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Introduction

• The transfer of heat from hot to cold temperature can be
explained by Fourier’s law (1810).

• Fourier’s law follows diffusion equation for temperature as

∂T

∂t
= κ∇2T ,

where κ is constant thermal conductivity and T is local
temperature field.

• Interestingly, Fourier’s law violated in lower dimension (d ≤ 2).

• Many models with momentum conservation show anomalous
transport.



Features of anomalous transport

• Conductivity κ, diverges with system size with an exponent α
as

κ ∼ Nα, 0 < α < 1

• Models have nonlinear temperature profile in nonequilibrium
steady state.

• Energy fluctuation has superdiffusive propagation.



Studies on anomalous transport 1

• Studied in many numerical simulations and in very few exactly
solvable models.

∗ 1d chain of particles with anharmonic interaction, disordered
chain, coupled rotor chain, stochastic harmonic chain,etc.

• In experimental setup, like a rod of nanowire attached at two
different temperature at its end

∗ Breakdown of Fourier’s law in nanotube thermal conductors,
Chang et al., 2008 .

∗ Dimensional crossover of thermal transport in few-layer
graphene, Suchismita Ghosh et al., 2010, etc

1Lepri et al., 2003 & Dhar, 2008



Purely harmonic chain
Rieder, Lebowitz, Lieb in 1967
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where pi momentum and Xi+1 −Xi = ri is called stretch.

• One dimensional chain with two ends attached to Langevin
bath with different temperature.

• Two neigboring particles have quadratic interaction.



Purely harmonic chain

• Steady state distribution is Gaussian and exact correlation
matrix is known.

• Conductivity diverges linearly (ballistic motion of phonons)

κ =
C

TL − TR
N

where C is constant.

• In steady state, flat temperature profile with exponential
deviation at its boundary is exactly known.



Stochastic harmonic chain
with three conserved quantities2
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• Random exchange of momentum is allowed with rate γ.

• Exchange conserves total stretch, momentum and energy at
all times.

• Interestingly, random exchange has same macroscopic
behavior as due to nonlinearity in anharmonic chain.

• Current J , decay with exponent N−1/2

J =

(

π3

γN

)1/2
∆T

8(
√
8− 1)

• As, κ ∼ JN ∼ N1/2, divergence of conductivity with
exponent α = 1/2

2Basile et al., 2006 & Lepri et al., 2009



Figure: Temperature profile for three conserved quantities case (Lepri et
al., 2009)

• Nonlinear temperature profile similar to the deterministic
anharmonic oscillator

• Evolution of the temperature profile towards the steady state
in infinite line is given as3

∂tT ∼ |∆y|3/4T
3Basile et al., 2016



Stochastic harmonic chain
with two conserved quantities4
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• ηi has only microscopic variable for particle i instead of
momentum and stretch.

• Stochasticity is introduced with exchange of the variable ηi
with ηi+1 with rate γ

• Total volume
∑N

i=1
ηi and energy

∑N
i=1

η2i are conserved at
all times.

4Bernardin and Stoltz, 2012



Dynamics

• All particles have same mass and Hamiltonian dynamics is
given as

dηi(t)

dt
= V ′(ηi+1)− V ′(ηi−1)

dη1(t)

dt
= V ′(η2)− λRV

′(η1) +
√

2λRkBTRξR

dηN (t)

dt
= −V ′(ηN−1)− λLV

′(ηN ) +
√

2λLkBTLξL

where ηi is a variable assign to each particle and V (η) = η2/2



Dynamical operators5

Consists of two parts

• The deterministic part of dynamics with bath is given as

D =

N−1
∑

i=1

(

V ′(ηi+1)− V ′(ηi−1)
)

∂ηi − V ′(ηN−1)∂ηN + V ′(η1)∂η1

+λR(TR∂
2
η1 − V ′(η1)∂η1) + λL(TL∂

2
ηN

− V ′(ηN )∂ηN )

• The stochastic part S, which shows the exchange of variable
ηi at random with rate γ and given as

Sf(η) =
N−1
∑

i=−N

(

f(ηi,i+1)− f(η))
)

5Bernardin and Stoltz, 2012



Harmonic model with two conserved qunatities
Known results7

• Divergence exponent of conductivity,α is known numerically,
with value α = 1/2 for finite exchange rate γ.

