Supersymmetric Lattice Models

Kareljan Schoutens
Institute of Physics and QuSoft
University of Amsterdam

ICTS Bangalore – 2 August 2018

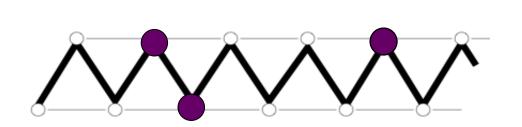
The name of the game

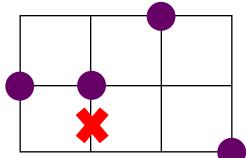
QM with N=2 supersymmetry

$$Q^2 = 0,$$
 $(Q^{\dagger})^2 = 0$

$$[Q,H] = 0, H = \{Q,Q^{\dagger}\}, [Q^{\dagger},H] = 0$$

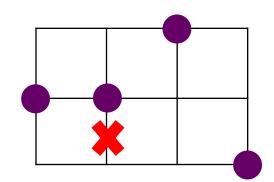
[not to be confused with graded Lie algebra symmetries such as `supersymmetric *tJ*-model']

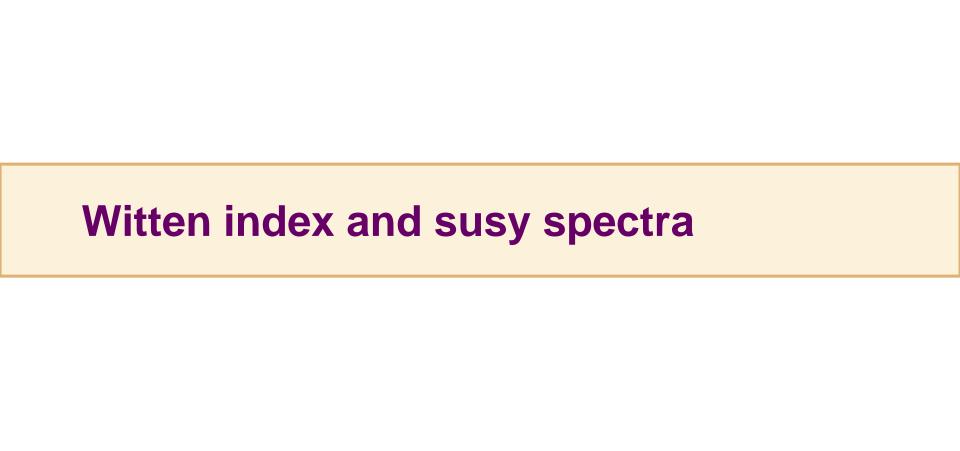

The name of the game


susy QM for lattice fermions

$$\{c_i, c_j^{\dagger}\} = \delta_{ij}, \qquad i, j \in \Lambda$$

supercharges expressed in fermion operators


Hamiltonians with kinetic (hopping) terms and strong interactions



The name of the game

features of susy lattice models

- integrability
- critical behaviour → supersymmetric CFT
- off-critical → kink picture of integrable susy QFT
- superfrustration → proliferation of susy ground states
- dynamics, I → adiabatic driving in susy gs manifold
- dynamics, II → out-of-equilibrium transport, MBL?

Basic structure of susy spectra

- $E \ge o$ for all states
- E > o states are paired into **doublets**

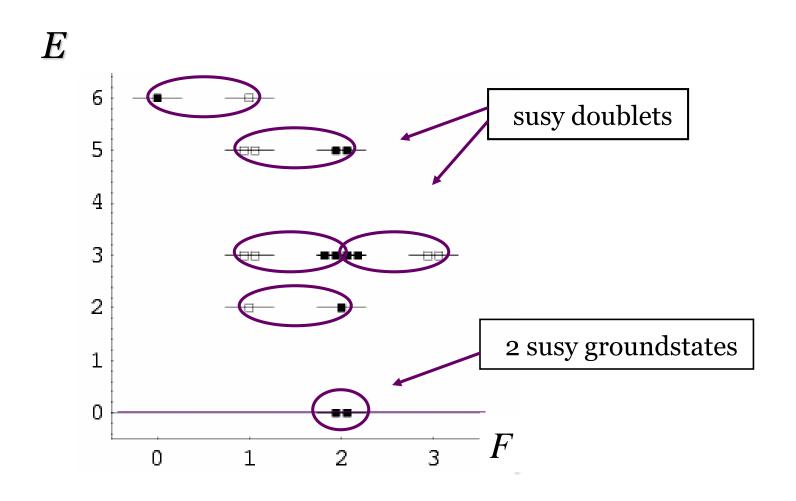
$$\{|\psi\rangle, Q^{\dagger}|\psi\rangle\}, \quad Q|\psi\rangle = 0$$

