ICTS Lecture 3



Outline

So far, we have covered extremes of

infinite conductivity (in integrable models), or
zero conductivity (in MBL or Anderson localized phases).

Usually we measure finite conductivities. This could be because
system is coupled to a “bath”, e.g., of phonons.

But what if we have a closed, non-integrable Hamiltonian?

Is the conductivity finite? What determines it?
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Outline

1. The generic state of 1D metals is a “Luttinger liquid”. We can realize
this by adding integrability-breaking terms that retain lattice translati

invariance. Conclusion: there are at least two different mechanisms
for adjustable power-laws in LL transport.

2. We can break translation invariance and integrability by adding a

harmonic trap to an integrable system (eaving aside those like Calogero that retai
integrability in a trap; see Abanov-Wiegmann, Kulkarni-Polychronakos).

3. What about electrons in real materials and d>17



1D strategy: start with simple models
= Joa Z (SFSFy +SYSYL) + . Zszs Yo+ Zh S;
(Clean XXZ chain + random z-directed Zeeman ﬁeld)
h; € (—A, A)

Equivalent by Jordan-Wigner transformation to spinless fermions with
nearest-neighbor interactions.

H = —t Z (Cz+1c’i -+ hC) -+ V Z T i Mi4-1 -+ Z i Tl;

Advantages:

|. “Solvable” (integrable) without random field. Can add a staggered
field to break integrability while keeping translation invariance.
2. Can check predictions with DMRG/matrix product numerics.



One example of the Luttinger liquid idea

Consider the XXZ model when it describes a gapless, linearly
dispersing system. (|A] < I).

Some things are independent of the precise value of interaction:

for example, the free energy at finite temperature is

F s
f—f—fo—gc

with central charge c=| everywhere along this line.

(KT)*hv

Actually interactions are marginal, not irrelevant, and there is a line of
critical points that differ in several transport measurements.

These are Luttinger liquids with varying Luttinger parameter.
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Tests of Luttinger liquid behavior in the XXZ model
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Check of leading staggered and uniform
correlators against Lukyanov and Terras

Current ground-state applications moving to 2D: FQHE, spin liquids, ...
Next: try to solve an open problem of dynamical properties at finite temperature.



Staggered field non-integrability
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In one region, of the phase diagram, h is
irrelevant (system remains Luttinger
liquid), and we can track RG flow

Argument for Poisson statistics: two nearby states are likely to be in different symmetry sectors, and
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Level statistics become
Wigner-Dyson (level repulsion)
rather than Poisson

hence do not repel each other as they are not mixed by a perturbation.
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“Conventional” conductivity scaling
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For K not too large, linear prediction
is self-consistent and power-laws are
observed that are consistent with
bosonization predictions.

Conductivity diverges at low
temperature as the integrability-
breaking perturbation is irrelevant.

(Huang, Karrasch, Moore PRB 201 3)



What if we break integrability
by imposing an external global potential?

The hard-rod gas in a harmonic trap is equivalent to N one-dimensional har-
monic oscillators with hard-core repulsive interaction. The Hamiltonian reads

H=3 |50+ V)| + X Uley - ) (1)

j=1 j<k
with
1 0 |dz]| >a
V(z) = zw?z?, U(dz) = 2

where a > 0 denotes the rod length, and z; and p; denote positions and mo-
menta (we set m = 1). Upon re-scaling time as t — tw, we may set w = 1 with-
out loss of generality. Starting from a configuration such that x;41 — z; > a,
73 =1,...,N — 1, the gas evolves as N decoupled oscillators, until the next
collision (¢.e., zj41 —x; = a for some j) in which the rods j and j 4+ 1 exchange
their velocities spontaneously. Such a dynamics can be efficiently and exactly
simulated. There are two integrable limits. Upon removing the trap, one re-
covers the usual hard-rod gas. Its momentum distribution is conserved and its
dynamics map to those of N independent particles. Meanwhile, in the limit of
vanishing rod length a = 0, we obtain /N decoupled harmonic oscillators. Yet, in
the presence of both trap and interaction, we find no other conserved quantities
besides the total energy and the center-of-mass energy which we set to 0.



A quantum Newton's cradle

Toshiya Kinoshita', Trevor Wenger' & David S. Weiss'

It is a fundamental assumption of statistical mechanics that a
closed system with many degrees of freedom ergodically samples
all equal energy points in phase space. To understand the limits of
this assumption, it is important to find and study systems that are
not ergodic, and thus do not reach thermal equilibrium. A few
complex systems have been proposed that are expected not to
thermalize because their dynamics are integrable?. Some nearly
integrable systems of many particles have been studied numeri-
cally, and shown not to ergodically sample phase space’. However,
there has been no experimental demonstration of such a system
with many degrees of freedom that does not approach thermal
equilibrium. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 *’Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.
Until now, however, the time evolution of out-of-equilibrium 1D
Bose gases has been a theoretically unsettled issue*?®, as practical
factors such as harmonic trapping and imperfectly point-like
interactions may compromise integrability. The absence of damp-
ing in 1D Bose gases may lead to potential applications in force
sensing and atom interferometry.

