

Many-body strategies for multi-qubit gates

Kareljan Schoutens

ICTS Bangalore, 31 July 2018

0000 1000	Summary	0000 1000
0100		0100
0010	we propose many-body strategies to	0010
0001	realize multi-qubit quantum gates on	0001
1100	N-qubit registers	1100
1010		1010
1001	we use 2-qubit interactions only	1001
0110		0110
1010	our protocol combines eigengates with	1010
0011	selective resonant driving	0011
1110		1110
1101	we demonstrate results for Krawtchouk	1101
1011	qubit chain and Polychronakos chain	1011
0111	with inverse square interaction	0111
1111		1111

Many-body strategies for multiqubit gates: Quantum control through Krawtchouk-chain dynamics

Koen Groenland^{1,2,3,*} and Kareljan Schoutens^{1,2}

¹QuSoft, Science Park 123, 1098 XG Amsterdam, the Netherlands ²Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands ³CWI, Science Park 123, 1098 XG Amsterdam, the Netherlands

(Received 17 July 2017; published 12 April 2018)

We propose a strategy for engineering multiqubit quantum gates. As a first step, it employs an *eigengate* to map states in the computational basis to eigenstates of a suitable many-body Hamiltonian. The second step employs resonant driving to enforce a transition between a single pair of eigenstates, leaving all others unchanged. The procedure is completed by mapping back to the computational basis. We demonstrate the strategy for the case of a linear array with an even number N of qubits, with specific XX + YY couplings between nearest neighbors. For this so-called Krawtchouk chain, a two-body driving term leads to the iSWAP_N gate, which we numerically test for N = 4 and 6.

outline

- background and motivation
- many-body strategies for multi-qubit gates
- quantum control on the Krawtchouk and Polychronakos chains
- multi-qubit gates

quantum algorithms

For specific problems quantum algorithms can be made to outperform classical computers by cunningly combining quantum parallelism with interference.

quantum circuit

3-step implementation of quantum algorithm on *N*-qubit quantum register

- initialization
- **unitary evolution** via quantum gates
- read-out through measurement

IBM Quantum Experience

quantum gates

CNOT:

• **1-qubit gates:** *X*, *Z*, *H*, ...

• 2-qubit gates: CNOT, $XX(\theta)$, SWAP, ...

flips target qubit t iff control qubit c is in state |1>

universal gate sets

strong universality

all *N*-qubit unitaries can be built from CNOTs plus sufficiently many 1-qubit gates

universal gate sets

universal gate sets

SWAP gate

state of the art

quantum hardware has progressed to the point that programmable qubit platforms with up to some 20 qubits are available

 \rightarrow real-world testing of few-qubit quantum algorithms!

native gates and quantum compiling

native gate libraries

the 1-qubit and 2-qubit interactions that are natural for a given qubit platform lead to a `native gate library'.

quantum compiling

expressing universal gates in native gates

example: native gate library for trapped ions

- all 1-qubit rotations $R_{\alpha}(\theta)$
- 2-qubit gates $X_i X_j(\theta)$

$$|q_c\rangle - |q_t\rangle = - \begin{bmatrix} R_y(\alpha \frac{\pi}{2}) \\ R_y(\alpha \frac{\pi}{2}) \end{bmatrix} \begin{bmatrix} XX(\alpha \frac{\pi}{4}) \\ R_x(-\frac{\pi}{2}) \end{bmatrix} \begin{bmatrix} R_z(-\frac{\pi}{2}) \\ R_z(-\frac{\pi}{2}) \end{bmatrix}$$

Complete 3-Qubit Grover Search on a Programmable Quantum Computer

C. Figgatt,¹ D. Maslov,^{2,1} K. A. Landsman,¹ N. M. Linke,¹ S. Debnath,¹ and C. Monroe^{1,3}

¹Joint Quantum Institute, Department of Physics, and Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, MD 20742, USA ²National Science Foundation, Arlington, VA 22230, USA ³IonQ Inc., College Park, MD 20742, USA (Dated: March 31, 2017)

