Exact stationary state solution for one dimensional heat transport model with two conserved quantities

Collabrators: Aritra Kundu, $\frac{\text { Priyanka }}{\text { Anupam }}$ Kundu and Abhishek Dhar

International Centre for Theoretical Sciences (ICTS)
Bangalore

August 18th, 2017

Outline of the talk

- Introduction.
- Brief review of exactly known one dimensional heat transport model.
- Purely harmonic chain.
- Stochastic harmonic chain with three conserved quantities.
- Introduction of two conserved quantities model
- Results and conclusion

Introduction

- The transfer of heat from hot to cold temperature can be explained by Fourier's law (1810).
- Fourier's law follows diffusion equation for temperature as

$$
\frac{\partial T}{\partial t}=\kappa \nabla^{2} T
$$

where κ is constant thermal conductivity and T is local temperature field.

- Interestingly, Fourier's law violated in lower dimension ($d \leq 2$).
- Many models with momentum conservation show anomalous transport.

Features of anomalous transport

- Conductivity κ, diverges with system size with an exponent α as

$$
\kappa \sim N^{\alpha}, \quad 0<\alpha<1
$$

- Models have nonlinear temperature profile in nonequilibrium steady state.
- Energy fluctuation has superdiffusive propagation.

Studies on anomalous transport ${ }^{1}$

- Studied in many numerical simulations and in very few exactly solvable models.
* 1d chain of particles with anharmonic interaction, disordered chain, coupled rotor chain, stochastic harmonic chain,etc.
- In experimental setup, like a rod of nanowire attached at two different temperature at its end
* Breakdown of Fourier's law in nanotube thermal conductors, Chang et al., 2008.
* Dimensional crossover of thermal transport in few-layer graphene, Suchismita Ghosh et al., 2010, etc

[^0]
Purely harmonic chain

Rieder, Lebowitz, Lieb in 1967

$$
H=\sum_{i=1}^{N} \frac{p_{i}^{2}}{2 m}+\frac{1}{2} \sum_{i=1}^{N} k\left(X_{i+1}-X_{i}\right)^{2}
$$

where p_{i} momentum and $X_{i+1}-X_{i}=r_{i}$ is called stretch.

- One dimensional chain with two ends attached to Langevin bath with different temperature.
- Two neigboring particles have quadratic interaction.

Purely harmonic chain

- Steady state distribution is Gaussian and exact correlation matrix is known.
- Conductivity diverges linearly (ballistic motion of phonons)

$$
\kappa=\frac{C}{T_{L}-T_{R}} N
$$

where C is constant.

- In steady state, flat temperature profile with exponential deviation at its boundary is exactly known.

Stochastic harmonic chain

with three conserved quantities ${ }^{2}$

- Random exchange of momentum is allowed with rate γ.
- Exchange conserves total stretch, momentum and energy at all times.
- Interestingly, random exchange has same macroscopic behavior as due to nonlinearity in anharmonic chain.
- Current J, decay with exponent $N^{-1 / 2}$

$$
J=\left(\frac{\pi^{3}}{\gamma N}\right)^{1 / 2} \frac{\Delta T}{8(\sqrt{8}-1)}
$$

- As, $\kappa \sim J N \sim N^{1 / 2}$, divergence of conductivity with exponent $\alpha=1 / 2$

[^1]

Figure: Temperature profile for three conserved quantities case (Lepri et al., 2009)

- Nonlinear temperature profile similar to the deterministic anharmonic oscillator
- Evolution of the temperature profile towards the steady state in infinite line is given as ${ }^{3}$

$$
\partial_{t} T \sim\left|\Delta_{y}\right|^{3 / 4} T
$$

[^2]
Stochastic harmonic chain

with two conserved quantities ${ }^{4}$

- η_{i} has only microscopic variable for particle i instead of momentum and stretch.
- Stochasticity is introduced with exchange of the variable η_{i} with η_{i+1} with rate γ
- Total volume $\sum_{i=1}^{N} \eta_{i}$ and energy $\sum_{i=1}^{N} \eta_{i}^{2}$ are conserved at all times.

[^3]
Dynamics

- All particles have same mass and Hamiltonian dynamics is given as

$$
\begin{aligned}
\frac{d \eta_{i}(t)}{d t} & =V^{\prime}\left(\eta_{i+1}\right)-V^{\prime}\left(\eta_{i-1}\right) \\
\frac{d \eta_{1}(t)}{d t} & =V^{\prime}\left(\eta_{2}\right)-\lambda_{R} V^{\prime}\left(\eta_{1}\right)+\sqrt{2 \lambda_{R} k_{B} T_{R}} \xi_{R} \\
\frac{d \eta_{N}(t)}{d t} & =-V^{\prime}\left(\eta_{N-1}\right)-\lambda_{L} V^{\prime}\left(\eta_{N}\right)+\sqrt{2 \lambda_{L} k_{B} T_{L}} \xi_{L}
\end{aligned}
$$