• E = o iff a state is a **singlet** under supersymmetry

$$Q|\psi_{\rm gs}\rangle = 0, \quad Q^{\dagger}|\psi_{\rm gs}\rangle = 0$$

Fermion number and Witten index

Supercharges change fermion number F by ± 1

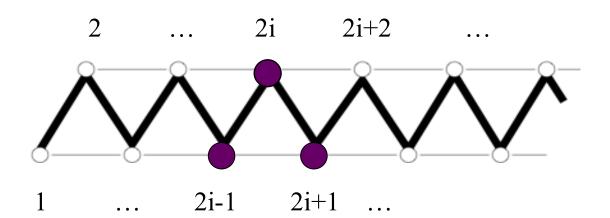

$$[F,Q] = -Q, \quad [F,Q^{\dagger}] = Q^{\dagger}$$

Witten index

$$W = \operatorname{Tr}\left[(-1)^F \right]$$

- Weasily evaluated by computing trace over all states
- E>o doublets cancel in W, only E=o singlets contribute
- $W \neq o$ implies existence of at least |W| E=o singlets

Example of a susy spectrum

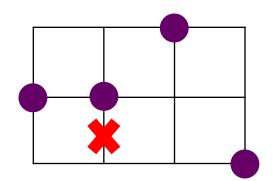


Sampler of susy lattice models

Nicolai model

supercharge

$$Q^{\text{Nic}} = \sum_{i} c_{2i-1} c_{2i}^{\dagger} c_{2i+1}$$



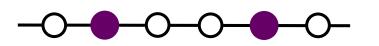
Nicolai 1976

M₁ model

configurations:

lattice fermions with nearest neighbor exclusion

supercharge


takes out particle where possible

$$Q^{M_1} = \sum_{i} c_i P_i, \qquad P_i = \prod_{\langle ij \rangle} (1 - c_j^{\dagger} c_j)$$

M₁ model on 1D lattice

configurations

lattice fermions with nearest neighbor exclusion

supercharge and Hamiltonian

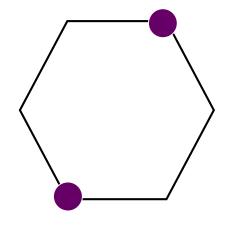
$$Q^{M_{1}} = \sum_{i} (1 - n_{i-1})c_{i}(1 - n_{i+1}), \qquad n_{i} = c_{i}^{\dagger}c_{i}$$

$$\text{n.n. exclusion}$$

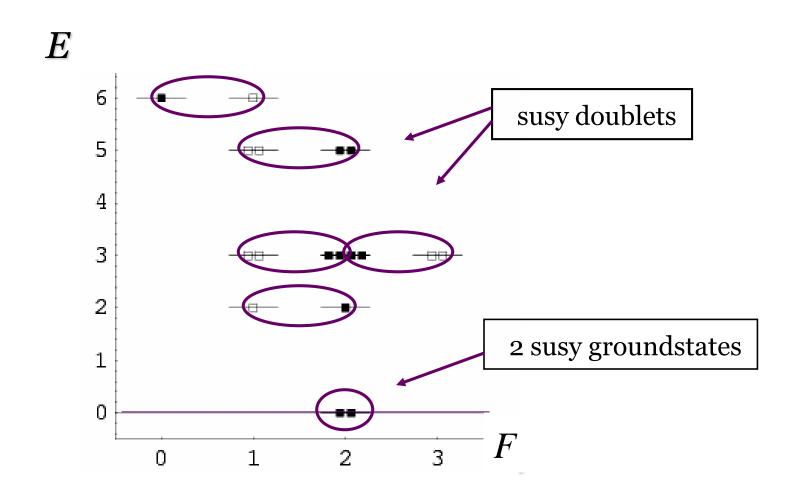
$$H^{M_{1}} = \sum_{i} \left[(1 - n_{i-1})c_{i}^{\dagger}c_{i+1}(1 - n_{i+2}) + \text{h.c.} \right] + \sum_{i} n_{i-1}n_{i+1} - 2F + L$$
hopping
$$\text{n.n.n. repulsion}$$

