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Entanglement

Correlation is a statistical measure that indicates the extent to which two or more variables
fluctuate together.

Entanglement: ”A correlation that is stronger than any classical correlation” - J.S.Bell

A pure state |ψ〉AB is separable iff, |ψ〉AB = |a〉 ⊗ |b〉
Otherwise it is Entangled

e.g.

|ψ〉AB = |00〉 ⇒⇒⇒ Pure bipartite Separable state
|ψ〉AB = 1√

2
(|00〉+ |11〉 ⇒⇒⇒ Pure bipartite Entangled state.

A mixed state, ρAB is separable iff, ρAB = Σpi |ai 〉〈ai | ⊗ |bi 〉〈bi |
Otherwise it is entangled.

e.g.

ρAB = 1
2

(|00〉〈00|+ |11〉〈11|) ⇒⇒⇒ Bipartite mixed separable state

ρAB = (1− p) I
4

+ p|φ+〉〈φ+| ⇒⇒⇒ Bipartite mixed entangled state with 1
3
< p < 1
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Different aspects of correlations present in Entanglement

1. Nonlocality- Correlation that can not be explained under the conjunction of realism and
Locality.
Any pure bipartite entangled state is Non local. (violates Bell-CHSH inequality)

2. Steering - Ability to infer an observable of one system from the result of measurement
performed on a second system spatially separated from the first.

• Term first coined by Schrodinger in the response of EPR paper (Math. Proc. Cambridge
Philos. Soc. 32, 446, 1936.)

• M. D. Reid proposed the concept in terms of average inference variance and Heisenberg’s
uncertainty relation.(Phys. Rev. A 40, 913, 1989 and Rev. Mod. Phys. 81, 1727, 2009)

• Wiseman et al. introduced the concept of LHS model and proposed as a formalisation of the
concept of steering, which can be best described as quantum information processing task.(i.e.
detection of Entanglement in a semi device independent way)(Phys. Rev. Lett. 98, 140402, 2007)

• Inequivalence of Entanglement, Steering, and Bell nonlocality for general measurements is
proved in Bipartite 2-Qubit system by Brunner et al.(Phys. Rev. A 92, 032107, 2015)

Here we want to emphasize on Reid’s proposal to analyse steering in an operationally meaningful
way or empirical testable way. we want to find in form of inequalities so that experiment can be
done, which, when violated, imply steering.
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What is Steering

Reid’s sufficient condition of reality: ”If, without in any way disturbing a system, we can predict
with some specified uncertainty the value of a physical quantity, then there exists a probabilistic
element of physical reality which determines this physical quantity with at most that specific
uncertainty.” (PRA 80,032112)

ALICE ←→←→←→←→←→←→←→←→←→←→←→←→ BOB

Measurements: X̂A(or P̂A) X̂B(or P̂B)
Outcomes: xA(or pA) xB(or pB)

Based on the measurement of a quantity, say, X̂A on her subsystem, Alice tries to infer the
outcomes of Bob’s measurement of the same quantity(X̂B).

Alice can make an estimate of the result for Bob’s outcome corresponding to the measurement
of, XB , ⇒ X est

B (XA)
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Average inference variance of X̂B and P̂B defined as,

∆2
inf X̂B = 〈(X̂B − X̂B

est
(X̂A))2〉 ∆2

inf P̂B = 〈(P̂B − P̂B
est

(P̂A))2〉

Applying Reid’s reality criterion, Alice’s choice of the observable that is measured can not affect
the elements of reality of Bob, then there must be simultaneous probabilistic elements of reality
which determine XB and PB with at most those uncertainties.

Now, by Heisenberg’s Uncertainty relation. Quantum mechanics imposes a limit to the precession
with which one can assign the values to observables corresponding to non-commuting operators
X̂ and P̂.

Now with sufficient condition for reality defined by Reid, the limit with which one could determine
the average inference variance,

∆inf XB∆inf PB > 1
4

Violation of this inequality can be interpreted as signature of the correlations embodied in an
Entanglement that is called Steering.