where η_{i} is a variable assign to each particle and $V(\eta)=\eta^{2} / 2$

Dynamical operators ${ }^{5}$

Consists of two parts

- The deterministic part of dynamics with bath is given as

$$
\begin{aligned}
\mathcal{D}= & \sum_{i=1}^{N-1}\left(V^{\prime}\left(\eta_{i+1}\right)-V^{\prime}\left(\eta_{i-1}\right)\right) \partial_{\eta_{i}}-V^{\prime}\left(\eta_{N-1}\right) \partial_{\eta_{N}}+V^{\prime}\left(\eta_{1}\right) \partial_{\eta_{1}} \\
& +\lambda_{R}\left(T_{R} \partial_{\eta_{1}}^{2}-V^{\prime}\left(\eta_{1}\right) \partial_{\eta_{1}}\right)+\lambda_{L}\left(T_{L} \partial_{\eta_{N}}^{2}-V^{\prime}\left(\eta_{N}\right) \partial_{\eta_{N}}\right)
\end{aligned}
$$

- The stochastic part \mathcal{S}, which shows the exchange of variable η_{i} at random with rate γ and given as

$$
\left.\mathcal{S} f(\eta)=\sum_{i=-N}^{N-1}\left(f\left(\eta^{i, i+1}\right)-f(\eta)\right)\right)
$$

[^4]
Harmonic model with two conserved qunatities

Known results ${ }^{7}$

- Divergence exponent of conductivity, α is known numerically, with value $\alpha=1 / 2$ for finite exchange rate γ.
- Hydrodynamics predicts diffusive sound peak and $3 / 2$-Lévy a heat peak ${ }^{6}$.
- The skew fractional Laplacian dynamics (Skewness due to presence of one sound mode)

[^5]
Question we address in this work

* How does temperature profile look in stationary state?
* Is it possible to have an exact solution in stationary state similar to purely harmonic and stochastic harmonic chain with three conserved quantities?

Question we address in this work

* How does temperature profile look in stationary state?
* Is it possible to have an exact solution in stationary state similar to purely harmonic and stochastic harmonic chain with three conserved quantities?

Yes! If we calculate the covariance $\left\langle\eta_{i} \eta_{j}\right\rangle$ exactly.

Question we address in this work

* How does temperature profile look in stationary state?
* Is it possible to have an exact solution in stationary state similar to purely harmonic and stochastic harmonic chain with three conserved quantities?

Yes! If we calculate the covariance $\left\langle\eta_{i} \eta_{j}\right\rangle$ exactly.

$$
\begin{align*}
T_{i} & =\left\langle\eta_{i}^{2}\right\rangle \tag{1}\\
J_{i \rightarrow i+1} & =-\left\langle\eta_{i+1} \eta_{i}\right\rangle+\gamma\left(\left\langle\eta_{i+1} \eta_{i+1}\right\rangle-\left\langle\eta_{i} \eta_{i}\right\rangle\right)
\end{align*}
$$

Master equation

We can write the Fokker Planck equation as

$$
\begin{equation*}
\frac{\partial P}{\partial_{t}}=\sum_{i, j}\left(A_{i j} \frac{\partial \eta_{j} P}{\partial \eta_{i}}+\frac{D_{i j}}{2} \frac{\partial^{2} P}{\partial \eta_{i} \partial \eta_{j}}\right)-\gamma \sum_{j=1}^{N-1}\left[P\left(. . \eta_{j+1}, \eta_{j}, . .\right)-P\left(. ., \eta_{j}, \eta_{j+1}, . .\right)\right] \tag{2}
\end{equation*}
$$

where A and D is $N \times N$ matrices

- For two conserved quantities model

$$
A_{i, j}=\delta_{i, j}\left(\lambda_{l} \delta_{i, 1}+\lambda_{r} \delta_{i, N}\right)+\delta_{i-1, j}-\delta_{i+1, j}
$$

and

$$
D_{i j}=\delta_{i, j}\left(2 T_{R} \delta_{i, 1}+2 T_{L} \delta_{i, N}\right)
$$

- Dynamics for covariance, $C=\left\langle\eta_{i} \eta_{j}\right\rangle$ can be written as

$$
\begin{equation*}
\dot{C}=D-A C-C A^{\dagger}-\gamma W \tag{3}
\end{equation*}
$$

Modelling

- The stochastic contribution W for the bulk is,

$$
W_{i j}= \begin{cases}\left\langle\eta_{i+1} \eta_{j+1}\right\rangle-2\left\langle\eta_{i} \eta_{j}\right\rangle+\left\langle\eta_{i-1} \eta_{j-1}\right\rangle, & \text { for } i=j \\ \left\langle\eta_{i-1} \eta_{j}\right\rangle-2\left\langle\eta_{i} \eta_{j}\right\rangle+\left\langle\eta_{i} \eta_{j+1}\right\rangle, & \text { for } i-j=-1 \\ \left\langle\eta_{i} \eta_{j-1}\right\rangle-2\left\langle\eta_{i} \eta_{j}\right\rangle+\left\langle\eta_{i+1} \eta_{j}\right\rangle, & \text { for } i-j=1 \\ \left\langle\eta_{i} \eta_{j-1}\right\rangle+\left\langle\eta_{i} \eta_{j+1}\right\rangle+\left\langle\eta_{i+1} \eta_{j}\right\rangle+\left\langle\eta_{i-1} \eta_{j}\right\rangle-4\left\langle\eta_{i} \eta_{j}\right\rangle, & \text { for }|i-j|>1\end{cases}
$$

