
ICTS Lecture 3



Outline
So far, we have covered extremes of 


infinite conductivity (in integrable models), or

zero conductivity (in MBL or Anderson localized phases).


Usually we measure finite conductivities.  This could be because

system is coupled to a “bath”, e.g., of phonons.


But what if we have a closed, non-integrable Hamiltonian?


Is the conductivity finite?   What determines it?
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regular 
transport

diffusive
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Outline
1. The generic state of 1D metals is a “Luttinger liquid”.  We can realize 

this by adding integrability-breaking terms that retain lattice translation 
invariance.  Conclusion: there are at least two different mechanisms 
for adjustable power-laws in LL transport.


2. We can break translation invariance and integrability by adding a 
harmonic trap to an integrable system (leaving aside those like Calogero that retain 
integrability in a trap; see Abanov-Wiegmann, Kulkarni-Polychronakos).


3. What about electrons in real materials and d>1?




1D strategy: start with simple models
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(Clean XXZ chain + random z-directed Zeeman field)
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Equivalent by Jordan-Wigner transformation to spinless fermions with 
nearest-neighbor interactions.

Advantages:

1. “Solvable” (integrable) without random field.  Can add a staggered 
field to break integrability while keeping translation invariance.

2. Can check predictions with DMRG/matrix product numerics.
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One example of the Luttinger liquid idea

Consider the XXZ model when it describes a gapless, linearly 
dispersing system.  (|Δ| < 1).

Some things are independent of the precise value of interaction:

for example, the free energy at finite temperature is

with central charge c=1 everywhere along this line.

Actually interactions are marginal, not irrelevant, and there is a line of 
critical points that differ in several transport measurements.

These are Luttinger liquids with varying Luttinger parameter.
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Momentum distribution n(k)

Tests of Luttinger liquid behavior in the XXZ model 

(C. Karrasch and JEM, PRB)

Check of leading staggered and uniform 
correlators against Lukyanov and Terras

Current ground-state applications moving to 2D: FQHE, spin liquids, … 
Next: try to solve an open problem of dynamical properties at finite temperature.



Staggered field non-integrability

Level statistics become
Wigner-Dyson (level repulsion)

rather than Poisson
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In one region, of the phase diagram, h is 
irrelevant (system remains Luttinger 

liquid), and we can track RG flow

Argument for Poisson statistics: two nearby states are likely to be in different symmetry sectors, and 
hence do not repel each other as they are not mixed by a perturbation.
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“Conventional” conductivity scaling
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0
hJ(t)J(0)i dt.

For K not too large, linear prediction 
is self-consistent and power-laws are 
observed that are consistent with 
bosonization predictions.

Conductivity diverges at low 
temperature as the integrability-
breaking perturbation is irrelevant.

(Huang, Karrasch, Moore PRB 2013)



What if we break integrability
by imposing an external global potential?
The hard-rod gas in a harmonic trap is equivalent to N one-dimensional har-

monic oscillators with hard-core repulsive interaction. The Hamiltonian reads
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where a > 0 denotes the rod length, and xj and pj denote positions and mo-

menta (we set m = 1). Upon re-scaling time as t ! t!, we may set ! = 1 with-

out loss of generality. Starting from a configuration such that xj+1 � xj � a,

j = 1, . . . , N � 1, the gas evolves as N decoupled oscillators, until the next

collision (i.e., xj+1 � xj = a for some j) in which the rods j and j+1 exchange

their velocities spontaneously. Such a dynamics can be e�ciently and exactly

simulated. There are two integrable limits. Upon removing the trap, one re-

covers the usual hard-rod gas. Its momentum distribution is conserved and its

dynamics map to those of N independent particles. Meanwhile, in the limit of

vanishing rod length a = 0, we obtain N decoupled harmonic oscillators. Yet, in

the presence of both trap and interaction, we find no other conserved quantities

besides the total energy and the center-of-mass energy which we set to 0.
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A quantum Newton’s cradle
Toshiya Kinoshita1, Trevor Wenger1 & David S. Weiss1