To see qualitatively why 1D gases might not thermalize, consider
the elastic collision of two isolated, identical mass classical particles in
one dimension. Energy and momentum are conserved only if they

1 1 ‘ 1 1 o1 ‘ 1 . 1

the prevailing density'*. The collisions that we study satisfy this
criterion well. Our observations extend from the Tonks—Girardeau
regime, where only pairwise collisions can occur', to the intermediate
coupling regime, where there can be three- (or more) body col-
lisions" . In both regimes, atoms that are set oscillating and colliding
in a trap do not appreciably thermalize during our experiment.

We start our experiments with a Bose—Einstein condensate (BEC)
loaded into the combination of a blue-detuned two-dimensional
(2D) optical lattice and a red-detuned crossed dipole trap (see
Methods). The combination of light traps makes a 2D array of distinct,
parallel Bose gases, with the 2D lattice providing tight transverse
confinement and the crossed dipole trap providing weak axial trap-
ping''. The dynamics within each tube of the 2D array are strictly 1D
because the lowest transverse excitation, w, (where w,/21 = 67 kHz
is the transverse oscillation frequency), far exceeds all other energies in
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Integrability vs. thermalization
in | D Bose gas



Hard rods in | D

This is a famous example of an integrable classical model where
hydrodynamical approaches have a long history.

We study it because it has the same type of integrable kinetic
theory (Boltzmann equation) as Lieb-Liniger or XXZ, but long-time
numerics are much easier than in the quantum problems.

Simple guess:

at short times, the system will look like the integrable system;

at long times, the system will thermalize.



Three regimes, none thermal

|. integrable hydrodynamics
2. development of chaos
3. hydrodynamical (not thermal) steady state

Figures from Cao et al., PRL 2018

Incomplete Thermalization from Trap-Induced Integrability Breaking:
Lessons from Classical Hard Rods

e Il xr ! 1.2
Xiangyu Cao,” Vir B. Bulchandani,” and Joel E. Moore
| ” N , r o e . ~ o , . dsma
Departiment of Physics, Universiy of California, Berkeley, Berkeley, California 94720, USA
“‘Materials Science Division, Lawrence Berkelev National Laboratory, Berkelev, California 94720, USA



Large-N limit: continuum
hydrodynamics (Percus)

e

Can add forcing from external potential to this Boltzmann-like equation.

Hydrodynamics works until a time scale determined by the initial density

In units of rod length. Then non-integrability takes over and we see
exponential separation of trajectories.

Strength of chaos: Lyapunov exponent observed to scale as v ~ N ~0-2°
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However, final state does not seem
to be thermal (Maxwellian)
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FIG. 5. (a) (Non)-Gaussianity of the velocity distribution of the
time-averaged ensemble, as revealed by the moment-ratio test.
(b) Comparing the velocity distribution with the reconstructed
one from the density, assuming that the late-time ensemble solves
the stationary THRE [Eq. (8)]. The two long-time ensembles are
obtained from two squeezed (red) and circular (black) ICs, both
with p,,a = 1/2.



Why!
Go back to three rods

[TIFET

M
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3D phase space: make Poincare map by looking just after a collision to reduce
to 2 parameters. Orbits do not look integrable (since fractal structure) but
also do not look micro canonical (ergodic over all possibilities of constant

energy).

So the final state need not be thermal. What is it?



A constraint on final ensemble

We find that the final ensemble, for more than a few rods, is a solution of the
steady-state hydrodynamical equation at every (x,p):

Ox(v|plp) — 0L VO,p =0

We do not see additional thermalization on the accessible time scale
(hundreds of thousands of periods for small number of rods).

So at least in this classical problem the hydrodynamical approach is not just

useful for time evolution, but gives (partial) information about the final
ensemble.



Electron hydrodynamics!?

Why don’t we normally treat electrons in a solid as fluid-like?
Real solids are not perfect: momentum is not a conserved quantity.

Solids are not generally isotropic, either—they can break spatial and
time-reversal symmetries.

Finally, electrons are charged, which makes them a somewhat
unusual fluid.



Hydrodynamics of 2D electrons

In materials that are very clean, momentum relaxation may take a
relatively long time. It might be better to view electrons as a fluid rather
than as independently scattering quasiparticles.

Thomas Scaffidi
(UCB/Toronto)

Solid-state electrons where fluid properties measured

2DEGs (Molenkamp & others, 1990s)
Graphene (P. Kim;A. Geim)
Layered crystals (A. Mackenzie)



Hydro in clean electron systems (slide from A. Mackenzie)

R.N. Gurzhi, JETP 44, 771 (1963); Usp. Fiz. Nauk 94, 689 (1968)

Key point introduced by Gurzhi: In solids, hydrodynamic effects can be parameterised in terms
of the relationship between three length scales: momentum relaxing mfp /g, momentum

conserving mfp /¢ and sample dimension (here W).
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Car << Ly W Uae << W << lyr

Standard ohmic theory applies; Hydrodynamic theory applies; R is
R is determined entirely by solid determined entirely by fluid viscosity
resistivity p and usual geometrical n, boundary scattering and ‘Navier-
factors Stokes’ geometrical factors

Pioneering measurements on microfabricated narrow 2DEG channels:
L.W. Molenkamp & M.J.M de Jong, Phys. Rev. B 49, 5038 (1994)



How are electron fluids different
from normal fluids?

