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DYNAMIC  PHASE  TRANSITIONS
Phase transitions are ubiquitous in physics. Typical 2nd-order phase transition: 
order + symmetry-breaking + non-analyticity in thermodynamic potential

Typical 1st-order phase transition: abrupt jump in order parameter + coexistence 
+ metastability
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Ideas extended to realm of fluctuations, where dynamic phase transitions (DPTs) 
in the space of trajectories have been identified in classical and quantum systems

Examples: glass formers, micromasers, superconducting transistors, etc. 
Applications: DPT-based quantum thermal switches 
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BUT WHAT ARE DYNAMIC  PHASE  TRANSITIONS ?
DPTs appear when conditioning a system to have a fixed value of some time-
integrated observable, such as, e.g., the current or the activity

The different dynamical phases correspond to different types of trajectories 
adopted by the system to sustain atypical values of this observable. 

Some dynamical phases may display emergent order and collective 
rearrangements, including symmetry-breaking phenomena 

The large deviation functions (LDFs) controlling the statistics of these fluctuations 
exhibit nonanalyticities and Lee-Yang singularities at the DPT reminiscent of 
standard critical behavior 
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Important out of equilibrium: LDFs play a role akin to thermodynamic potentials 
for nonequilibrium systems

Rare events far more probable than anticipated due to self-organized structures

Control-theory (or active) interpretation of fluctuations allows to see DPTs as 
singular changes in optimal control field (experimentally observable)



However, discovery and study of DPTs restricted to toy 1d transport models or 
fluctuations of scalar observables in d>1
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Tools: Macroscopic Fluctuation Theory (MFT) and advanced simulations of 
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WASEP in 2d: Diffusive particle transport under external field

Occupation numbers ni=0,1 + particle jumps to empty neighbors with rates

Periodic boundary conditions
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For large E and moderate L, the field per unit length E/L is strong ⇒     
effective anisotropy ϵ, enhancing diffusivity and mobility along E. 

Macroscopic transport coefficients:

Simulations: Cloning Monte Carlo method for rare events. Extraordinary 
number of clones, up to Nc=5.12x105 !!
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MACROSCOPIC  FLUCTUATION  THEORY (MFT)
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  Probability of a trajectory                        

 Density and current fields coupled via continuity equation:

 Periodic boundaries ⇒ conserved mass: 
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 Space- and time-averaged empirical current J and current LDF G(J)

 Also interesting: scaled cumulant generating function (SCGF)
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 Small current fluctuations result from weakly-correlated local events which sum 
incoherently ⇒ homogeneous optimal fields

 Leads to quadratic current LDF and Gaussian current statistics

 Stability of this homogeneous solution? 
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DPT  FOR  STRONG  CURRENT  FLUCTUATIONS

Local stability analysis: the Gaussian regime eventually becomes unstable against 
small but otherwise arbitrary spatiotemporal perturbations. Critical line (              )

This DPT appears for strong fields, 
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Dominant perturbation beyond instability: 1d density traveling wave

This solution breaks the system spatiotemporal translation symmetry by 
localizing particles in a jammed region to facilitate a low-current fluctuation 

Different 1d density waves dominate different subcritical current regimes, 
depending on the anisotropy parameter ϵ

⇢J(r, t) = !J(xk � vt)
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J · Â�1J  �2
0⌅c
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J · Â�1J  �2
0⌅c
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There exists a critical anisotropy ϵc≈0.035 beyond which only one symmetry-broken phase appears
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What are the key ingredients responsible of the new physics observed? 

First, by considering vectorial currents, it becomes apparent that current 
rotations can trigger first-order transitions between different dynamical phases. 

This is certainly not present in simpler 1d models and cannot show up when 
studying fluctuations of scalar observables in d>1 
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What are the key ingredients responsible of the new physics observed? 

First, by considering vectorial currents, it becomes apparent that current 
rotations can trigger first-order transitions between different dynamical phases. 

This is certainly not present in simpler 1d models and cannot show up when 
studying fluctuations of scalar observables in d>1 

Second, by including anisotropy it becomes 
clear its strong effect on the relative shape 
and position of the different jammed 
phases

In this way, it is the interplay between 
vectorial currents and anisotropy in d>1 
that gives rise to the rich and complex 
dynamical phase diagram here described.
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Agreement also in 
fine angular structure 
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2d (due to pbc) ⇒ compute angular position of center of mass, θjcm
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Structure of density wave in y-direction
for different ɸ deep in symmetry-
broken phase

Excellent theory/simulation agreement
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Dynamic phase transitions (DPTs) at the trajectory level are one of the most 
intriguing phenomena of nonequilibrium physics 

However, the nature of DPTs in realistic high-dimensional systems remains puzzling

SUMMARY

We report compelling evidences of a complex DPT in the vectorial current 
statistics of an archetypal 2d driven diffusive system (WASEP), and characterize its 
properties using macroscopic fluctuation theory (MFT)

The complex interplay among the external field, anisotropy and currents in 2d 
leads to a rich phase diagram

Different symmetry-broken fluctuation phases separated by lines of 1st- and 2nd-
order DPTs

Key role of divergence-free but structured current fields: weak additivity principle

Order in the form of coherent jammed states emerges to hinder transport for 
low-current fluctuations

Rare events are associated with coherent, self-organized patterns which enhance 
their probability, making them far more probable than anticipated.
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