M₁ model on 6 site chain

$$W = \operatorname{Tr}\left[(-1)^F \right]$$


F = o: 1 state

F = 1: 6 states


F = 2: 9 states

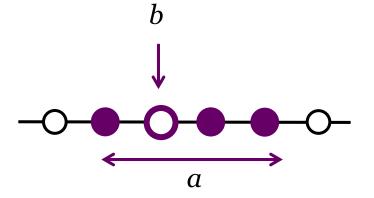
F = *3*: *2 states*

$$\Rightarrow W = 1 - 6 + 9 - 2 = 2$$

M_1 model, 6 site chain, W=2

M_k model in 1D

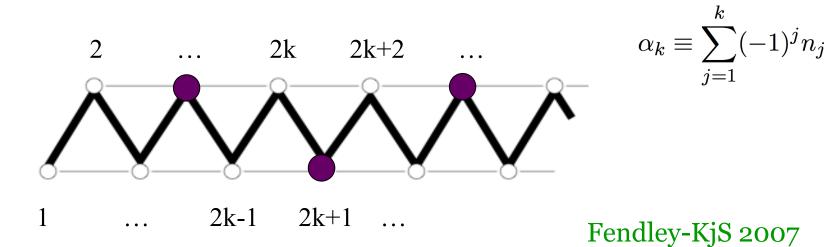
Fendley-Nienhuis-KjS 2003


configurations

lattice fermions **up to** *k* nearest neighbors occupied

supercharge

$$Q^{M_k} = \sum_{i} \sum_{a,b} \lambda_{[a,b],i} d_{[a,b],i}$$


annihilates particle at position b from string of length a

Coupled free fermion chains

supercharge

moves particle from bottom to top chain

$$Q = c_2^{\dagger} c_1 + \sum_{k=1}^{L-1} \left(e^{i\alpha_{2k-1}\pi/2} c_{2k}^{\dagger} + e^{i\alpha_{2k}\pi/2} c_{2k+2}^{\dagger} \right) c_{2k+1}$$

Coupled free fermion chains

particles on lower (upper) chain have $F = \pm 1/2$ (semions)

$$F = -\frac{1}{2}$$

$$F = \frac{1}{2}$$

$$\Delta F = -1$$

$$1$$

$$1$$

$$1$$

$$1$$

$$1$$

$$2k + 1 \dots$$

Witten index
$$W = \operatorname{Tr}\left[(-1)^F\right]$$

 $2^{L}E=o$ groundstates realized via band of L tightly bound pairs between top and bottom chains

Particle hole symmetric M₁ model

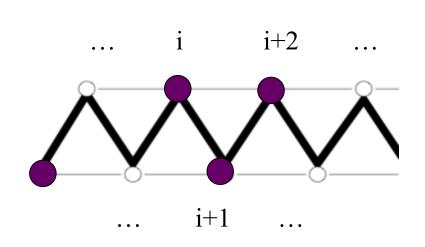
supercharge

$$Q = \sum_{i} (d_i + e_i^{\dagger})$$

$$d_i = p_{i-1}c_i p_{i+1}$$
$$p_i = 1 - n_i$$

$$e_i^{\dagger} = n_{i-1}c_i^{\dagger}n_{i+1}$$
$$n_i = c_i^{\dagger}c_i$$

A curious mapping


coupled fermion chain model (FS) and particle-hole symmetric M, model (FGNR) turn out to be equivalent

```
empty ladder:
                                 |000000000000\rangle_{FS} \leftrightarrow 0|110011001100\rangle_{FGNR}
                                 |000010000000\rangle_{FS} \leftrightarrow 0|110000110011\rangle_{FGNR}
single FS semion:
                                 |000011000000\rangle_{FS} \leftrightarrow 0|110001001100\rangle_{FGNR}
single FS pair:
                                 |101010101010\rangle_{FS} \leftrightarrow 0|00000000000\rangle_{FGNR}
lower leg filled:
                                 |101001101010\rangle_{FS} \leftrightarrow 0|00001000000\rangle_{FGNR}
single FGNR particle:
upper leg filled:
                                 |010101010101\rangle_{FS} \leftrightarrow 0|101010101010\rangle_{FGNR}
                                 |110101010101\rangle_{FS} \leftrightarrow 0|010101010101\rangle_{FGNR}
upper leg plus semion:
filled ladder:
                                 |1111111111111\rangle_{FS} \leftrightarrow 0|011001100110\rangle_{FGNR}
```

