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Numerical computation of tidal parameters

I. BACKGROUND

A. Static, spherical stars

Here, we use units where c = G = 1. The simplest model of a neutron star is a spherically symmetric, nonrotating
perfect fluid, supported against gravitational collapse by its pressure. In Schwarzschild coordinates, the corresponding
spacetime metric has the form

gαβdx
αdxβ = −e2Φ(r)dt2 +

(
1− 2m(r)

r

)−1

dr2 + r2dΩ2 (1)

In the rest frame of the matter, its four-velocity is uα = (ut, 0, 0, 0). The value of ut is fixed by the normalization
condition

−1 = ~u · ~u = gαtu
tuα → ut = e−Φ (2)

With the stress-energy tensor

Tαβ = −pgαβ + (p+ ε)uαuβ (3)

and a given equation of state p = p(ε). The structure of the star is determined by Einstein’s equations that for a
metric of the form (1) reduce to the Tolman-Oppenheimer-Volkoff (TOV) form

dm

dr
= 4πr2ε, (4a)

dp

dr
= −(ε+ p)

(m+ 4πr3p)

r(r − 2m)
, (4b)

Here, ε is the energy density, p is the pressure, and ρ the baryon rest mass density. Changes in these quantities are
related by the second law of thermodynamics with TdS = 0 in the form

d log p

d log ρ
=
ε+ p

p

dp

dε
≡ Γ. (5)

This defines the adiabatic index Γ characterizing the change in pressure at constant entropy. A neutron star model
can be defined by the choice of the central energy density, εc or mass density ρc. The boundary conditions at the
center are m(r = 0) = 0 and p = p(ρc). For numerical integrations one usually starts at a small value away from
r = 0, say at a very small ∆r with the initial conditions

m(∆r) ≈ 4

3
πε(ρc)(∆r)

3, p(∆r) ≈ p(ρc) (6)

The surface of the star is defined to be where the pressure goes to zero,

p(r = R) = 0 (7)

and this must be solved to find R.
There is a more elegant formulation of the TOV equations in terms of an enthalpy variable that avoids this additional

step to find the root of p, see e.g., Lindblom ApJ 398, 569 (1992), or Lindblom and Indik PRD 86, 084003 (2012) or
PRD 89, 064003 (2014).

The TOV equations in the form specified above are not in a very convenient form for numerical solutions because,
for example, the radius at the edge of the star, R, is not known until the equations are solved, so some iteration
procedure is required to seek the edge of the star, where p and ε become zero.

http://adsabs.harvard.edu/abs/1992ApJ...398..569L
http://adsabs.harvard.edu/abs/2012PhRvD..86h4003L
http://adsabs.harvard.edu/abs/2014PhRvD..89f4003L
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1. Formulation in terms of enthalpy

A more efficient formulation is obtained when using the enthalpy as the dependent variable. The enthalpy per unit
rest mass is (ε+ p)/ρ but it is more convenient to work with the quantity

h = ln

[
ε+ p

ρ

]
(8)

Integrating in terms of h, instead of the radius, has the advantage that the surface is at a known value h = 0 and the
equations are nonsingular at this point. Then h satisfies

dp

dh
= ε+ p, h =

∫ p

0

dp′

ε(p′) + p′
(9)

For positive energy density and pressure h is monotonically increasing with pressure so we can write the EoS in the
form

ε = ε(h), p = p(h) (10)

An additional simplification when using h is that there is an algebraic relation between the metric potential and h in
the interior. The equations of stellar structure can then be written as

dr

dh
= − r(r − 2m)

m+ 4πr3p
,

dm

dh
= 4πr2ε

dr

dh
(11)

Solving the equations in this form begins by specifying initial conditions, at the center of the star where h = hc,
and then integrating toward the surface of the star where h = 0. Numerically, it is often convenient to start at a small
r0 instead of at r = 0, and to use the starting conditions:

r(hc) = r0, m(hc) =
4π

3
r3
0ε(hc) (12)

At the surface of the star, the derivative dr/dh is non-zero and bounded, so this formulation completely eliminates
the problems associated with solving p(R) = 0 to locate the stars surface. The total gravitational mass and radius of
the stellar model are obtained in this formulation simply by evaluating the solutions m(h) and r(h) at the surface of
the star where h = 0: M = m(0) and R = r(0).