Grover search: finding tagged element in size-*N* database in $O(\sqrt{N})$ steps

3-qubit Grover search

finds 1 tagged element out of 8 in two steps

quantum circuit on Quirk simulator:

Initializing the qubits to |0>

read-out gives tagged element |101> with 94.5% chance

• quantum algorithms such as Grover search use gates like

CCNOT (Toffoli), CCZ, ..., $C^{N-1}NOT$, $C^{N-1}Z$, etc

• building these from 1-qubit and 2-qubit gates requires lengthy circuits

Toffoli-3 using standard Clifford + T gate library

Toffoli-3 using XX/R gate library

gate library Ř Toffoli-4 using XX,

- background and motivation
- many-body strategies for multi-qubit gates
- quantum control on the Krawtchouk and Polychronakos chains
- multi-qubit gates

many-body strategies

idea

- couple *N* qubits, via 2-body interactions
- use many-body time evolution to realize quantum gates

proposed protocol

- **Step 1.** Apply quantum circuit for *eigengate* to produce eigenstates from states in computational basis.
- **Step 2.** Use resonant driving to selectively couple and interchange 2 out of 2^N eigenstates.
- **Step 3.** Apply eigengate to return to computational basis.

step 0: many-body energy spectrum (N=4)

step 1: eigengate U_K maps computational basis to eigenstates

step 2: resonant driving interchanges a single pair of eigenstates

step 3: inverse eigengate *U_K* maps back to computational basis

- background and motivation
- many-body strategies for multi-qubit gates
- quantum control on the Krawtchouk and Polychronakos chains
- multi-qubit gates

Krawtchouk chain: 2 qubits

$$H^{(2)} = -\frac{J}{2}(X_1X_2 + Y_1Y_2)$$

 $t=\pi/J$ pulse of $H^{(2)}$ gives gate iSWAP₂

 $|00\rangle \rightarrow |00\rangle$, $|01\rangle \rightarrow i |10\rangle$, $|10\rangle \rightarrow i |01\rangle$, $|11\rangle \rightarrow |11\rangle$

Krawtchouk chain, N=n+1 qubits

$$H^{K} = -\frac{J}{2} \sum_{x=0}^{n} \sqrt{(x+1)(n-x)} \left[X_{x} X_{x+1} + Y_{x} Y_{x+1} \right]$$

• 1-body energies are all commensurate

$$\lambda_k = J(k - \frac{N-1}{2}), \qquad k = 0, 1, ..., n$$

• many-body energies are (free) sums of 1-body energies thanks to mapping to free fermions

Krawtchouk chain dynamics, I

Time evolution over time $t^*=\pi/J$ gives Perfect State Transfer (PST) for state with single `particle' or `spin-flip'

Christandl-Datta-Ekert-Landahl 2004

Krawtchouk chain dynamics, II

pulse of time $t^*/2=\pi/(2J)$ on Néel state |1010..> generates **Rainbow state**:

nested Bell pairs with maximal block entanglement entropy $S_{\text{LR}}=N/2\ln(2)$

Alkurtass-Banchi-Bose 2014

Krawtchouk chain, details (N=n+1)

$$H^{K} = -\frac{J}{2} \sum_{x=0}^{n} \sqrt{(x+1)(n-x)} \left[X_{x} X_{x+1} + Y_{x} Y_{x+1} \right]$$

• 1-body spectrum

$$\lambda_k = J(k - \frac{N-1}{2}), \qquad k = 0, 1, ..., n$$

• eigenstates

$$|\{k\}\rangle_{H^{K}} = \sum_{x=0}^{n} \phi_{k,x}^{(n)} |\{x\}\rangle \qquad \phi_{k,x}^{(n)} = K_{k,x}^{(n)} \sqrt{\frac{\binom{n}{x}}{\binom{n}{k}2^{n}}}$$

with *K*^(*n*) the **Krawtchouk polynomials**

$$K_{k,x}^{(n)} = \sum_{j=0}^{k} (-1)^{j} \begin{pmatrix} x \\ j \end{pmatrix} \begin{pmatrix} n-x \\ k-j \end{pmatrix}$$