- and for boundaries

$$
W_{i j}= \begin{cases}\delta_{i,-N}\left\langle\eta_{i+1} \eta_{j+1}\right\rangle-\left\langle\eta_{i} \eta_{j}\right\rangle+\delta_{i, N}\left\langle\eta_{i-1} \eta_{j-1}\right\rangle, & \text { for } i=j \\ \delta_{i,-N}\left\langle\eta_{i} \eta_{j+1}\right\rangle-\left\langle\eta_{i} \eta_{j}\right\rangle+\delta_{j, N}\left\langle\eta_{i-1} \eta_{j}\right\rangle, & \text { for } i-j=-1 \\ \delta_{j,-N}\left\langle\eta_{i+1} \eta_{j}\right\rangle-\left\langle\eta_{i} \eta_{j}\right\rangle+\delta_{j, N}\left\langle\eta_{i-1} \eta_{j}\right\rangle, & \text { for } i-j=1 \\ \left\langle\eta_{i} \eta_{j-1}\right\rangle+\delta_{i,-N}\left\langle\eta_{i} \eta_{j+1}\right\rangle+\left\langle\eta_{i+1} \eta_{j}\right\rangle+ & \\ \delta_{j, N}\left\langle\eta_{i-1} \eta_{j}\right\rangle+\delta_{i,-N} \delta_{j, N}\left\langle\eta_{i} \eta_{j}\right\rangle-3\left\langle\eta_{i} \eta_{j}\right\rangle, & \text { for }|i-j|>1\end{cases}
$$

Exact and numerical stationary state results

Temperature profile

Figure: Points are molecular dynamics simulation using Störmer-Verlet scheme and solid line is solving covariance matrix

Current scaling with system size

Figure: $T_{L}=0.9$ and $T_{R}=1.1$ for $\gamma=1$

Exact stationary state results

scaling

J fixes $a=1 / 2$, thus the scaling of other covariance for different system sizes gives $b=1 / 2$ and $c=1$ (exponents are same as that for the three conserved quantities model)

Calculation

Mapping to new domain

$$
x=(i-j) \epsilon, \quad y=(i+j) \epsilon^{2}
$$

where $\epsilon=1 / \sqrt{L}, x \in[0, \infty]$, and $y \in[0,2]$.

- Defining new scaled field variable as

$$
\begin{gathered}
C(i, j)=\epsilon S(x, y), \text { for } i \neq j \\
C(i, i)=T(y)
\end{gathered}
$$

Continuum equation

- Using the discrete set of covariance equation for bulk, diagonal, and nearest to diagonal separately, we get following continuum equations

$$
\begin{aligned}
\frac{\gamma}{2} \partial_{x}^{2} S(x, y) & =-\partial_{y} S(x, y) \\
\partial_{y} T(y) & =-\gamma \partial_{x} S(0, y) \\
S(0, y) & =\mathcal{J}
\end{aligned}
$$

where \mathcal{J} is size independent constant current present in the system.

- The boundary term suggest $S(x, 2)=0$

Solution of continuum equation

The exact expression for the stationary state two point covariance $C(i, j)=\epsilon S(x, y)$ is

$$
C(i, j)=\epsilon S(x, y)=\frac{\Delta T}{4} \sqrt{\pi \gamma} \operatorname{Erfc}\left(\frac{x}{\sqrt{2 \gamma(2-y)}}\right)
$$

Solution of continuum equation

$$
J=\frac{\Delta T}{4} \sqrt{\frac{\pi \gamma}{N}}
$$

$$
T(y)=T(2)+\frac{\Delta T}{\sqrt{2}} \sqrt{2-y}
$$

Figure: Broken line is from solving discrete equations. Solid line is above mention solution for J and T.

Conclusion

- We have the exact expression for two point covariance for full system.
- We have also calculated exact current expression which support earlier numerical prediction.
- The temperature profile is not anti symmetric about the mean as shown in three conserved quantities case.
- We also have continuum equation for relaxation dynamics for which work is going on.

Dynamics towards Steady state

T

[^0]: ${ }^{1}$ Lepri et al., 2003 \& Dhar, 2008

[^1]: ${ }^{2}$ Basile et al., 2006 \& Lepri et al., 2009

[^2]: ${ }^{3}$ Basile et al., 2016

[^3]: ${ }^{4}$ Bernardin and Stoltz, 2012

[^4]: ${ }^{5}$ Bernardin and Stoltz, 2012

[^5]: ${ }^{6}$ Stoltz and Sphon, 2015
 ${ }^{7}$ Bernardin and Stoltz et al., 2012