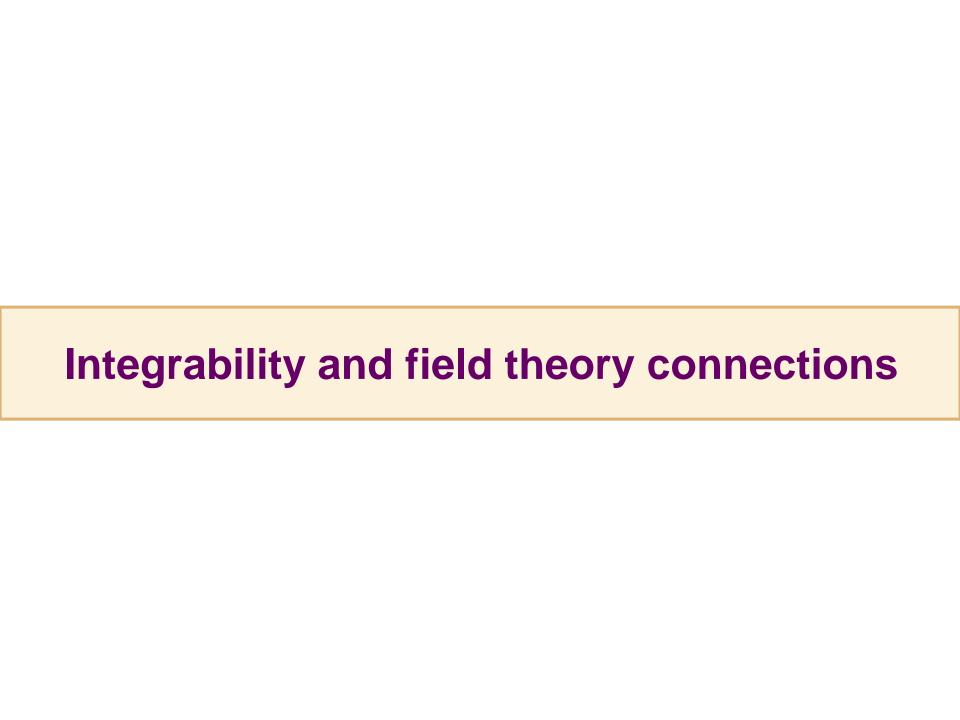
Feher-Garbali-de Gier-KjS 2017

Models with Q cubic in c_i

Z_2 Nicolai model

$$Q^{\mathbb{Z}_2} = \sum_{i} c_i c_{i+1} c_{i+2}$$

Sannomiya-Katsura-Nakayama 2017


random couplings on full graph

$$Q^{\text{SYK}} = \sum_{ijk} J_{ijk} c_i c_j c_k$$

Features

- integrability and field theory connections
- superfrustration
- adiabatic driving and topological response
- out-of equilibrium dynamics, MBL?

Moriya 2016 Padmanabhan-Rey-Teixeira-Trancanelli 2017

Integrability

 M_1 model at $\lambda=1$ integrable by Bethe Ansatz – can be understood via mapping to XXZ chain at $\Delta=-1/2$

Fendley-Nienhuis-KjS 2003

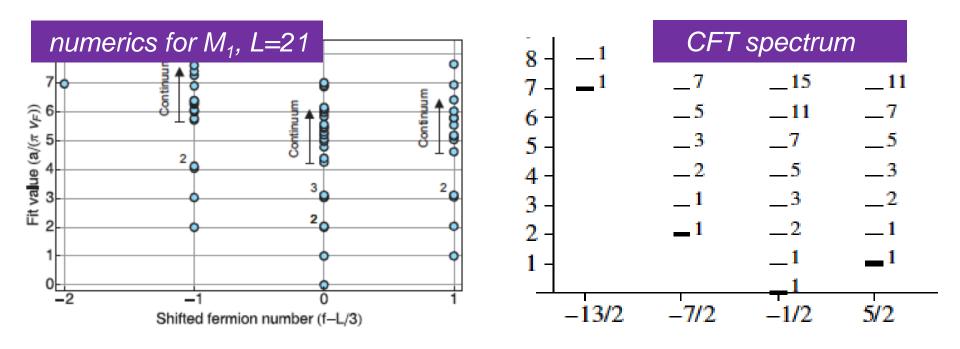
Hagendorf et al found 1-parameter family of models $M_k[\lambda]$ with couplings $\lambda_{[a,b],j}$ such that