B. Exercises: Equilibrium configuration

1. The first step in obtaining a neutron star model is deciding on the equation of state used to describe its matter.
There are many different calculations of the equation of state, using various different approximations, but the
calculations for most of these are so complicated that they are simply output as tables of values. Here we will
use the SLy equation of state, described in Douchin and Haensel A&A 380, 151 (2001) and freely available in
tabular form here. (This is a standard soft EOS, i.e., one that gives stars with small radii, and thus small tidal
deformabilities. The name comes from Skyrme-Lyon, the name of the nucleon-nucleon interaction model used.)

Note that this table gives the baryon number density, which you do not need here, and denotes the energy
density, which we call ε, by rho. Your code thus needs to be able to read in an equation of state table, and
interpolate it [in the “inverse form” of energy density versus pressure, ε(p)], so you can compute the pressure as
a function of the enthalpy, p(h), and thus also (by composition) the energy density as a function of the enthalpy,
ε(h).

There are fancy methods of interpolation that respect the first law of thermodynamics [e.g., Haensel and
Prószyński ApJ 258, 306 (1982)], but these are only necessary for very high accuracy work. For our pur-
poses, it is sufficient to use a simple linear interpolation of the logarithms of p and ε, where one interpolates the
logarithms of these quantities since they range over many orders of magnitude. It also works well to compute
the enthalpy on a mesh of p values and again perform linear interpolation of the logarithms to compute p(h).

2. Now you can write a numerical code to integrate the TOV equations (4). Think about the units you want to
use. A convenient choice are units with G = c = M� = 1. Alternatively, you can use only geometric units or
restore the factors of G and c to use cgs or SI units. The conversion factors are given in the Appendix. For
example, the c = G = M� = 1 units are related to cgs units by cm = c2/(GM�) and g = 1/M� where the rhs
contains numerical values in cgs units. (Note that the SLy EOS table is given in cgs units.)

http://adsabs.harvard.edu/abs/2001A%26A...380..151D
http://www.ioffe.ru/astro/NSG/NSEOS/sly4.dat
http://adsabs.harvard.edu/abs/1982ApJ...258..306H
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3. For the SLy equation of state, compute the mass and radius of the NS for different choices of the central density.
Find the maximum mass of a stable neutron star. (This is the maximum mass for which the star’s gravitational
mass increases with its central density, or central enthalpy.) Plot your results for the mass-radius curve, with
the mass in units of solar masses, and the radius in km. Note that you can evaluate m(h) and r(h) at the
enthalpy corresponding to a small density in the EOS table to obtain their surface values, since the EOS table
does not go down to zero density.

II. COMPUTATION OF LOVE NUMBERS

As discussed in the lectures, the Love numbers are computed by solving for the perturbed structure and spacetime
geometry of the NS. This is accomplished by decomposing the perturbations to the metric components and the fluid
variables into spherical harmonics in the Regge-Wheeler gauge, and substituting into Einstein’s equations, the four-
velocity normalization condition, and the Bianchi identities/stress-energy conservation. Similar to the Newtonian
case that you considered in Ex. 3, in the limit of linear, static, even-parity perturbations, the system of perturbation
equations simplifies to a single ODE for a variable y that is the logarithmic derivative of the perturbation to the
analog of the Newtonian potential in the metric; see, e.g., Sec. VIII in Landry and Poisson PRD 89, 124011 (2014).
The resulting ODE for the `th multipole is given by

ry′ + y(y − 1) +
2

f

[
1− 3m

r
− 2πr2(ε+ 3p)

]
y − 1

f

[
`(`+ 1)− 4πr2(ε+ p)

(
3 +

dε

dp

)]
= 0 (13)

Here, the prime denotes the derivative with respect to r (we have suppressed the functional dependence on r in y, m,
ε, and p) and we omitted the subscripts ` on y. Additionally, f := 1 − 2M/R, where M is the star’s gravitational
mass and R is its areal (i.e., Schwarzschild coordinate) radius.

