 Guided Breadth First Search (BFS)

 Assembly of reactions into pathways

▪ Implemented on Python 3.6 & Python 2.7

▪ Key Features
 Requires only the topology of reaction network (rather than stoichiometry / atom 

mapping)

 Simple and scalable to large metabolic networks (especially those comprising >1 
organism)

 Efficiently handles cyclic and branched pathways

 Examines multiple alternate routes of conversion
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INPUT REPRESENTATION: BIPARTITE GRAPHS

▪ Any given metabolic network can be represented as 
a directed bipartite graph G(M, R, E)

 M is the set of metabolites, R is the set of reactions, and E is the 
set of edges

▪ Directed edges connect metabolites (mi ∈ M) to a 
reaction node (rj ∈ R) or a reaction node to product 
metabolites

▪ Reversible reactions in the network are denoted by 
two separate reaction identifiers — representing the 
forward and reverse reactions, respectively

▪ Bipartite representations disallow invalid conversions 
as may be interpreted from substrate graphs and 

▪ Help in generating valid paths with biologically 
meaningful conversions
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HANDLING COMMUNITY METABOLIC NETWORKS

▪ Directed bipartite graph G of microbial 
communities (consisting of more than one 
metabolic network) are also easily constructed

▪ By connecting the graphs of individual organisms 
through a common extracellular medium, based 
on the overlapping set of exchange reactions

▪ The non-common exchange reactions are 
connected only to the extracellular environment
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METQUEST: INPUTS TO THE ALGORITHM

▪ Input to MetQuest
 a directed bipartite graph G derived from a given metabolic network

 a set of seed metabolites, S

 a set of target metabolites, T

 an integer β which bounds the size of any pathway generated

▪Seed Metabolites
 include the source metabolite(s) 

 as well as molecules such as co-factors and co-enzymes — commonly present in 
any cell

 akin to a “medium” for growth
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DEFINITIONS

▪Reachable metabolite m
 A metabolite m is reachable from a set S if either m is in the set S or there is a 

reaction r in the reaction network whose output is m and every input of r is 
producible

▪Branched pathway producing m
 An S-to-m pathway R′ is a set of reactions such that m is the output of at least one 

reaction in R′ and every input of every reaction in R′ is producible from S

▪Cyclic pathway producing m
 A cyclic pathway R′, from S to m is a set of reactions where m, which is the output 

of at least one reaction in R′ is used in its own production by another reaction in R′

▪Size of a pathway
 It is the cardinality/number of reactions in the set R′
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ALGORITHM WALKTHROUGH
PHASE 1: GUIDED BFS



“GUIDED” BFS

▪ BFS is a classic graph traversal technique that visits all the nodes of a given graph, 
starting at a source node, in a breadth-first fashion

▪ BFS employs a queue of vertices, where newly discovered vertices are enqueued, to 
be processed at a later stage

▪ We modify the standard BFS by guiding it, based on the availability of precursor 
metabolites

▪ Starting with the set of seed metabolites S, the algorithm first finds all the reactions 
from the set R, whose precursor metabolites are in S

▪ Such reactions are marked “visited” and added to the visited reaction set Rv

▪ The metabolites produced by these reactions, mc, are then added to S

▪ The traversal continues in a breadth-first manner, incrementally adding triggerable 
reactions to the BFS queue
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“GUIDED” BFS

▪ The expansion stops when there are no further reactions that can be visited; during 
the expansion, a reaction node is labelled as stuck, if it does not (yet) have the 
necessary precursors in S

▪ Such reactions are automatically triggered if the precursor metabolites are 
produced at any later stage

▪ The traversed graph consists of all reactions that can be visited

▪ At the end of the traversal, we obtain the scope Ms⊇ S and the set of visited 
reaction nodes Rv

▪ This process of graph traversal resembles the ideas of network expansion1, and 
forward propagation2 reported earlier

▪ However, we make a systematic note of the visited and stuck reaction nodes —
later exploited for efficient and exhaustive enumeration
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1Handorf et al (2005) J Mol Evol 61:498
2Acuña et al (2012) Bioinformatics 28:2474



GUIDED BFS: 
WALKTHROUGH

▪ Input – Directed bipartite graph G
derived from metabolic network(s), seed 
metabolites

▪ Output – Scope of metabolites, Reaction 
set that can be visited
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ALGORITHM WALKTHROUGH
PHASE 2: PATHWAY GENERATION