- •all couplings repeat for j modulo (k+2)
- •M_k[λ] model integrable by nested Bethe Ansatz for all λ
- • $M_k[\lambda]$ is critical for $\lambda=1$

Hagendorf-Fokkema-Huijse 2014 Hagendorf-Huijse 2015

Integrability

couplings $\lambda_{[a,b],j}$ for $M_3[\lambda]$


$$\lambda = 1$$

$$y = \sqrt{\frac{1 + \sqrt{5}}{2}}$$

$$\lambda_{[1,1],j} = y, \quad \lambda_{[2,1],j} = \lambda_{[2,2],j} = 1, \quad \lambda_{[3,1],j} = \lambda_{[3,3],j} = y, \quad \lambda_{[3,2],j} = 1/y^2$$

Criticality

 $M_k[\lambda=1]$ is critical – low energy physics given by k-th minimal model of N=2 superconformal field theory

Huijse 2010; Fokkema-KjS 2017

Integrable massive QFT

 $M_k[\lambda < 1]$ connects to N=2 supersymmetric integrable massive QFT, with superpotentials of Chebyshev form

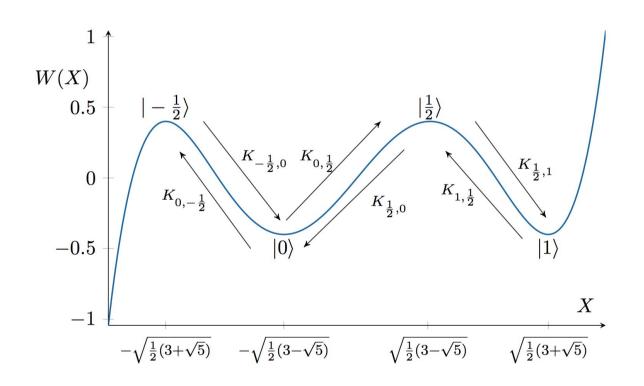
k=1: sine-Gordon at N=2 susy point

k=2: N=1 supersymmetric sine-Gordon at N=2 susy point

lattice model excitations at $\lambda \ll 1$ are kinks between W=k+1 possible E=o states — they are in 1-1 correspondence with kinks in the N=2 integrable QFT

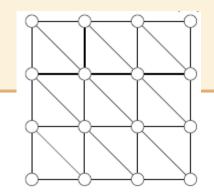
Integrable massive QFT

susy lattice model $M_3[\lambda]$


susy groundstates at λ«1

massive *N*=2 integrable QFT

groundstates as extrema of k=3 Chebyshev superpotential


$$|1\rangle = \dots 1 \frac{1}{\wedge} 1001 \frac{1}{\wedge} 100 \dots, \quad |\frac{1}{2}\rangle = \dots (\frac{1}{\wedge} \dots) (\frac{1}{\wedge} \dots) \dots,$$

$$|0\rangle = \dots 0 101101011\dots, \quad |-\frac{1}{2}\rangle = \dots 0 (\cdot 11 \cdot) 0 (\cdot 11 \cdot) \dots,$$

Superfrustration

M₁ model, 2D triangular lattice

Witten index for *N×M* sites with periodic BC

	1	2	3	4	5
1	1	1	1	1	1
2	1	-3	-5	1	11
3	1	-5	-2	7	1
4	1	1	7	-23	11
5	1 1 1 1	11	1	11	36

M₁ model, 2D triangular lattice

Witten index for *N×M* sites with periodic BC

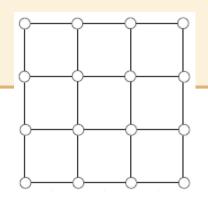
	1	2	3	4	5
1	1	1	1	1	1
2	1	-3	-5	1	11
3	1	-5	-2	7	1
4	1	1	7	-23	11
5	1	11	1	11	36
6	1	9	-14	25	-49
7	1	-13	1	-69	211
8	1	-31	31	193	-349
9	1	-5	-2	-29	881
10	1	57	-65	-279	-1064
11	1	67	1	859	1651
12	1	-47	130	-1295	-589
13	1	-181	1	-77	-1949
14	1	-87	-257	3641	12611
15	1	275	-2	-8053	-32664
'	•				