Krawtchouk chain, details (N=n+1)

$$H^{K} = -\frac{J}{2} \sum_{x=0}^{n} \sqrt{(x+1)(n-x)} \left[X_{x} X_{x+1} + Y_{x} Y_{x+1} \right]$$

• mapping to free fermions through Jordan-Wigner transformation

$$\frac{1}{2} \left(X_j + i Y_j \right) = \prod_{i=0}^{j-1} (1 - 2n_i) f_j \qquad \frac{1}{2} \left(X_j - i Y_j \right) = \prod_{i=0}^{j-1} (1 - 2n_i) f_j^+$$

• many-body eigenstates built from fermionic eigenmodes

$$c_k^+ = \sum_{j=0}^n \phi_{k,j}^{(n)} f_j^+$$

Krawtchouk chain energy spectrum (*N*=4)

energy S_{z} (# of 1)

step 1: eigengate U_K maps computational basis to eigenstates

Krawtchouk eigengate

• exact eigengate for Krawtchouk chain eigenstates

$$U_{K} = \exp\left(-i\frac{\pi}{J}\frac{(H^{K} + H^{Z})}{\sqrt{2}}\right)$$

with

$$H^{Z} = \frac{J}{2} \sum_{x=0}^{n} (x - \frac{n}{2})(I - Z)_{x}$$

• proof: use angular momentum commutation relations of Krawtchouk operators $L_X = H^K$ and $L_Z = H^Z$ to show that

$$U_{K}H^{Z} = H^{K}U_{K}$$

step 2: resonant driving interchanges a single pair of eigenstates

• need driving term $H_D(t)$ that resonantly couples the

highest energy state U_K |00...01...11> to the lowest energy state U_K |11...10...00>

- need to annihilate the fermionic modes with $\lambda_k > O$ and create the fermionic modes with $\lambda_k < O$ (or $\lambda_k \le O$)
- can be done by suitable 1-qubit or 2-qubit operator (!)

• N odd, N=n+1, need to couple

 $U_K | O^{n/2+1} 1^{n/2} > \text{ with } U_K | 1^{n/2+1} O^{n/2} >$

• need to

annihilate the n/2 fermionic modes with $\lambda_k{>}o$ and

create the n/2+1 modes with $\lambda_k \leq 0$

• can be done by the 1-qubit operator

 $\sigma_{n/2}^{-} = [1 - 2f_1^{+}f_1] \dots [1 - 2f_{n/2-1}^{+}f_{n/2-1}]f_{n/2}^{+}$

 N odd, N=n+1, matrix element for single qubit resonant driving

$$\left\langle 1^{n/2+1} 0^{n/2} \left| U_K \, \sigma_{n/2}^{-} U_K \right| 0^{n/2+1} 1^{n/2} \right\rangle$$

$$= 2^{n/2} \left| \phi_{\{0,\dots,n/2\},\{0,\dots,n/2\}}^{(n)} \right| \left| \phi_{\{0,\dots,n/2-1\},\{n/2+1,\dots,n\}}^{(n)} \right|$$

$$= \dots$$

$$= (-2)^{-n^2/4}$$

• exponential decay implies that driving time for resonant transition grows quickly with *N*

• *N* even, need to couple

 $U_K | 0^{N/2} | 1^{N/2} > \text{ to } U_K | 1^{N/2} | 0^{N/2} >$

• need to

annihilate the $N\!/\!2$ fermionic modes with $\lambda_k\!\!>\!\!o$ and

create the *N*/*2* fermionic modes with $\lambda_k < O$

• can be done by the 2-qubit operator

 $\sigma_{j}^{-}\sigma_{j+N/2}^{+} = f_{j}^{+}[1 - 2f_{j+1}^{+}f_{j+1}]\dots[1 - 2f_{j+N/2-1}^{+}f_{j+N/2-1}]f_{j+N/2}$