PATHWAY GENERATION

▪ Generates a large Table, of size |Ms|×β
 Enumerating all pathways of size ≤β

 For every metabolite in the scope

▪ Goal of MetQuest: to populate all the entries of this Table

▪ We start filling the table entries by first considering the seed metabolite set S

▪ For every seed metabolite m ∈ S, the entry in corresponding cell Table(m, 0) = ∅, 
indicating that no reaction is required to produce it

▪ For every metabolite m ∈ Ms\S, the entry Table[m][0] remains as ⊥

▪ At the end of the algorithm, for any metabolite m ∈ Ms and an integer k (0 ≤ k ≤ 
β), the entry Table[m][k] is a set of pathways or ⊥

▪ If the entry is not ⊥, each pathway in the set Table[m][k] is of size k and produces 
the metabolite m starting from the seed metabolite set

▪ Table[m][k] = ⊥ implies that m cannot be produced starting from the seed 
metabolite set S using exactly k reactions
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RESULTS



METQUEST EXCELS IN COMPARISON WITH OTHER 
ALGORITHMS
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▪ Our output sub-networks are complete — they have all reactions necessary to produce every 
reactant in the pathway

▪ Smaller pathways of size 2 completely match with those generated by the other algorithms

▪ However, in many cases, we identify longer pathways, since these involve metabolites generated 
by branched pathways

▪ MetQuest correctly identified the already reported pathway between C00418 (Mevalonic acid) 
and C16028 (Amorpha-4,11-diene) — not identified by the other algorithms 



METQUEST PERFORMANCE
NETWORKS OF DIFFERENT SIZES, FOR DIFFERENT β
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|M| = 72    

|R| = 95

|E| = 566

|M| = 650

|R| = 754

|E| = 4207

|M| = 971

|R| = 1371

|E| = 7699

|M| = 1228

|R| = 1577

|E| = 8386



METQUEST SCALES WELL TO LARGE GENOME-
SCALE/COMMUNITY METABOLIC NETWORKS 

▪ Consortium of Clostridium cellulolyticum (cc), Desulfovibrio vulgaris (dv) & 
Geobacter sulfurreducens (gs)1 ⇒ Directed Bipartite graph constructed

▪ Size of the network: 14265 nodes, 29073 edges

▪ Size of scope: 1135 metabolites

▪ Computed pathways of size 20, to all the metabolites within the scope of 
cellobiose and other seed metabolites

▪ Verified if the results contain pathways demonstrating experimentally 
proven metabolic exchanges

▪ In all the paths, acetate, pyruvate & ethanol were most frequently 
exchanged as previously shown1

26
1Miller LD et al (2010) BMC Microbiol. 10:149



UNDERSTANDING METABOLIC 
INTERACTIONS IN THE 

GUT MICROBIOME



UNDERSTANDING POTENTIAL FOR SYNERGY 
BETWEEN ORGANISMS

▪How well does one organism support another?
 In terms of ‘relieving’ blocked reactions

 In terms of improving metabolic capabilities

▪ Identifying exchanges that may contribute to better 
interactions
 Possible targets for transporter overexpression

▪Metabolic Support Index (MSI)
 Fraction of blocked/stuck reactions relieved by the presence of another organism
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METABOLIC SUPPORT INDEX

▪ What fraction of stuck/blocked reactions in one is relieved by the
presence of another organism? 

𝑀𝑆𝐼 𝐴; 𝐴 ∪ 𝐵 = 1 −
𝑛𝑠𝑡𝑢𝑐𝑘, 𝐴;𝐴∪𝐵
𝑛𝑠𝑡𝑢𝑐𝑘, 𝐴;𝐴

▪ If all stuck reactions remain stuck, there is no benefit, i.e. MSI = 0

▪ MSI seeks to quantify the extent of benefit (asymmetric)
29

Individual metabolic networks Community metabolic network



METABOLIC SUPPORT: KNOWN CO-CULTURES
WHICH ORGANISM BENEFITS MORE?

