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DYNAMIC PHASE TRANSITIONS

e Phase transitions are ubiquitous in physics. Typical 2"d-order phase transition:
order + symmetry-breaking + non-analyticity in thermodynamic potential
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e [ypical |**-order phase transition: abrupt jump in order parameter + coexistence
+ metastability



DYNAMIC PHASE TRANSITIONS

e Phase transitions are ubiquitous in physics. Typical 2"d-order phase transition:
order + symmetry-breaking + non-analyticity in thermodynamic potential

045
o |

-0.55 f

-0.60
-0.65

e [ypical |**-order phase transition: abrupt jump in order parameter + coexistence
+ metastability

¢ |deas extended to realm of fluctuations, where dynamic phase transitions (DPTs)
in the space of trajectories have been identified In classical and quantum systems

® Examples: glass formers, micromasers, superconducting transistors, etc.
Applications: DPT-based quantum thermal switches



BUT WHAT ARE DYNAMIC PHASE TRANSITIONS ?

® DPTs appear when conditioning a system to have a fixed value of some time-
integrated observable, such as, e.g,, the current or the activity

¢ The different dynamical phases correspond to different types of trajectories
adopted by the system to sustain atypical values of this observable.

¢ Some dynamical phases may display emergent order and collective
rearrangements, iIncluding symmetry-breaking phenomena

¢ The large deviation functions (LDFs) controlling the statistics of these fluctuations
exhibit nonanalyticities and Lee-Yang singularities at the DPT reminiscent of
standard critical behavior
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BUT WHAT ARE DYNAMIC PHASE TRANSITIONS ?

® DPTs appear when conditioning a system to have a fixed value of some time-
integrated observable, such as, e.g,, the current or the activity

¢ The different dynamical phases correspond to different types of trajectories
adopted by the system to sustain atypical values of this observable.

¢ Some dynamical phases may display emergent order and collective
rearrangements, iIncluding symmetry-breaking phenomena

¢ The large deviation functions (LDFs) controlling the statistics of these fluctuations
exhibit nonanalyticities and Lee-Yang singularities at the DPT reminiscent of
standard critical behavior

¢ [mportant out of equilibrium: LDFs play a role akin to thermodynamic potentials
for nonequilibrium systems

¢ Rare events far more probable than anticipated due to self-organized structures

e Control-theory (or active) interpretation of fluctuations allows to see DPTs as
singular changes in optimal control field (experimentally observable)



DYNAMIC PHASE TRANSITIONS IN D> |

e However, discovery and study of DPTs restricted to toy |d transport models or
fluctuations of scalar observables in d>1|

Pérez-Espigares et al, PRE 87,0321 15 (2013);Vaikuntanathan et al ~ Garrahan et al, PRL 98, 195702 (2007/); Garrahan

PRE 89,062108 (2014); Jack et al PRL 114,060601 (2015); et al |. Phys. A 42,0/5007 (2009); Hedges et al,
Shpielberg et al, PRL 116,240603 (2016); Zarfaty et al J. Stat. Science 323, 1309 (2009); Chandler et al, Annui.
Mech. (2016) PO33304; Baek al, PRL I'18,030604 (2017); Karevski  Rev. Phys. Chem. 61, 191 (2010); Pitard et al, EPL
at al, PRL 118,030601 (2017); Garrahan et al, PRL 104, 16060 | 96,56002 (201 1); Speck et al, PRL 109, 195703
(2010); Lesanovsky et al, PRL 110, 150401 (2013). (2012); Pinchaipat et al, PRL 119,028004 (2017).

e Challenge: bridge the gap to fluctuations of fully vectorial observables in d>|
and how they are affected by the (possible) system anisotropy
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¢ Current statistics: main objective of nonequilibrium statistical physics.
Fundamental observable: current LDF

e Aim: DPTs in the vectorial current statistics of d>1 driven diffusive systems
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e Challenge: bridge the gap to fluctuations of fully vectorial observables in d>|
and how they are affected by the (possible) system anisotropy

¢ Current statistics: main objective of nonequilibrium statistical physics.
Fundamental observable: current LDF

e Aim: DPTs in the vectorial current statistics of d>1 driven diffusive systems

¢ Tools: Macroscopic Fluctuation Theory (MFT) and advanced simulations of
rare events

® |deal lab: stochastic lattice gases



MODEL: 2D WEAKLY ASYMMETRIC SIMPLE

EXCLUSION PROCESS

© WASEP in 2d: Diffusive particle transport under external field

e Occupation numbers n=0,| + particle jumps to empty neighbors with rates
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© WASEP in 2d: Diffusive particle transport under external field
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e For large £ and moderate L, the field per unit length E/L is strong =
effective anisotropy €, enhancing diffusivity and mobility along E.

© Macroscopic transport coefficients:
D(p) = D(p)A D(p) =1/2 i <1 e 0 >
a(p) =0o(p)A a(p) = p(1 — p) 0 1-¢

® Simulations: Cloning Monte Carlo method for rare events. Extraordinary
number of clones, up to Nc=5.12x10° !!



