

Reference: arXiv:1801.00967

+ Work in progress

bound on chaos

Introduction:

$\frac{h}{h}$

Maldacena-Shenker-Stanford (2015)

$$\lambda_L \le \frac{2\pi T}{\hbar}$$

 λ_L : Lyapunov exponent T : Temperature

Examples of the saturation of the bound $\lambda_L = \frac{2\pi T}{\hbar}$

- AdS/CFT (dual black holes)
- SYK model
- → Most chaotic systems? Fast scramblers? Signature of Quantum Gravity?

. . .

Introduction:

bound on chaos

Maldacena-Shenker-Stanford (2015)

$$\lambda_L \le \frac{2\pi T}{\hbar}$$

 λ_L : Lyapunov exponent

 $T\,$: Temperature

 $\delta q(t) \sim \delta q(0) \exp(\lambda_L t)$

Quantum Gravity

(Image courtesy of Wikipedia.)

Introduction:

"Temperature is bounded from below in chaotic systems."

Kurchan 2016

TM 2018

Today's talk:

This relation may be interesting in semi-classical regime.

Temperature bound in chaotic system

A classical chaotic system with λ_L at T=0. (Hamiltonian system)

$$\lambda_L \le \frac{2\pi T}{\hbar}, \quad T \ge \frac{\hbar}{2\pi} \lambda_L$$

Two possibilities:

•
$$\lambda_L \to 0$$
• $T \neq 0$

•
$$T \neq 0$$

Temperature bound in chaotic system

A classical chaotic system with λ_L at T=0.

(Hamiltonian system)

Turn on quantum correction. (semi-classical)

$$T \geq T_L := rac{\hbar}{2\pi} \lambda_L$$

Quantum mechanically thermal

$$T_H = \frac{\hbar}{8\pi GM}$$

Classical chaos becomes thermal quantum mechanically similar to BH?

Today's topic

 Emergence of thermal behavior in some chaotic systems may indeed occur semi-classically.

$$T \ge T_L := \frac{\hbar}{2\pi} \lambda_L$$

The bound is saturated even in integrable systems.

$$\lambda_L = \frac{2\pi T}{\hbar}$$

 Acoustic Hawking radiation in supersonic fermi fluid is related to this emergent thermodynamics.

Section 1

Emergence of thermal behavior in semi-classical chaotic systems

$$T \ge T_L := \frac{\hbar}{2\pi} \lambda_L$$

Classical chaos and hyperbolic fixed point

Typical two ingredients of chaotic motion
 Hyperbolic fixed point
 Disturbance
 Wiggins's textbook

ex) damped driven pendulum motion

Classical chaos and hyperbolic fixed point

Particle motion near hyperbolic fixed point

Thermal behavior will appear around there.

◆ Particle motion in an inverse harmonic potential (classical mechanics)

$$m\ddot{x}(t) = -V'(x) = \alpha x,$$

$$x(t) = c_1 e^{\sqrt{\alpha/m}t} + c_2 e^{-\sqrt{\alpha/m}t}$$

Lyapunov exponent
$$\ \lambda_L := \sqrt{rac{lpha}{m}}$$

Similar to Boltzmann factor

Particle motion in an inverse harmonic potential (classical mechanics)

$$1: \exp\left(-\beta_L E\right) \quad (E>0) \qquad \begin{cases} \beta_L := 1/T_L \\ \text{Quantum tunneling} \end{cases} \qquad T_L = \frac{\hbar}{2\pi} \lambda_L$$

Quantum reflection

$$\bullet -- \Rightarrow 1 : \exp(\beta_L E) \qquad (E < 0)$$
ratio \uparrow

ratio [classical : quantum
$$\lambda_L \leq rac{2\pi T}{\hbar}$$
 is saturated.

Particle motion in an inverse harmonic notantial (classical mechanics)

classical: quantum

Thermal emission from inverse harmonic potential TM 2018

◆ Energy transfer: How much energy is transferred by the quantum effects comparing with the classical motion?

Energy in the left region increases.

Negative energy in the left decreases.

$$\rightarrow$$
 Increase positive energy $(-E)$ (``hole'' creation)

probability:
$$\exp(-\beta_L E)$$
 probability: $\exp(\beta_L E) = \exp(-\beta_L (-E))$

Energy
$$|E|$$
 is transferred by the probability $\exp\left(-\beta_L|E|\right)$.
 \rightarrow It can be regarded as a thermal excitation at $T_L = \frac{\hbar}{2\pi}\lambda_L$.

Thermal emission from inverse harmonic potential TM 2018

◆ Connection to two level system

Analogous to the thermal excitation of a two level system.

Particle motion near hyperbolic fixed point

$$\simeq$$
 Two level system at $T_L = rac{\hbar}{2\pi} \lambda_L$

Remarks

- The particle scattering occurs within the Ehrenfest's time $t \ll \frac{1}{\lambda_L} \log \frac{1}{\hbar}$. \rightarrow The Lyapunov exponent defined by the classical motion may be valid. (OTOC may not be necessary.) wave packet size of the system
- Inverse harmonic potential saturates the bound. But it's integrable!
 ex) c=1 matrix model (integrable) saturates the bound.

Remarks

• The result would be universal, since the excitation mainly occurs near the tip of the potential.