It is a fundamental assumption of statistical mechanics that a
closed system with many degrees of freedom ergodically samples
all equal energy points in phase space. To understand the limits of
this assumption, it is important to find and study systems that are
not ergodic, and thus do not reach thermal equilibrium. A few
complex systems have been proposed that are expected not to
thermalize because their dynamics are integrable1,2. Some nearly
integrable systems of many particles have been studied numeri-
cally, and shown not to ergodically sample phase space3. However,
there has been no experimental demonstration of such a system
with many degrees of freedom that does not approach thermal
equilibrium. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 87Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.
Until now, however, the time evolution of out-of-equilibrium 1D
Bose gases has been a theoretically unsettled issue4–6, as practical
factors such as harmonic trapping and imperfectly point-like
interactions may compromise integrability. The absence of damp-
ing in 1D Bose gases may lead to potential applications in force
sensing and atom interferometry.
To see qualitatively why 1D gases might not thermalize, consider

the elastic collision of two isolated, identical mass classical particles in
one dimension. Energy and momentum are conserved only if they
simply exchange momenta. Clearly, the momentum distribution of a
1D ensemble of particles will not be altered by such pairwise
collisions. The well-known behaviour of Newton’s cradle (see
Fig. 1a) is most easily understood in this way. Even when several
balls are simultaneously in contact, particles in an idealized Newton’s
cradle just exchange specific momentum values, though the expla-
nation is more subtle7. Generalization of the Newton’s cradle to
quantum mechanical particles lends it a ghostly air. Rather than just
reflecting off each other, colliding particles can also transmit through
each other. When the particles are identical, the final states after
transmission and reflection are indistinguishable.
In general, correlations and overlap among 1D Bose gas wavefunc-

tions complicate the picture of independent particles colliding as in a
Newton’s cradle. In fact, there are circumstances in which 1D
momentum distributions are known to change in time. For example,
when weakly coupled bosons are released from a trap, the conversion
of mean field energy to kinetic energy changes the momentum
distribution. In the Tonks–Girardeau limit of infinite strength
interactions8, although the 1D bosons interact locally like non-
interacting fermions, their momentum distribution is not fermio-
nic9,10. When a Tonks–Girardeau gas is released from a trap and
expands in one dimension, its momentum distribution evolves into
that of a trapped Fermi gas11–13. The quantum Newton’s cradle view
of particles colliding with each other and either reflecting or
transmitting can only be applied when the kinetic energy of the
collision greatly exceeds the energy per atom at zero temperature at

the prevailing density14. The collisions that we study satisfy this
criterion well. Our observations extend from the Tonks–Girardeau
regime, where only pairwise collisions can occur15, to the intermediate
coupling regime, where there can be three- (or more) body col-
lisions15–17. In both regimes, atoms that are set oscillating and colliding
in a trap do not appreciably thermalize during our experiment.
We start our experiments with a Bose–Einstein condensate (BEC)

loaded into the combination of a blue-detuned two-dimensional
(2D) optical lattice and a red-detuned crossed dipole trap (see
Methods). The combination of light trapsmakes a 2D array of distinct,
parallel Bose gases, with the 2D lattice providing tight transverse
confinement and the crossed dipole trap providing weak axial trap-
ping11. The dynamics within each tube of the 2D array are strictly 1D
because the lowest transverse excitation, "q r (where q r/2p ¼ 67 kHz
is the transverse oscillation frequency), far exceeds all other energies in

LETTERS

Figure 1 |Classical and quantumNewton’s cradles. a, Diagram of a classical
Newton’s cradle. b, Sketches at various times of two out of equilibrium
clouds of atoms in a 1D anharmonic trap,U(z). At time t ¼ 0, the atoms are
put into a momentum superposition with 2"k to the right and 2"k to the
left. The two parts of the wavefunction oscillate out of phase with each other
with a period t. Each atom collides with the opposite momentum group
twice every full cycle, for instance, at t ¼ 0 and t/2. Anharmonicity causes
each group to gradually expand, until ultimately the atoms have fully
dephased. Even after dephasing, each atom still collides with half the other
atoms twice each cycle.

1Department of Physics, The Pennsylvania State University, 104 Davey Laboratory, University Park, Pennsylvania 16802, USA.

Vol 440|13 April 2006|doi:10.1038/nature04693
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Integrability vs. thermalization 
in 1D Bose gas



This is a famous example of an integrable classical model where 
hydrodynamical approaches have a long history.

We study it because it has the same type of integrable kinetic 
theory (Boltzmann equation) as Lieb-Liniger or XXZ, but long-time 
numerics are much easier than in the quantum problems.

Simple guess:

at short times, the system will look like the integrable system;

at long times, the system will thermalize.