• for *N*=6: matrix element

$$\langle 111000 | U_{K}(\sigma_{1}^{+}\sigma_{4}^{-}-\sigma_{4}^{+}\sigma_{1}^{-})U_{K} | 000111 \rangle = \frac{5}{32}$$

• resonant driving term

$$H_D^{(1,-)}(t) = i J_D \cos[9Jt] [\sigma_1^+ \sigma_4^- - \sigma_4^+ \sigma_1^-]$$

• conditions on driving time τ_D

$$\tau_D(5J_D / 64) = \pi / 2$$
 $\tau_D = M(2\pi / J)$

so that (in leading order) |000111> and |111000> are interchanged and all dynamical phases return to 1

many-body protocol for iSWAP₆

 $|000111\rangle \rightarrow i|111000\rangle, |111000\rangle \rightarrow i|000111\rangle$

fidelities for iSWAP₄ and iSWAP₆

Polychronakos chain

- linear chain with inverse square interaction
- x_j tuned to be roots of Hermite polynomial $H_N(x)$

Polychronakos 1993

Polychronakos chain - symmetries

$$L_0^{\alpha} = \frac{1}{2} \sum_{j=1}^N x_j \vec{\sigma}_j^{\alpha} \qquad L_1^{\alpha} = \frac{1}{4} \sum_{j \neq k} w_{jk} \epsilon^{\alpha \beta \gamma} \vec{\sigma}_j^{\beta} \vec{\sigma}_k^{\gamma} \qquad w_{jk} = \frac{1}{x_j - x_k}$$

- both are vectors with respect to SU(2) symmetry
- commutation relations with hamiltonian

$$[H_{\rm P}, L_0^{\alpha}] = iL_1^{\alpha} \qquad [H_{\rm P}, L_1^{\alpha}] = -iL_0^{\alpha}$$

Frahm 1993

Polychronakos chain - symmetries

 L_0^{z} is diagonal in computational basis

$$L_0^z |\{k_1, k_2, \dots, k_p\}\rangle = \sum_{j=1}^p x_{k_j} |\{k_1, k_2, \dots, k_p\}\rangle.$$

Using commutation relations show that

$$e^{-i\frac{\pi}{2}H_P}L_0^z e^{i\frac{\pi}{2}H_P} = L_1^z$$

Conclude that $U_P = e^{-i\frac{\pi}{2}H_P}$ is eigengate for L_1^z

Polychronakos chain - spectrum of L_1^z

Polychronakos chain – resonant driving

• top and bottom states of *N*-body spectrum of L_1^z can be connected by 1- and 2-body spin-operators

N=6			
H_{drive}	$_{L_1^z}\langle t_1 H_{ m drive} t_2 angle_{L_1^z}$		
σ_3^z	0.116012i		
$\sigma_3^z \sigma_4^z$	-0.327919		
$\sigma_3^x\sigma_4^x$	0.200378		

 resonant driving step needs `half way inversion' to cancel unwanted dynamical phases

Polychronakos chain – fidelity of $iSWAP_N$

- background and motivation
- many-body strategies for multi-qubit gates
- quantum control on the Krawtchouk and Polychronakos chains
- multi-qubit gates

combining *eigengates* with resonant driving produces N-qubit gate **iSWAP**_N

$|000...111...> \rightarrow i |111...000...>,$ $|111...000...> \rightarrow i |000...111...>$

double-time **iSWAP**_N gives **PHASE**_N

 $|000...111...> \rightarrow - |000...111...>,$ $|111...000...> \rightarrow - |111...000...>$

Toffoli-5 using double strength iSWAP₆ gate called PHASE₆

Outlook

further results (with Koen Groenland)

- sensitivity to noise
- various optimizations
- ...

Outlook

questions, questions ...

- for large *N*, our gate times grow rapidly due to suppression of matrix elements can this be avoided?
- fundamental `speed limits' for quantum gates given the maximum strength of 2-qubit interactions, how much time is needed to achieve a gate?