Souradeep Sasmal (BI) A proposed steering criterion using Generalised Uncertainty Relation December 5, 2016 6 / 21



Average inference variance of X̂B and P̂B defined as,

∆2
inf X̂B = 〈(X̂B − X̂B

est
(X̂A))2〉 ∆2

inf P̂B = 〈(P̂B − P̂B
est

(P̂A))2〉

Applying Reid’s reality criterion, Alice’s choice of the observable that is measured can not affect
the elements of reality of Bob, then there must be simultaneous probabilistic elements of reality
which determine XB and PB with at most those uncertainties.

Now, by Heisenberg’s Uncertainty relation. Quantum mechanics imposes a limit to the precession
with which one can assign the values to observables corresponding to non-commuting operators
X̂ and P̂.

Now with sufficient condition for reality defined by Reid, the limit with which one could determine
the average inference variance,

∆inf XB∆inf PB > 1
4

Violation of this inequality can be interpreted as signature of the correlations embodied in an
Entanglement that is called Steering.

Souradeep Sasmal (BI) A proposed steering criterion using Generalised Uncertainty Relation December 5, 2016 6 / 21



Average inference variance of X̂B and P̂B defined as,

∆2
inf X̂B = 〈(X̂B − X̂B

est
(X̂A))2〉 ∆2

inf P̂B = 〈(P̂B − P̂B
est

(P̂A))2〉

Applying Reid’s reality criterion, Alice’s choice of the observable that is measured can not affect
the elements of reality of Bob, then there must be simultaneous probabilistic elements of reality
which determine XB and PB with at most those uncertainties.

Now, by Heisenberg’s Uncertainty relation. Quantum mechanics imposes a limit to the precession
with which one can assign the values to observables corresponding to non-commuting operators
X̂ and P̂.

Now with sufficient condition for reality defined by Reid, the limit with which one could determine
the average inference variance,

∆inf XB∆inf PB > 1
4

Violation of this inequality can be interpreted as signature of the correlations embodied in an
Entanglement that is called Steering.

Souradeep Sasmal (BI) A proposed steering criterion using Generalised Uncertainty Relation December 5, 2016 6 / 21



Average inference variance of X̂B and P̂B defined as,

∆2
inf X̂B = 〈(X̂B − X̂B

est
(X̂A))2〉 ∆2

inf P̂B = 〈(P̂B − P̂B
est

(P̂A))2〉

Applying Reid’s reality criterion, Alice’s choice of the observable that is measured can not affect
the elements of reality of Bob, then there must be simultaneous probabilistic elements of reality
which determine XB and PB with at most those uncertainties.

Now, by Heisenberg’s Uncertainty relation. Quantum mechanics imposes a limit to the precession
with which one can assign the values to observables corresponding to non-commuting operators
X̂ and P̂.

Now with sufficient condition for reality defined by Reid, the limit with which one could determine
the average inference variance,

∆inf XB∆inf PB > 1
4

Violation of this inequality can be interpreted as signature of the correlations embodied in an
Entanglement that is called Steering.

Souradeep Sasmal (BI) A proposed steering criterion using Generalised Uncertainty Relation December 5, 2016 6 / 21



Limitations of reid criterion

Reid constructed his inequality using Heisenberg’s Uncertainty principle.
Which fails to detect the steerability of the states having higher than second order correlation.
E.g. Non- Gaussian entangled states of the Orbital angular momentum, i.e. HG and LG beams.,
Photon subtracted squeezed vacuum state.

Here we propose a new steering criterion based on Generalised Uncertainty Relation in continuous
variable scenario which is tighter than Reid’s steering criterion.

Furthermore, our proposed Steering criterion can detect the steerability of the non Gaussian
states having higher than the second order correlation.
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Uncertainty Relation

Heisenberg’s Uncertainty relation (1927): ”The more precisely the position is determined, the less
precisely the momentum is known and conversely.” (Quantum Theory and Measurement -
J.A.Wheeler and W.H. Zurek, Princeton University Press)
We can not determine position and momentum of a particle simultaneously.
Let εx and εp be the precision (mean error) with which the value x and p be known, By the
famous γ ray experiment Heisenberg derived,

εx εp ∼ h =⇒ Limitation of Measurements.