Hard rods in 1D



Three regimes, none thermal

Figures from Cao et al., PRL 2018

1. integrable hydrodynamics
2. development of chaos
3. hydrodynamical (not thermal) steady state



Large-N limit: continuum 
hydrodynamics (Percus)

@t⇢+ @x(v⇢) = 0, v[⇢](p) = p+
a
R
p0(p� p0)⇢(x, p0)

1� a
R
p0 ⇢(x, p0)

Can add forcing from external potential to this Boltzmann-like equation.


Hydrodynamics works until a time scale determined by the initial density 
in units of rod length.  Then non-integrability takes over and we see 
exponential separation of trajectories.


Strength of chaos: Lyapunov exponent observed to scale as � ⇠ N�0.25



However, final state does not seem
to be thermal (Maxwellian)



Why?
Go back to three rods

3D phase space: make Poincare map by looking just after a collision to reduce 
to 2 parameters.  Orbits do not look integrable (since fractal structure) but 
also do not look micro canonical (ergodic over all possibilities of constant 
energy).

So the final state need not be thermal.  What is it?



A constraint on final ensemble
We find that the final ensemble, for more than a few rods, is a solution of the 
steady-state hydrodynamical equation at every (x,p):

We do not see additional thermalization on the accessible time scale 
(hundreds of thousands of periods for small number of rods).

So at least in this classical problem the hydrodynamical approach is not just 
useful for time evolution, but gives (partial) information about the final 
ensemble.

@x(v[⇢]⇢)� @xV @p⇢ = 0



Why don’t we normally treat electrons in a solid as fluid-like?

Real solids are not perfect: momentum is not a conserved quantity.

Solids are not generally isotropic, either—they can break spatial and 
time-reversal symmetries.

Finally, electrons are charged, which makes them a somewhat 
unusual fluid.

Electron hydrodynamics?



Solid-state electrons where fluid properties measured
2DEGs (Molenkamp & others, 1990s)
Graphene (P. Kim; A. Geim)
Layered crystals (A. Mackenzie)
…

Hydrodynamics of 2D electrons
In materials that are very clean, momentum relaxation may take a 
relatively long time.  It might be better to view electrons as a fluid rather 
than as independently scattering quasiparticles.

Thomas Scaffidi
(UCB/Toronto)



ℓMC	<<	W	<<	ℓMRℓMR	<<	ℓMC,W

Standard	ohmic	theory	applies;	
R	is	determined	entirely	by	solid	
resistivity	ρ	and	usual	geometrical	
factors	

Hydrodynamic	theory	applies;		R	is	
determined	entirely	by	fluid	viscosity	
η,	boundary	scattering	and	‘Navier-
Stokes’	geometrical	factors	

Hydro	in	clean	electron	systems	(slide	from	A.	Mackenzie)

Key	point	introduced	by	Gurzhi:		In	solids,	hydrodynamic	effects	can	be	parameterised	in	terms	
of	the	relationship	between	three	length	scales:		momentum	relaxing	mfp	ℓMR, momentum 
conserving mfp ℓMC and	sample	dimension	(here	W).

ℓMR W
ℓMC

R.N.	Gurzhi,	JETP	44,	771	(1963);	Usp.	Fiz.	Nauk	94,	689	(1968)

Pioneering	measurements	on	microfabricated	narrow	2DEG	channels:			
	L.W.	Molenkamp	&	M.J.M	de	Jong	,	Phys.	Rev.	B	49,	5038	(1994)



How are electron fluids different
from normal fluids?

One active area, originally motivated by AdS but derivable without gravity dual: 
(Kitaev, Maldacena-Shenker-Stanford, 2015; Sachdev-Ye-Kitaev models): 

The Lyapunov exponent for short-time onset of chaos is bounded 

Other ways electron fluids have different hydrodynamics:

“Hall viscosity” in topological states: (Avron; Read; Gurarie…) stress tensor is 

and T-breaking allows an odd contribution 

What is Hall viscosity in
T-breaking gapless systems?
Allowed by symmetry…

�L  2⇡kBT

~

Tij = p�ij � �ijkl⇠kl � ⌘ijkl⇠̇kl

⌘(A)
ijkl = �⌘(A)

klij

From Hughes-Leigh-Parrikar



Hydrodynamics of electrons
What makes electron fluids different from classical fluids?

In 2D and 3D, can induce broken T by a magnetic field
and have a new kind of viscosity, “Hall viscosity”

Is significant, and could be observable, in simple metals:
T. Scaffidi, N. Nandi, B. Schmidt, AP Mackenzie, JEM, PRL 17

In the quantum Hall regime there are two contributions in the q^2
correction to Hall conductance

that are comparable (Hoyos-Son): one from Hall viscosity and one from
(inverse) internal compressibility.  In a metal, the internal compressibility part is 
small and the Hall viscosity follows from a Boltzmann calculation.