• Hydrodynamics predicts diffusive sound peak and 3/2−Lévy a
heat peak6.

• The skew fractional Laplacian dynamics (Skewness due to
presence of one sound mode)

6Stoltz and Sphon, 2015
7Bernardin and Stoltz et al., 2012



Question we address in this work

∗ How does temperature profile look in stationary state?

∗ Is it possible to have an exact solution in stationary state
similar to purely harmonic and stochastic harmonic chain with
three conserved quantities?
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Question we address in this work

∗ How does temperature profile look in stationary state?

∗ Is it possible to have an exact solution in stationary state
similar to purely harmonic and stochastic harmonic chain with
three conserved quantities?

Yes! If we calculate the covariance 〈ηiηj〉 exactly.

Ti = 〈η2i 〉, (1)

Ji→i+1 = −〈ηi+1ηi〉+ γ(〈ηi+1ηi+1〉 − 〈ηiηi〉)



Master equation
We can write the Fokker Planck equation as

∂P

∂t
=
∑

i,j

(

Aij

∂ηjP

∂ηi
+

Dij

2

∂2P

∂ηi∂ηj

)

− γ
N−1
∑

j=1

[P (..ηj+1, ηj , ..)− P (.., ηj , ηj+1, ..)]

(2)

where A and D is N ×N matrices

• For two conserved quantities model

Ai,j = δi,j(λlδi,1 + λrδi,N ) + δi−1,j − δi+1,j

and
Dij = δi,j(2TRδi,1 + 2TLδi,N )

• Dynamics for covariance, C = 〈ηiηj〉 can be written as

Ċ = D −AC −CA† − γW (3)



Modelling

• The stochastic contribution W for the bulk is,
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• and for boundaries
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δj,N 〈ηi−1ηj〉+ δi,−Nδj,N 〈ηiηj〉 − 3〈ηiηj〉, for |i− j| > 1



Exact and numerical stationary state results
Temperature profile
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Figure: Points are molecular dynamics simulation using Störmer-Verlet
scheme and solid line is solving covariance matrix



Current scaling with system size
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Exact stationary state results
scaling
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C(i, j) = L−aS
(

(i− j)L−b, (i+ j)L−c)
)

J fixes a = 1/2, thus the scaling of other covariance for different
system sizes gives b = 1/2 and c = 1 (exponents are same as that
for the three conserved quantities model)



Calculation
Mapping to new domain

x = (i− j)ǫ, y = (i+ j)ǫ2,

where ǫ = 1/
√
L, x ∈ [0,∞], and

y ∈ [0, 2].
y

x
j

i

• Defining new scaled field variable as

C(i, j) = ǫS(x, y), for i 6= j

C(i, i) = T (y)



Continuum equation

• Using the discrete set of covariance equation for bulk,
diagonal, and nearest to diagonal separately ,we get following
continuum equations

γ

2
∂2
xS(x, y) = −∂yS(x, y),

∂yT (y) = −γ∂xS(0, y),

S(0, y) = J ,

where J is size independent constant current present in the
system.

• The boundary term suggest S(x, 2) = 0



Solution of continuum equation

The exact expression for the stationary state two point covariance
C(i, j) = ǫS(x, y) is

C(i, j) = ǫS(x, y) =
∆T

4

√
πγErfc

(

x
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)
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Solution of continuum equation

J =
∆T

4

√

πγ

N

T (y) = T (2) +
∆T√
2

√

2− y

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T (y)

y

0.0880

0.0885

0.0890

0.0 0.2 0.4 0.6 0.8 1.0

J

y

N = 29

N = 210

N = 211

Eq

N = 210

N = 211

Eq

Figure: Broken line is from solving discrete equations. Solid line is above

mention solution for J and T .



Conclusion

• We have the exact expression for two point covariance for full
system.

• We have also calculated exact current expression which
support earlier numerical prediction.

• The temperature profile is not anti symmetric about the mean
as shown in three conserved quantities case.

• We also have continuum equation for relaxation dynamics for
which work is going on.



Dynamics towards Steady state
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