Kennard proved the inequality in terms of variance, (Z. Phys 44, 326-352, 1927)

σ(x)σ(p) ≥ h
4π

=⇒ limitations of state preparations.

E.U. Condon - Kennard’s Uncertainty relation is only based on for Conjugate variables (FT duals
of one another), What happen if they are not conjugate. (1929)

H.P.Robertson: ”The uncertainty principle for two such (Hermitian) variables A, B, having
[A,B] = i h

2π
, is expressed by

M A·4B ≥ h
4π

(half the absolute value of the mean of their commutator)” - Phys. Rev. 34,163 (1929)
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Generalised Uncertainty Relation

Schrödinger generalised the uncertainty relation (1930) for any two arbitrary Observables
(Hermitian Operator).

The average error or the mean uncertainty of the value of a operator A, is defined as,

∆A =
√

Ā2 − ¯(A)2

To find out the lower bound of the product of the uncertainties of two random variables A and B,
we need to denote the following statements,

(1) A and B must be hermitian so that the expectation value is always real.

(2)The product of two Hermitian Operators is in general not Hermitian.

AB = (AB + BA)/2 + (AB − BA)/2

(3) Swartz inequality should satisfy. i.e.

(
∑

aia
∗
j )(

∑
bib
∗
j ) ≥| (

∑
aibi ) |2

From this it can be proved,

(∆A)2(∆B)2 ≥| 1/2i〈[A,B]〉 |2 + | 1/2〈{A,B}〉 − 〈A〉〈B〉 |2
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Formulation of Steering Criterion in Continuous variable

For a plane wave field, in quantum theory the amplitudes are characterised by non hermitian
anhilation operator a.
Let consider two single mode field Ea and Eb with frequency ωa and ωb,

Eλ = C [λ̂e−iωλt + λ̂†e iωλt ],

where λ ∈ a, b are the Bosonic operators for two different modes, C is a constant incorporating
spatial factors.
The general quadrature phase amplitudes for two modes are defined as,

X̂θ = âe−iθ+âe iθ√
2

Ŷφ = b̂e−iφ+b̂e iφ√
2

CSI: |〈X̂θŶφ〉|2 ≤ 〈(X̂θ)2〉〈(Ŷφ)2〉 (Violation of CSI ⇒ Non classicality)
We define,

The correlation coefficient =⇒ Cθφ =
(XθYφ)

[(Xθ)2(Yφ)2]1/2
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Steering:

Result of measurement performed on Idler amplitude, Yφ ⇒ Infer the result for Signal amplitude,
Xθ

Let us propose the Inferred estimate of the signal amplitude ⇒ X̂θ
est

= gŶφ
g −→ Possible scaling parameter, which one can adjust to allow for greatest accuracy in the
determination of X̂θ

Average inference error ⇒ Deviation of the estimated value from the true signal amplitude

42
inf Xθ = 〈[X̂θ − X̂θ

est
]2〉 = 〈[X̂θ − gŶφ]2〉

Best Estimation: To minimise 42
inf Xθ ⇒

(i) Cθφ should be maximum, and (ii)
∂(42

inf Xθ)

∂g
= 0 (Condition for extremisation)

We deduce that, g =
〈X̂θ Ŷφ〉
〈Y 2
φ
〉

[42
inf Xθ]min = 〈X̂θ

2〉 − 〈X̂θ Ŷφ〉
2

〈Ŷφ
2〉

Measurement of Ŷφ1 =⇒ Simultaneously specify X̂θ1 with error 42
inf Xθ1

Measurement of Ŷφ2 =⇒ Simultaneously specify X̂θ2 with error 42
inf Xθ2

Product of the inferred uncertainty ≥ measured uncertainty ≥ lower bound given by GUR
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Steering Criterion using GUR

Here we take a Gaussian distribution to calculate the lower bound as it gives the minimum
uncertainty.