One active area, originally motivated by AdS but derivable without gravity dual:
(Kitaev, Maldacena-Shenker-Stanford, 2015; Sachdev-Ye-Kitaev models):

The Lyapunov exponent for short-time onset of chaos is bounded
27T]€BT
A <
=
Other ways electron fluids have different hydrodynamics:

“Hall viscosity” in topological states: (Avron; Read; Gurarie...) stress tensor is
Tii = p0i; — Nijki€kl — Mijki&ki
and T-breaking allows an odd contribution 5% = —}7)

What is Hall viscosity in
T-breaking gapless systems?
Allowed by symmetry...

From Hughes-Leigh-Parrikar



Hydrodynamics of electrons

What makes electron fluids different from classical fluids?

In 2D and 3D, can induce broken T by a magnetic field
and have a new kind of viscosity, “Hall viscosity”

s significant, and could be observable, in simple metals:
T. Scaffidi, N. Nandi, B. Schmidt, AP Mackenzie, JEM, PRL 17

In the quantum Hall regime there are two contributions in the g2
correction to Hall conductance

02y (q) = 02y (0) + O(q°)

that are comparable (Hoyos-Son): one from Hall viscosity and one from
(inverse) internal compressibility. In a metal, the internal compressibility part is
small and the Hall viscosity follows from a Boltzmann calculation.




Hydrodynamical calculation

— — — — € — — ~
OV = nwaQU + nwv% X 24+ —(FE + U x B)
T
Scaling in bulk, Alekseev: .
7793:13 — 771 _|_ (QZA,,,JCC)Q
2lMc

Ny :771+(2l1y_c)2

Can incorporate boundary effects of diffuse scattering in a thin channel by going
back to Boltzmann eq:

l 2
Doy = p?yﬂk 1—6 (LC) for B — 0

Prediction: |%.%

We want ;¢ < Iy gr for hydrodynamics. Crucially, the hydrodynamic
regime can happen only if W is somewhat larger than [y;<. In order to measure
this effect, one needs to choose W to be as small as possible, but still larger
than [y;o. If we have, say, W = blj;c, one then expects a relative change in
the slope of the Hall resistivity at zero field of the order ~ 25%, which should
be measurable.

Possibly just seen in graphene, Geim et al., arXiv:1806.01606.



Crystal background modification to quantum transport theory

For the velocity in Boltzmann equation

OiJ1+ V- Vxf1 = /w/(f{fﬁ — f1f2)dp2 dp; dps.

we should really use the semiclassical velocity of a wave packet:

de® 1 9en(k) dky
dt h Ok, dt

Second term is anomalous velocity or “Berry phase” piece.

- Fo (k)

This is just one example of how, even in a perfect crystal, the non-
isotropy can modify the long-distance physics.



Active topic in qguantum hydrodynamics
above 1D: linear-response relaxation

An example of recent progress on a long-standing question:

Are there intrinisic limits on how fast a system can relax to equilibrium?
Related to conductivity via the Kubo formula: how rapidly does the current-current correlation decay in time?

Also related to existence of “hydrodynamical” regimes of electron transport where quasiparticle scattering is
not the right picture.

Some past formulations:

Mott-loffe-Regel: mean free path must be at least the lattice spacing

Sachdev: > quantum e_th/h e e_H/(kBT) thermal

Kovtun-Son-Starinets: the viscosity is bounded below* — Z
S Ak B

Hartnoll: reinterpret viscosity bound as a lower limit on diffusion constant




Near-equilibrium

Why these bounds matter: nature seems to contain such behavior
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Some take-away messages

Lecture I: in integrable models, transport is ballistic and relaxation is to a “generalized
Gibbs ensemble”.

Flow between local GGEs seems to be well described by Bethe-Boltzmann equation, which
can be checked against a few exact far-from-equilibrium results for XXZ, and against
numerics.

Lecture ll: the many-body-localized phase can be understood as a new type of integrable
model. There are local conserved quantities (not sums of local densities).

The weak interactions between these lead to slow logarithmic dynamics that can be
observed either in entanglement or in revival rate.

Lecture lll: dynamics without integrability is hard. Transport in Luttinger liquids is controlled
by leading irrelevant perturbations (a difference from higher dimensions).

Integrability breaking by a trap, in a classical problem, seems to lead to only partial

thermalization on observable time scales. Are there quantum problems that retain some
integrable features without being fully integrable?

Thank you for your participation!