�xy(q) = �xy(0) +O(q2)



Hydrodynamical calculation

Scaling in bulk, Alekseev:

Can incorporate boundary effects of diffuse scattering in a thin channel by going 
back to Boltzmann eq:

Prediction:

Possibly just seen in graphene, Geim et al., arXiv:1806.01606.
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We want lMC ⌧ lMR for hydrodynamics. Crucially, the hydrodynamic

regime can happen only if W is somewhat larger than lMC . In order to measure

this e↵ect, one needs to choose W to be as small as possible, but still larger

than lMC . If we have, say, W = 5lMC , one then expects a relative change in

the slope of the Hall resistivity at zero field of the order ' 25%, which should

be measurable.
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Crystal background modification to quantum transport theory

For the velocity in Boltzmann equation

we should really use the semiclassical velocity of a wave packet:

Second term is anomalous velocity or “Berry phase” piece.

This is just one example of how, even in a perfect crystal, the non-
isotropy can modify the long-distance physics.
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Active topic in quantum hydrodynamics
above 1D: linear-response relaxation

An example of recent progress on a long-standing question: 

Are there intrinisic limits on how fast a system can relax to equilibrium?

Related to conductivity via the Kubo formula: how rapidly does the current-current correlation decay in time? 

Also related to existence of “hydrodynamical” regimes of electron transport where quasiparticle scattering is 
not the right picture. 

Some past formulations: 

Mott-Ioffe-Regel: mean free path must be at least the lattice spacing

Sachdev:  

Kovtun-Son-Starinets: the viscosity is bounded below* 

Hartnoll: reinterpret viscosity bound as a lower limit on diffusion constant 

⌧ � ~
kBT

⌘

s
� ~

4⇡kB

quantum e�iHt/~ $ e�H/(kBT ) thermal



Near-equilibrium
Why these bounds matter: nature seems to contain such behavior

⌧ � ~
kBT

⌘

s
� ~

4⇡kB

dynamically, therefore, Sr3Ru2O7 can be thought
of as two metallic fluids, one which participates
directly in the quantum criticality and another, con-
taining a higher density of quasiparticles, which
does not.

Given the extensive knowledge of the thermo-
dynamic and quasiparticle properties of Sr3Ru2O7,
it is natural to investigate its electrical transport
properties both below and above T* (11). In Fig. 1,
we show the temperature evolution of the data
at representative magnetic fields from across the
range studied, for T > Tc. In zero field, r varies
approximately quadratically with temperature for
1.2 K < T < 10 K, which is in qualitative agree-

ment with previous reports (2, 12). As the field is
increased toward Hc, the temperature range over
which the approximately quadratic temperature
dependence occurs shrinks, until at the critical
field of 7.9 T, the resistivity varies linearly with
temperature over the whole range shown, with
a gradient of 1.1 microhm·cm/K. For H > Hc

(Fig. 1B) there is a small negative magnetoresist-
ance, but the gradient of the resistivity once it has
become linear is almost independent of field.

That T-linear resistivity is seen in Sr3Ru2O7 is
surprising. As discussed above, the majority of
the quasiparticles do not participate in the mass
divergence at Hc. If they were simply an inde-
pendent Fermi liquid contributing to the conduc-
tivity in parallel with the quantum critical fluid,
they would be expected to short out the contribu-
tion of the small number of carriers that are be-
coming heavy on the approach to Hc, giving a
dominantT2 contribution to the resistivity. The data
of Fig. 1 strongly suggest that as well as inducing
a mass divergence in a subset of the carriers, the
quantum criticality in Sr3Ru2O7 is associated with
the onset of efficient scattering, with strength pro-
portional to T, which affects all the quasiparticles.

Qualitative support for this basic picture comes
from the data presented in Fig. 1C, in which we
show the resistivity of Sr3Ru2O7 for the same
set of fields as in Fig. 1A, but for temperatures
extending to 400 K. Above 100 K, r is again
T-linear, in this case at all applied fields, but with
a gradient ~30% lower than that seen at Hc for

T < 20 K. There is an interesting correlation be-
tween this observation and previous studies of the
specific heat. Measurements to elevated temper-
atures show that forT>T*, g is field-independent
and ~65%of the low temperature valuemeasured
in zero applied field (8). This implies a similar fall
in the average effective mass, or equivalently, a
35% rise in the average Fermi velocity. The data
in Fig. 1C therefore suggest that there is a similar
scattering rate per kelvin below T* atHc and well
above T* at all applied fields.