We consider the coherent state, [Field produced by a single mode laser has well defined
amplitude and phase. The appropriate state of the radiation field is coherent state satisfies,
a|α〉 = α|α〉 ; (R. J. Glauber, Phys Rev. 131, 2766 (1963)]

| α >= e−
|α|2

2
∑ αn
√
n!
| n >

For two general quadrature amplitudes, X̂θ1 and X̂θ2,

〈[X̂θ1, X̂θ2]〉 = (−i)sin(θ1− θ2)

〈{X̂θ1, X̂θ1}〉 = α2e i(θ1+θ2) + (α∗)2e−i(θ1+θ2) = r2cos(θ1 + θ2 + 2ξ), α = re iξ

〈Xθ〉 = 1√
2

[αe iθ + αe−iθ], θ ∈ {θ1, θ2}

The lower bound, | 1/2i〈[A,B]〉 |2 + | 1/2〈{A,B}〉 − 〈A〉〈B〉 |2≥ 5
4

The new steering inequality is given by,

SEPR ≡ (∆inf Xθ1)2(∆inf Xθ2)2 < 5/4
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Results: (1)Two mode squeezed vacuum state

A common resource of the quantum entanglement in CV is the two-mode squeezed vacuum state
generated by means of spontaneous parametric down-conversion in the non-degenerate optical
parametric amplifier (NOPA).
Two mode squeezed state can be generated by applying two mode squeezing operator on the two
mode vacuum state, |0, 0〉

|ξ〉 = S(ξ)|0, 0〉 = exp(ξ † a † b − ξ∗ab)|0, 0〉; ξ = re iφ

=
√

1− λ2
∑
λn | n, n >; λ = tanh r ∈ [0, 1]

We calculate,

〈X̂θŶφ〉 = 2cosh(r)sinh(r)sin(θ + φ)

〈X̂θ
2〉 = 〈̂̂Yφ2〉 = cosh2(r) + sinh2(r)

Cθφ = sin(θ + φ);

The inferred uncertainty is given by,

(∆inf Xθ)2 = 1
2
cosh(2r)− 1

2
tanh(2r)sinh(2r)cos2(θ + φ),

For two different values of θ i.e. θ1 = 0 and θ2 = π/2,

(∆inf Xθ1)2 = 1
2 cosh [2r ]

(Minimized when φ = 0)

(∆inf Xθ1)2 = 1
2 cosh [2r ]

(Minimized when φ = π
2

)

(∆inf Xθ1)(∆inf Xθ2) = 1
4 cosh [2r ]

−→ 0 for r −→∞

Two mode squeezed vacuum state shows EPR steering (from Reid’s condition) for all values of r
except r = 0.
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(2) Photon-subtracted squeezed vacuum state:

Non-Gaussian states can be derived from Gaussian states by the subtraction of photons. (Process
of subtraction can not make a classical field non classical.)

Considering single-photon reduction from each mode, the state becomes

|α > =
√

1− λ2
∑
λn
√
n|n − 1, n >+ (−1)k |n, n − 1 >

(∆inf Xθ)2 = cosh(2r)− sinh(r) cosh(r) cos(2θ)− [cosh(2r) cos(θ−φ)−2 sinh(2r) cos(θ+φ)]2

4[cosh(2r)−sinh(r) cosh(r) cos(2φ)]

The product of uncertainties turns out to be, (Calculating the minimum value for two different
values of θ, i.e. θ1 = 0 and θ2 = π

2
. The minimum occurs when φ1 = π

2
and φ2 = 0 respectively)

(∆inf Xθ1)2(∆inf Xθ2)2 = 9
2[3 cosh 4r+5]
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(3)Non-Gaussian entangled states of the OAM - HG and LG beams:

OAM is the important property of the light (2D fields, also can be realised as 2D HO). In paraxial
optics (Propagation vectors are close to the axis, i.e., Transverse component of momentum <)
longitudinal or axial component) two types of beams can be considered, (A)HG modes and (B)
LG modes.

(A) unm(x , y) =
√

2
π

√
1

2n+mw2n!m!
Hn(
√

2x
w

)Hm(
√

2y
w

)e
− (x2+y2)

w2 ; 0 ≤ n,m ≤ ∞

(A) φn,m(ρ, θ) = e i(n−m)θe
− ρ

2

ω2 (−1)min(n,m)( ρ
√

2
ω

)|n−m|
√

2
πn!m!ω2 L

|n−m|
min(n,m)

( 2ρ2

ω2 )[min(n,m)]!