Connection to Acoustic Hawking radiation

Section 2

Connection to acoustic Hawking radiation

Acoustic Hawking radiation: Unruh 1981

Inject many free fermions from the left

cf. c=1 matrix model

Quantum energy transfer

Thermal emission obeys Fermi-Dirac distribution.

Acoustic Hawking radiation (Horizon is at the tip of the potential)

Microscopic description of HR

Thermal emission from the hyperbolic fixed point

≃ Hawking radiation

Acoustic Hawking radiation from quantum mechanics

Giovanazzi 2004, TM 2018

$$\underbrace{\frac{m}{2\pi\hbar}\left(\int_{-\infty}^{0}\frac{dE}{|p(E,x)|}\frac{-E}{e^{-\beta_{L}E}+1}+\int_{0}^{E_{0}}\frac{dE}{|p(E,x)|}\frac{E}{e^{\beta_{L}E}+1}\right)}_{\text{density of states}}=\frac{1}{(-x)}\frac{T_{L}}{24}\left(1+O\left(\frac{T_{L}}{\alpha x^{2}}\right)\right)$$

subsonic supersonic

Free fermions in the phase space(classical)

Giovanazzi 2004, TM 2018

phonon = (small) fluctuation of the surface of the droplet

Giovanazzi 2004, TM 2018

subsonic supersonic

Free fermions in the phase space(classical)

phonon = (small) fluctuation of the surface of the droplet

Giovanazzi 2004, TM 2018

Free fermions in the phase space(classical)

Bogoliubov transformation

$$T_L = \frac{\hbar}{2\pi} \lambda_L$$

$$\frac{1}{(-x)} \frac{T_L}{24} \left(1 + O\left(\frac{T_L}{\alpha x^2}\right) \right)$$

consistent with QM

phonon = (small) fluctuation of the surface of the droplet

◆ Two descriptions of the acoustic Hawking radiation

This agreement is natural but these two descriptions are quite different.

Dynamical variables	Phonon (macroscopic)	Elementary fermions (microscopic)	
Statistics	Boson	Fermion	
Descriptions	QFT	Quantum mechanics	
choice of vacuum	Unruh vacuum	A natural boundary condition	

→ Deeper understanding of Hawking radiation.

Summary:

Maldacena-Shenker-Stanford (2015)

Classical chaotic systems may become thermal semi-classically.

0.5

 $T \ge \frac{\hbar}{2\pi} \lambda_L$

Hyperbolic fixed point (Inverse harmonic potential)

may explain this mechanism.

 $x(t) = c_1 e^{\lambda_L t} + c_2 e^{-\lambda_L t},$

$$\exp(-\beta_L|E|)$$
 $T_L = \frac{\hbar}{2\pi}\lambda_L$

The thermal emission may be related to Hawking radiation.

reflection tunneling

Appendix

Fluid variables obey hydrodynamic equations:

Dhar-Mandal-Wadia 1992

Assume an expansion
$$\begin{cases} \rho(x,t) = \rho_0(x,t) + \epsilon \rho_1(x,t) + \epsilon^2 \rho_2(x,t) + \cdots, \\ v(x,t) = v_0(x,t) + \epsilon v_1(x,t) + \epsilon^2 v_2(x,t) + \cdots, \\ \end{cases}$$

$$\epsilon : \text{a small parameter}$$
 background flow fluctuation (e.g. stationary flow) (phonon)

 $\partial_t \rho + \partial_x (\rho v) = 0, \qquad \rho \left(\partial_t v + v \partial_x v \right) = -\partial_x p - \rho \partial_x V(x).$

◆ Acoustic geometry

$$\partial_t \rho + \partial_x (\rho v) = 0, \qquad \rho \left(\partial_t v + v \partial_x v \right) = -\partial_x p - \rho \partial_x V(x).$$
 Expansion
$$\begin{cases} \rho(x,t) = \rho_0(x,t) + \epsilon \rho_1(x,t) + \epsilon^2 \rho_2(x,t) + \cdots, \\ v(x,t) = v_0(x,t) + \epsilon v_1(x,t) + \epsilon^2 v_2(x,t) + \cdots, \end{cases}$$

$$v_1 = -\partial_x \psi \ : \text{define velocity potential } \psi$$

At
$$\epsilon^1$$
 order, $0 = \partial_\mu \sqrt{-g} g^{\mu\nu} \partial_\nu \psi$

$$g_{\mu\nu} = \frac{1}{\rho_0} \begin{pmatrix} c^2 - v_0^2 & v_0 \\ v_0 & -1 \end{pmatrix} \qquad c(x,t) := \sqrt{\frac{\partial p}{\partial \rho}} = \frac{\hbar\pi}{m} \rho_0(x,t).$$

Acoustic metric

 $ightarrow \psi$ obeys a wave equation on a curved geometry.

 g_{tt} vanishes if $v_0 = c$. \rightarrow acoustic event horizon

Acoustic event horizon

If we quantize phonon, Hawking radiation is induced toward left

Unruh 1981

$$T_H = \frac{c\hbar}{4\pi} \partial_x f|_{v_0=c}$$
 $f := 1 - \frac{v_0^2}{c^2}$

$$f := 1 - \frac{v_0^2}{c^2}$$