The boundary condition at the center is

y(r = 0) = ` (14)

Given a numerical solution in the interior the next step is to evaluate it at the surface to obtain

Y = y(r = R). (15)

The exterior solution has long been known in terms of special functions (associated Legendre functions, which are a
special class of hypergeometric functions). From the asymptotic behavior of these functions at r � R one can identify
the piece that falls off as r−(`+1) associated with the `th mass multipole moment, and the piece that grows as r`

corresponding to the tidal field.
Similar to the Newtonian case you considered in Ex. 3, the tidal field can be eliminated by considering the logarithmic

derivative of the metric function. Finally, matching the interior and exterior solutions at the surface of the NS
determined the Love numbers [1]. For the simple cases with Γ 6= 0 considered here, the result from the numerical
solution for Y from the interior can be substituted directly into the algebraic expression for the Love numbers k` that
are generalizations of the Newtonian results you derived in Ex. 3. The general result is given in terms of the Gauss
hypergeometric function 2F1(a, b; c; z) and is

2k` =
RA′1 − [Y − `− 4M/(R− 2M)]A1

[Y + `+ 1− 4M/(R− 2M)]B1 −RB′1
(16)

where

A1 = 2F1(−`,−`+ 2;−2`; 2M/R) (17a)

B1 = 2F1(`+ 1, `+ 3; 2`+ 2; 2M/R) (17b)

and primes on A1 and B1 denote derivatives with respect to R. These derivatives can easily be evaluated in terms of
the hypergeometric functions themselves using the identity

d

dz
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z). (18)

http://adsabs.harvard.edu/abs/2014PhRvD..89l4011L
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Alternatively, if you prefer typing to hypergeometric functions, explicit expressions for the lowest order multipoles
are

k2 =
8

5
(1− 2C)2C5[2C(Y − 1)− Y + 2]

×
{

2C
(
4(Y + 1)C4 + (6Y − 4)C3 + (26− 22Y )C2 + 3(5Y − 8)C − 3Y + 6

)
− 3(1− 2C)2(2C(Y − 1)− Y + 2) log

(
1

1− 2C

)}−1

,

(19a)

k3 =
8

7
(1− 2C)2C7

[
2(Y − 1)C2 − 3(Y − 2)C + Y − 3

]
×
{

2C
[
4(Y + 1)C5 + 2(9Y − 2)C4 − 20(7Y − 9)C3 + 5(37Y − 72)C2 − 45(2Y − 5)C + 15(Y − 3)

]
− 15(1− 2C)2

(
2(Y − 1)C2 − 3(Y − 2)C + Y − 3

)
log

(
1

1− 2C

)}−1

,

(19b)

where C = M/R is the compactness of the neutron star.

A. Exercises: Computation of Love numbers

1. Extend your TOV code to compute y for ` = 2 from (13). You can either change variables in the ODE to
enthalpy, or convert everything to r (since you now know the domain over which you are solving the equation,
for a given stellar model). You can invert r(h) to find h(r) using logarithmic interpolation, as before.

2. Compute the corresponding Love number k2 from (16) or (19a).

3. Use the same setup for which you computed the mass-radius curve, and compute λ = 2k2R
5/3. Generate a

plot of λ as a function of mass. Here you should plot λ in cgs units and the mass in solar masses, so you can
compare with the SLy curve in Fig. 2 of Hinderer et al. PRD 81, 123016 (2010).

1. Appendix: units

In general relativity, the equations often simplify when using units adapted to the situation, typically the convenient
choice is geometrized units with G = c = 1. For neutron stars, it is convenient to further specialize the geometric
units to units where M� = 1, so overall the units are G = c = M� = 1. The conversion factors are given in the table
below

Taken from online notes, which you can also refer to for further details. The quantity M∗� = Gc−2M� = 1.476 ×
105cm is the mass of the sun in geometrized units.

[1] For objects with a discontinuous transition of the density in the interior and exterior such as quark stars this matching
must be performed more carefully, see the last part of Ex. 3

http://adsabs.harvard.edu/abs/2010PhRvD..81l3016H
http://www.tat.physik.uni-tuebingen.de/~bode/Classes/NumericalMethods/NumericalMethods_TOV.pdf
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