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Background



Protein

➢ Biological molecule which plays critical roles in cells

➢ Proteins can be enzymes, antibodies, messengers , transporters and      

also can function as support to structure of cells (structural proteins)

➢ Amino acids connected by peptide bond

➢ 20 amino acids (A,C,D,E,F,G,H,I,K,L,M,N,P,Q,R,S,T,V,W,Y)
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Grouping of amino acids based on charge  type
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Structure of protein

Tertiary

Primary

Secondary

MFDARLVQGSILKKVLVLDAL
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Amino acid mutations

MNNQRKKTARPSFNMLKRARNRVSTVSQLAKRFSKGLL

MNNQRKKTARPSFNMLKRARNRVSTVSQLAKRFSKMLL

Effect of mutation

Mutation

Loss of structure

Loss of function

Mutation
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Importance of understanding the effect of mutations

1) Disease causing mutations – Eg : Sickle cell anemia, cancers
2) Understanding of drug resistance
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Mutational scan studies



Alanine scan mutagenesis

Substitution of each wild-type amino acid with alanine 

MNNQRKKTARP

ANNQRKKTARP

MANQRKKTARP

MNAQRKKTARP

MNNARKKTARP

MNNQAKKTARP

MNNQRAKTARP

MNNQRKATARP

MNNQRKKAARP

MNNQRKKTAAP

MNNQRKKTARA

Wild type

Mutants

Mutational studies

Old methods : few tens of mutations 

Deep mutational scan : ~10000 mutations
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Antibiotic

AmpicillinBeta-lactamase in E. coli

Deep mutational scan
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Deep mutational scan data : Relative fitness of 4997 single points mutations of 
TEM-1 beta-lactamase
Selection of mutants : Presence of the antibiotic ampicillin

M. A. Stiffler, D. R. Hekstra, and R. Ranganathan, “Evolvability as a function of purifying selection in
tem-1 β-lactamase,” Cell, vol. 160, no. 5, pp. 882–892, 2015

Length of protein = L (=263)
Number of single point substitutions = L*19

Deep mutational scan
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Do we need all of it?



Predicting mutational effect
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for all other protein variants

Computational models

Mutational effect scores 
for a subset of mutants 
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Neural Network model

Division of data set

Training    : Trained on this set to  generate model
Validation :  Prevents overfitting
Prediction : To check the predictability on a completely new set of data
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Structure-sequence variables

(1) Solvent accessible surface area (SASA)
(2) Secondary structure 
(3) Number of structural contacts
(4) Average commute time

(5) BLOSUM substitution matrix
(6) Hydrophobicity of the mutant
(7) Hydrophobicity of the amino acid in the wild type 
(8) Position specific substitution matrix (PSSM) score for 
the amino acid after mutation,
(9) PSSM score for the wild-type amino acid
(10) Conservation of the amino acid. 

(11) Average correlation 
(12) Degree centrality
(13) Betweenness centrality
(14) Closeness centrality
(15) Eigenvector centrality
(16) Impact factor
(17) Dependency factor

Co-evolution

Sequence

Structure
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Which is the best and minimal experimental data to train the model ? 



Random scan

Training set - Randomly selected mutations 

Random mutagenesis

Random 85%

Prediction using the model
trained on 85% data

R2
training    = 0.87

R2
validation = 0.78

R2
test         = 0.78
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Varying the training data set size
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Varying the training data set size
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R2
random 15%    = 0.66

R2
random 25%    = 0.69

R2
random 50%    = 0.75

R2
random 85%    = 0.78



ANH scan (15%)

Training set – substitutions to Alanine(A), 
Asparagine(N) and Histidine(H)

Site-directed mutagenesis
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Position scans

Training set – all 19 substitutions at a few chosen sites

How  to choose positions 

• Random (Random position scan)
• Based on the solvent exposure (SASA scan)
• Based on the wild type amino acid (WT scan)

Position
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Position scans
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How do the predictive abilities of the models compare?



Position scans
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Position scans

R2
random 15%                = 0.66

R2
ANH                           = 0.62

R2
Random position scan  = 0.35

R2
WT scan                     = 0.39

R2
SASA scan                 = 0.19
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Protein/
Scan

Random 15% Random 25% Random 50% Random 85%

beta-lactamase 0.81 0.83 0.87 0.89

APH(3')-II 0.69 0.68 0.72 0.78

Hsp90 0.72 0.77 0.82 0.85

MAPK1 0.62 0.63 0.74 0.77

UBE2I 0.52 0.59 0.66 0.67

TPK1 0.24 0.23 0.26 0.42
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Prediction qualities quantified using Pearson correlation



Protein/
Scan

ANH scan
Random 
15%

Random 
position 
scan

WT scan SASA scan

beta-
lactamase 

0.8 0.81 0.65 0.67 0.53

APH(3')-II 0.67 0.69 0.52 0.54 0.49

Hsp90 0.75 0.72 0.3 0.37 0.50

MAPK1 0.62 0.62 0.31 0.39 0.33

UBE2I 0.56 0.52 0.2 0.32 0.31

TPK1 0.25 0.24 0.13 0.19 0.10
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Prediction qualities quantified using Pearson correlation



Conclusions

• 15% of data could be useful for predicting the remaining experiments.

• This 15% can be random choice or what is called alanine-asparagine-
histidine (ANH) scan we conceptualized.
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How does this biochemistry feed into public health models?



Acknowledgement
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Thank You











Protein Num. of amino 

acids.

Data 

availability

Beta-

lactamase 263/208 4997/3952

AGK 264 4234

MAPK1 360 4470

HSP90 629/219 4021

TPK1 243 3181

UBE2I 159 2563