N = n + m⇒ Order of the mode; l = n −m⇒ Azimuthal index; min(n,m)⇒ Radial index
LG modes carry an OAM ~l per photon.
For n = m = 0 =⇒ u00 and φ00 both are Gaussian beams.
For n + m = 1 =⇒ The two modes differ for both beams.
Let the pump field is taken to be u00, Signal and idler fields can be given in terms of the φ01 and
φ10

LG modes are linear combination of HG modes for the same value of N. So Entangled states
can be constructed from HG mode . Considering the special case,

φ10 = 2√
πw2 (x + iy)e

− (x2+y2)

w2 φ01 = 2√
πw2 (x − iy)e

− (x2+y2)

w2

w ⇒ Beam waist.
(∆inf Xθ)2 = 〈X 2

θ 〉[1− (Cmax
θ,φ )2]; |Cmax

θ,φ | = 1
2

, occurs for φ− θ = kπ
2

, k ∈ Odd Integer
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We plot the product of uncertainties (∆inf Xθ1)(∆inf Xθ2) vs the angular momentum n
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Conclusions

1. In the present work we have studied EPR steering by several examples of non-gaussian
entangled pure states which are failed to reveal steering through Reid criterion for wide ranges of
parameter. Steering with such states is demonstrated using our proposed steering criterion.

2. The states we considered are also steerable according to the entropic steering inequality (Phy.
Rev. A, 89, 012104 - 2014). It will be interesting to investigate the robustness between these two
inequalities.

3. Investigation of Steerability of Werner class states in continuous variable scenario will be one
of the future direction of our work.

4. This idea can be applied for discreet spin systems to achieve the steerability conditions for
different class of states.

5. Fluctuations can be defined in different way to obtain new kind of inequalities which will be
our future study.
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Appendix

Paraxial Laguerre-Gauss (LG) beams carry a well defined orbital angular momentum associated
with their spiral wave fronts. The energy eigenfunctions of the 2D HO may be expressed in terms
of HG functions. Entangled states may be constructed from superpositions of HG wave functions,

φn,m(ρ, θ) = Σm+n
k=0 un+m−k,k (x , y)

f
n,m
k
k!

(−1)k
√

k!(n+m−k)!
n!m!2n+m ; f n,mk = dk

dtk
[(1− t)n(1 + t)m]|t=0

General LG functions is given by,

φn,m(ρ, θ) = e i(n−m)θe
− ρ

2

ω2 (−1)min(n,m)( ρ
√

2
ω

)|n−m|
√

2
πn!m!ω2 L

|n−m|
min(n,m)

( 2ρ2

ω2 )[min(n,m)]!

With
∫
|φn,m(ρ, θ)|2dxdy = 1 Where, Llp(x) is general Laguerre polynomial.

The index determines the dependence of the modes on the azimuthal phase, φ, and each mode
carrying an Orbital angular momentum (OAM) of m~ per photon. LG modes form a complete
Hilbert basis and can thus be used to represent the spatial quantum photon states within the
paraxial regime. In this regime, the LG modes are eigenmodes of the quantum mechanical orbital
angular momentum operator, Lz |m, p〉 = m~|m, p〉. Photons represented by a single LG mode,
|ψ〉 = |m, p〉, are in a quantum state with a well-defined value of the orbital angular momentum
(m~).
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We consider the dimensionless Quadratures for two mode be {X ,PX } and {Y ,PY }, given by,

x(y)→ ω√
2
X (Y ), px (py )→

√
2~
ω

PX (PY )

The Wigner function corresponding to the LG wave function in terms of the scaled variables,

Wnm(X ,PX ;Y ,PY ) = (−1)n+m

π2 Ln[4(Q0 + Q2)]Lm[4(Q0 − Q2)]e4Q0

Q0 = 1
4

[X 2 + Y 2 + P2
X + P2

Y ], and Q2 = XPY−YPX
2

To check Steerability criterion we calculate the inferred variance uncertainty and performed the
minimisation by maximizing the correlation coefficient Cθ,φ.
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