Although attention is typically focused on the
power law dependence of the resistivity, the ab-
solute magnitude of the scattering rate is also an
important quantity. A phenomenological argument
for a T-linear scattering rate has been discussed
by a number of authors in the context of the
cuprates and quantum critical metals and fluids
(13–15). Because quantum criticality is associ-
ated with the depression of energy scales toward
T = 0, temperature becomes the only relevant en-
ergy scale. Equipartition of energy then applies,
and the characteristic energy of any quantum crit-
ical degree of freedom is just kBT, where kB is
Boltzmann’s constant. This in turn implies the ex-
istence of a characteristic time, sometimes referred
to as the Planck time tP ~ ħ/kBT, where ħ is Planck’s
constant divided by 2p. Although the simplic-
ity of this expression is appealing, it is far from
obvious that (TtP)

−1 ~ kB/ħ defines a scattering
rate relevant to a measurement of electrical re-
sistivity. Resistive scattering processesmust relax

Fig. 1. (A) Resistivity (r) of high-purity single
crystal Sr3Ru2O7 at 0 T (red), 4 T (blue), 6 T (green),
7 T (orange), and its critical field moHc= 7.9 T (black).
The gray dashed lines are fits of the type r0 + AT2

to the low-temperature data, which illustrate the
suppression of the temperature at which the re-
sistivity crosses over to being quadratic in temper-
ature as H is tuned toward Hc. (B) r at Hc (black),
12 T (blue), and 14 T (red). (C) r at 0 T, 4 T, 6 T, 7 T,
and Hc over an extended temperature range up to
400 K. Above 20 K, there is a negative magneto-
resistance, but it is so small that data at all fields
overlap when plotted on this scale. The dotted line
shows the extrapolation of the low-temperature
linear resistivity at 7.9 T.

Fig. 2. In spite of two orders of magnitude variations in their Fermi velocities (vF), a wide range of metals
in which the resistivity varies linearly with temperature have similar scattering rates per kelvin. These
include heavy fermion, oxide, pnictide, and organic metals for which T-linear resistivity can be seen down
to low temperatures with appropriate tuning by magnetic field, chemical composition, or hydrostatic
pressure, and more conventional metals for which T-linear resistivity is seen at high temperatures (blue
symbols). At low temperatures, the scattering rate per kelvin of a conventional metal is orders of mag-
nitude lower, as illustrated for the case of Cu at 10 K, shown in the lower right hand corner (11). On the
graph, the line marked a = 1 corresponds to (tT )−1 = kB/ℏ. The near-universality of the scattering rates is
observed in spite of the fact that the scattering mechanisms vary across the range of materials. The point
for Bi2Sr2Ca0.92Y0.08Cu2O8+d is based on the value a = 1.3, which is determined from optical conductivity
(21), combined with the measured value of vF for this material (44). For all others, the analysis is based on
resistivity data combined with knowledge of the Fermi volume and average Fermi velocity. Full details of
the determination of the parameters in the axis labels are given in (11).

www.sciencemag.org SCIENCE VOL 339 15 FEBRUARY 2013 805

REPORTS

Bruin et al. (Mackenzie), 
Science 2013

is satisfied (I believe) in all experimental liquids, 
and within ~10 of saturation in helium and QGP, 
but there exist violations in exotic theories



Some take-away messages

Lecture I: in integrable models, transport is ballistic and relaxation is to a “generalized 
Gibbs ensemble”.

Flow between local GGEs seems to be well described by Bethe-Boltzmann equation, which 
can be checked against a few exact far-from-equilibrium results for XXZ, and against 
numerics.

Lecture II: the many-body-localized phase can be understood as a new type of integrable 
model.  There are local conserved quantities (not sums of local densities). 

The weak interactions between these lead to slow logarithmic dynamics that can be 
observed either in entanglement or in revival rate.

Lecture III: dynamics without integrability is hard.  Transport in Luttinger liquids is controlled 
by leading irrelevant perturbations (a difference from higher dimensions).

Integrability breaking by a trap, in a classical problem, seems to lead to only partial 
thermalization on observable time scales.  Are there quantum problems that retain some 
integrable features without being fully integrable?

Thank you for your participation!