Co-culture organisms MSI 

of A

MSI 

of B

Experimental observations

Ketogulonicigenium vulgare (A) and 

Bacillus megaterium(B)
0.224 0.016

B. megaterium is a helper strain for 

K. Vulgare

Yarrowia lipolytica and 

Cellulomonas fimi 
0.120 0.018

C. fimi provides additional metabolites to 

Y. lipolytica in a co-culture setup

Desulfovibrio vulgaris and 

Methanococcus maripaludis
0.179 0.036

D. vulgaris benefits the interaction with 

M. maripaludis

Clostridium cellulolyticum and 

Clostridium acetobutylicum
0.052 0.003

C. acetobutylicum helps C. cellulolyticum when 

grown together in a cellulose rich medium

Pichia stipitis and Saccharomyces 

cerevisiae 0.016 0.032

P. stipitis benefits the interactions with 

S. cerevisiae (experimental validations were 

performed)

30

In all cases, organism with higher MSI exhibited higher biomass in co-culture!



SCOPE AND PATHWAY ANALYSES POINT TO KEY 
PLAYERS IN THE GUT

▪20 microbial species — antibiotic recovery associated 
bacteria (RABs) — chosen based on a previous study1

▪ Joint metabolic networks (of 20C2 =190 combinations of RAB 
organisms) constructed

▪Microbial association network constructed based on amino 
acid synthesising capabilities

▪Analysed all the AA production pathways for exchange of 
metabolites
 Two-way analyses performed—pathways originating from the source of one 

organism (glucose) and ending in amino acids of the other were analysed

 Metabolites exchanged between the organisms were identified (from all the 
pathways)

1Nandi T et al (2018) bioRxiv doi:10.1101/350470
31



MICROBIAL ASSOCIATION NETWORKS

▪ Node size corresponds to out-
degree, i.e. number of organisms 
‘helped’

▪ Edge weights correspond to 
number of new amino acids 
enabled to be produced

▪ Many organisms benefit the 
relationship with B. uniformis, as 
previously demonstrated1

▪ S. variabile exhibits maximum 
benefit only with B. uniformis

▪ A. putredinis does not help other 
organisms but only receives 

321Nandi et al (2018) bioRxiv doi:10.1101/350470



AA PATHWAY ANALYSES REVEALS INTERESTING 
INTERACTIONS/EXCHANGES

▪ Figure shows number of
metabolites exchanged 
towards AA production

▪ Some relationships are 
“two-way”

▪ Others very one-sided

▪ Very sensitive to the 
environment: most
interactions lost in a 
“high fibre” diet

▪ Several metabolites
exchanged
▪ Fermentation products such as

acetate, formate and L-lactate

▪ Amino acids such as L-phenylalanine,

L-glycine and L-threonine

▪ Need validation against experiments
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LIMITATIONS

▪ Only a static snapshot of interactions happening in the gut

▪ Nevertheless, graph-based approaches are very useful and complement 
constraint-based models

▪ Some predictions agree with previous experiments, but many remain to be 
validated

▪ MetQuest algorithm

 Predictions are obviously heavily contingent on the quality of the input network

 No weights or ranking attached to the metabolites/paths 

 Difficult to identify very long pathways — but they may not be very interesting!

▪ Also, we view cellular interactions only through a metabolic lens — lots 
more happening in reality!
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SUMMARY



SUMMARY

▪ Gut microbiome suffers post-antibiotic treatment, yet recovers

 Recovery facilitated much better by certain bacteria

▪ How to dissect the complexity of these interactions in the gut 
microbiome?

▪ We developed MetQuest – a novel dynamic-programming based 
enumeration

▪ Exhaustively identifies all possible pathways between a set of source and 
target molecules (within a size)

▪ Employs a two-phase approach: Guided BFS & Dynamic–programming 
based generation of pathways

▪ Overcomes the shortcomings of existing tools

▪ Scales well to large networks and identifies longer pathways
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SUMMARY

▪ Particularly interesting to identify metabolic cross-talks happening between 
micro-organisms in a community

▪ Metabolic Support Index sheds light on nature of (pairwise) interactions 
between microbes

▪ MetQuest identifies several metabolic exchanges/dependencies in gut flora

▪ These exchanges are environment-dependent

▪ Several metabolites exchanged
 Fermentation products & Amino acids

▪ Ongoing work: reaction rescues in gut microbiome / microbial communities 

▪ Generic algorithm/approach — can be applied to any microbial 
community to identify pathways and metabolic interactions
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AVAILABILITY/USAGE

▪ $ pip3 install metquest

▪ Ravikrishnan, Nasre & Raman (2018) Scientific Reports 8:9932

▪ Ravikrishnan, Blank, Srivastava & Raman (2019) bioRxiv

10.1101/532184
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/RamanLab/MetQuest

http://metquestdoc.readthedocs.io/
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