9	10
1	1
-5	57
-2	-65
-29	-279
811	-1064
1462	-4911
-7055	5237
-28517	50849
31399	313315
313315	950592
499060	2011307
-2573258	-3973827
-10989458	-49705161
4765189	-232675057
134858383	-702709340

`superfrustration'

van Eerten 2005

Proliferation of susy ground states

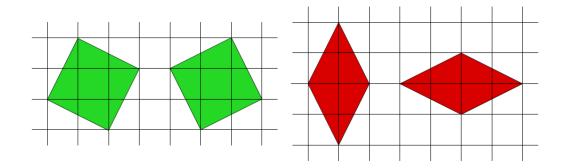

ground state counting problem

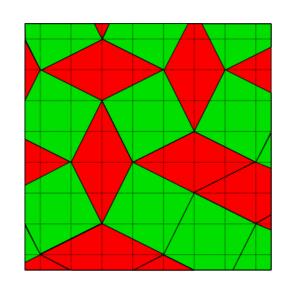
• unsolved for most D>1 lattices (including triangular)

important clue

- •gs counting problem equivalent to determining (dimension of) the homology of the operator *Q*
- •can use methods from math literature (spectral sequences & tic-tac-toe lemma, homological perturbation lemma) to make progress

M₁ model, 2D square lattice




Witten index for *N×M* sites with periodic BC

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	-1	1	3	1	-1	1	3	1	-1	1	3	1	-1	1	3	1	-1	1	3
3	1	1	4	1	1	4	1	1	4	1	1	4	1	1	4	1	1	4	1	1
4	1	3	1	7	1	3	1	7	1	3	1	7	1	3	1	7	1	3	1	7
5	1	1	1	1	-9	1	1	1	1	11	1	1	1	1	-9	1	1	1	1	11
6	1	-1	4	3	1	14	1	3	4	-1	1	18	1	-1	4	3	1	14	1	3
7	1	1	1	1	1	1	1	1	1	1	1	1	1	-27	1	1	1	1	1	1
8	1	3	1	7	1	3	1	7	1	43	1	7	1	3	1	7	1	3	1	47
9	1	1	4	1	1	4	1	1	40	1	1	4	1	1	4	1	1	76	1	1
10	1	-1	1	3	11	-1	1	43	1	9	1	3	1	69	11	43	1	-1	1	13
11	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
12	1	3	4	7	1	18	1	7	4	3	1	166	1	3	4	7	1	126	1	7
13	1	1	1	1	1	1	1	1	1	1	1	1	-51	1	1	1	1	1	1	1
14	1	-1	1	3	1	-1	-27	3	1	69	1	3	1	55	1	451	1	-1	1	73
15	1	1	4	1	-9	4	1	1	4	11	1	4	1	1	174	1	1	4	1	11

M₁ model, 2D square lattice

Number of gs related to rhombus tilings of the lattice, with $F = N_t$

Theorem [Jonsson, Fendley, Huijse-KjS 2009]

GS =
$$t_{even} + t_{odd} - (-1)^{(\theta_m + 1)p} \theta_{d_-} \theta_{d_+}$$

with
$$d_{\pm} = \gcd(u_1 \pm u_2, v_1 \pm v_2)$$
, $\theta_{3p} = 2$, $\theta_{3p\pm 1} = -1$

Z_{2} Nicolai model

The number of *E*=0 states (OBC)

	N	3	4	5	6	7	8	9	10	11	12	13
de	eg.	6	12	20	36	64	112	200	352	624	1104	1952

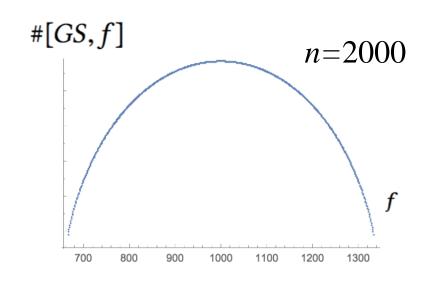
THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®

founded in 1964 by N. J. A. Sloane

They are generated by the recursion:

$$a_n = 2a_{n-2} + 2a_{n-3}, a_0 = 1, a_1 = 2, a_2 = 4$$

$$a_0 = 1, a_1 = 2, a_2 = 4$$


$$Z \sim (1.77)^N$$

slide H. Katsura in talk at UvA, Nov 2017

Z_2 Nicolai model

generating function

$$P_n^{\mathbb{Z}_2}(z) := \sum_f \#[GS, f] \ z^f$$

Theorem 2.2.1. The polynomials $P_n^{\mathbb{Z}_2}(z)$, $n \geq 3$, can be determined by the recursion

$$P_n^{\mathbb{Z}_2}(z) = 2zP_{n-2}(z) + (z+z^2)P_{n-3}^{\mathbb{Z}_2}(z)$$

with the initial values given by

$$P_0^{\mathbb{Z}_2}(z) := 1, \qquad P_1^{\mathbb{Z}_2}(z) := 1 + z \quad and \quad P_2^{\mathbb{Z}_2}(z) = 1 + 2z + z^2.$$

conjecture in Sannomiya-Katsura-Nakayama 2017 proof in La-Shadrin-KjS to appear

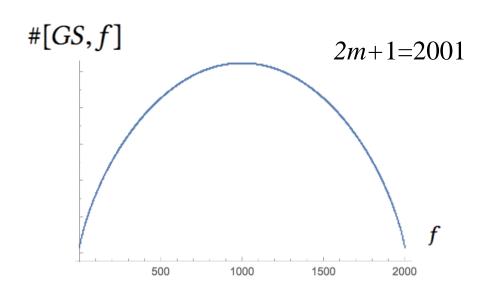
Nicolai model

■ Number of *E*=0 ground states (*N*: odd, OBC)

N	3	5	7	9	11	13
deg.	6	20	64	208	672	2176

Grows exponentially with system size!

THE ON-LINE ENCYCLOPEDIA OF INTEGER SEQUENCES®


founded in 1964 by N. J. A. Sloane

Sorry, but the terms do not match anything in the table.

Nicolai model

generating function

$$P_{2m+1}(z):=\sum_f \#[GS,f]\;z^f$$


Theorem 2.1.1. The polynomials $P_{2m+1}(z)$, $m \ge 3$, can be determined by the recursion

$$P_{2m+1}(z) = (1+z^2)P_{2m-1}(z) + (z+2z^2+z^3)P_{2m-3}(z)$$

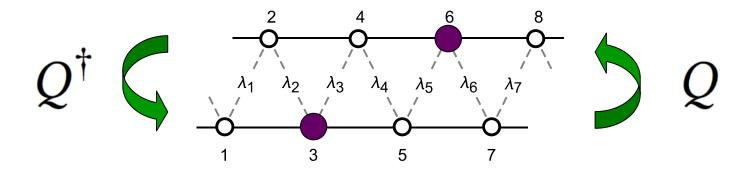
with the initial values given by

$$P_3(z) = 1 + 2z + 2z^2 + z^3$$
 and $P_5(z) = 1 + 3z + 6z^2 + 6z^3 + 3z^4 + z^5$.

La-Shadrin-KjS to appear

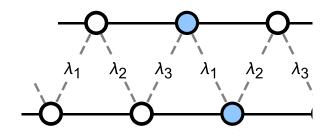
Adiabatic dynamics for susy groundstates

• susy charges can be 'staggered' by parameters λ_i

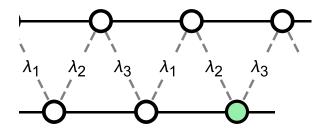

$$Q = \sum_{i} \lambda_{i} Q_{i}$$

- E=o groundstates protected by Witten index, but their expressions change with λ_i
- close loops $\lambda_i[t]$ represented by non-Abelian holonomies in U(G)

Wilczek-Zee 1984


van Voorden-Kjs to appear

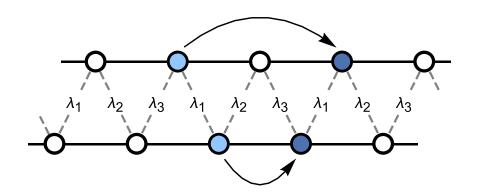
susy model for coupled chains staggered as

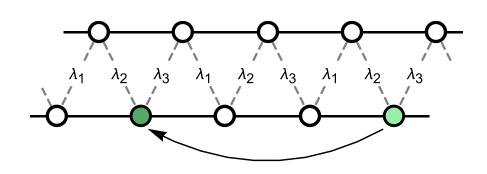


• for $\lambda_i = 111111...$ total of 2^L susy groundstates generated by flat band of L local pairs

- for $\lambda_i = ..100100$.. susy gs generated by flat bands of
 - 2L/3 local pairs on sites [3i+1, 3i+2]

- 2L/3 single particles on sites [3i]

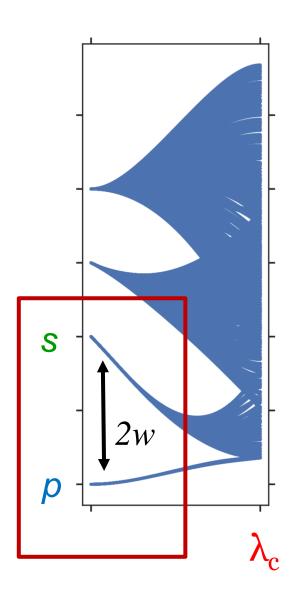

• under adiabatic cycle for λ_i


local pairs move one unit cell to the right

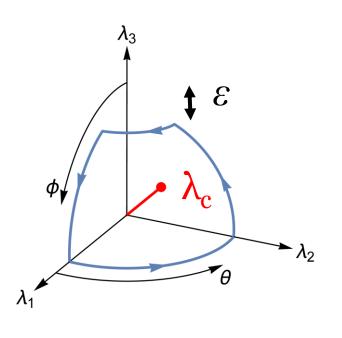
$$C_p = +1$$

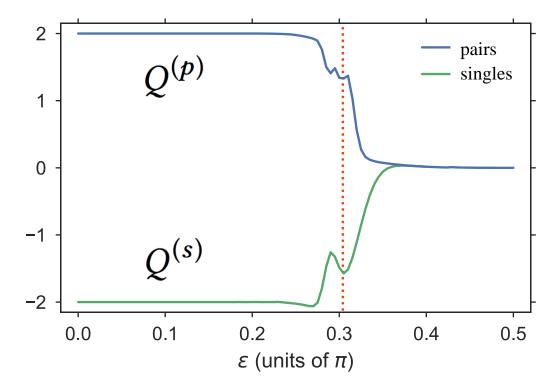
single particles move 2 unit cells to the left

$$C_s = -2$$

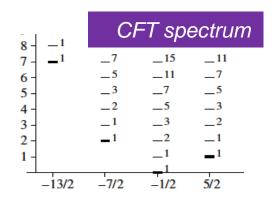


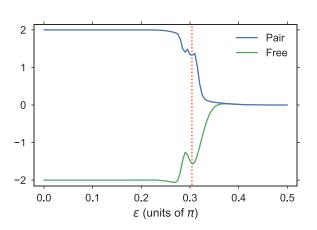
- to stabilize topological pumping, need to split the *E*=*o* bands of pairs and singles
- add to Hamiltonian


$$H_w = w \sum_{i} (1 - \lambda_{i-1})(1 - \lambda_i)n_i$$


this opens gap between bands
 of pairs (p) and singles (s),
 away from isotropic point λ_c

• filling the pairs (p) or singles (s) bands gives many-body states with topological response to cycle that encircles λ_c


$$Q^{(p)} = 2C_p = +2,$$
 $Q^{(s)} = C_s = -2$



wrap up

- lattice model field theory correspondence particularly rich for the 1D M_k models
- superfrustrated phases not well understood deep questions both about the math and the physics
- interplay of susy with (non-equilibrium) dynamics

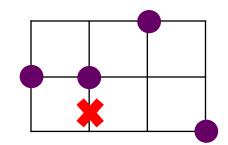
thanks to susy friends and collaborators ...

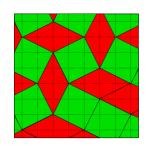
Paul Fendley,

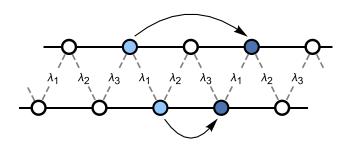
Jan de Boer, Bernard Nienhuis,

Hendrik van Eerten,

Liza Huijse, Jim Halverson,


Jiri Vala, Nial Moran, Dhagash Mehta,


Bela Bauer, Erez Berg, Matthias Troyer,


Thessa Fokkema,

Jan de Gier, Gyorgy Feher, Sasha Garbali,

Ruben La, Sergey Shadrin, Bart van Voorden, Hosho Katsura