MACROSCOPIC FLUCTUATION THEORY (MFT)

Bertini, Gabrielli, De Sole, Jona-Lasinio & Landim, 2001-2016
Rev. Mod. Phys. 87,593 (2015)

® Evolution equation for broad family of systems:

Oip(r,t) + V- (—ﬁ(p) - Vp(r,t)+6(p)-E+ £(r,t)) =0 recA=[0,1
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¢ Evolution equation for broad family of systems:.
j(r, t) fluctuating current
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¢ Gaussian white noise: Accounts for microscopic fluctuations at the macroscale
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Bertini, Gabrielli, De Sole, Jona-Lasinio & Landim, 2001-2016
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¢ Evolution equation for broad family of systems:.
j(r, t) fluctuating current

Oip(r,t) + V- (—ﬁ(p) - Vp(r,t)+6(p)-E+ £(r,t)) =0 recA=[0,1

¢ Gaussian white noise: Accounts for microscopic fluctuations at the macroscale
Er, 1)) =0 (Ea(r,t)Es(r' 1)) = L™ %o (p)dapd(r —r')o(t — ') a,B€[l,d

® Anisotropy Iin diffusivity and mobility matrices and local Einstein relation:

D(p) = D(p)A e on s (14 D(p) = ()5
5_(p) _ O'(,O)./Zl AozB — aéaﬂ — (1 + )504[3 (/0) 0 (/0) (p)

¢ Probability of a trajectory {p(r,%),j(r,t)}g — P ({p,j}§) ~ ot LI [p.]]

' - Qr(p) = —D(p)-Vp+6(p)-E
I, [p,j]:_%/o dt/Adr[j_QE(P)]T°Z(p)-[j—QE(p)] () (p) - Vp+5(p)

¢ Density and current fields coupled via continuity equation: O:p(r,t) +V - j(r,t) =0

¢ Periodic boundaries = conserved mass: pg = / dr p(r,t)
A



CURRENT STATISTICS IN MFT

® Space- and time-averaged empirical current J and current LDF G(])

1 (7 1
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¢ Also Interesting: scaled cumulant generating function (SCGF)
() = lim ¢t In(e™?) = max[G(J) + X - J]
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e Optimal trajectory#steady profile: py(r,t) ji(r,t)
Dy = D(po)

¢ Homogeneous steady state: pst(r) = po  Jsi(r) = (J) = (70“ZlE oo = o(po)
0 = 0
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¢ Homogeneous steady state: pst(r) = po  Jsi(r) = (J) = (70“ZlE oo = o(po)
0 = 0

e Small current fluctuations result from weakly-correlated local events which sum

iIncoherently = homogeneous optimal fields p3(r,t) = po
Y g P J— (<1 =], N
ja(r,t) =(J)

¢ [ eads to quadratic current LDF and Gaussian current statistics

Go(J) =T =69E) -6, (J—60E)/2 = pc(z)=(z-60z—E-60E)/2

Zz=A+E
® Stability of this homogeneous solution?



DPT FOR STRONG CURRENT FLUCTUATIONS

¢ L ocal stability analysis: the Gaussian regime eventually becomes unstable against
small but otherwise arbitrary spatiotemporal perturbations. Critical line (¢”(p) < 0)
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| A Y. = 81D} {min
e This DPT appears for strong fields, E - AE > ||

00
Qmin = Min(az, a,)
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® Local stability analysis: the Gaussian regime eventually becomes unstable against
small but otherwise arbitrary spatiotemporal perturbations. Critical line (¢”(p) < 0)
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¢ Dominant perturbation beyond instability: 1d density traveling wave
pa(r,t) = wy(x) — vt)

e This solution breaks the system spatiotemporal translation symmetry by
localizing particles in a jammed region to facilitate a low-current fluctuation

¢ Different |d density waves dominate different subcritical current regimes,
depending on the anisotropy parameter €
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® Local stability analysis: the Gaussian regime eventually becomes unstable against
small but otherwise arbitrary spatiotemporal perturbations. Critical line (¢”(p) < 0)
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e This DPT appears for strong fields, E - AE > |3]

Qmin = Min(ay, a,)

¢ Dominant perturbation beyond instability: 1d density traveling wave
pa(r,t) = wy(x) — vt)

e This solution breaks the system spatiotemporal translation symmetry by
localizing particles in a jammed region to facilitate a low-current fluctuation

¢ Different |d density waves dominate different subcritical current regimes,
depending on the anisotropy parameter €

¢ This enriching degeneracy stems from a structured divergence-free vector

field cc?upled to the current , / ¢3(r)dr =0
ja(r,t) =3 —vpo —ws(r — vi)]| Hos(r — vi) s
Pérez-Espigares, Garrido, PH, PRE 93,040103(R) (2016) V. ¢5(r)=0

Villavicencio, Harris, PRE 93,032134 (2016)
Tizdn, PH, Garrido, PRE 95,0321 19 (2017)



A RICH PHASE DIAGRAM (2D WASEP)
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A RICH PHASE DIAGRAM (2D WASEP)
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A RICH PHASE DIAGRAM (2D WASEP)

O p(z,0)/072"

7.5 8

Anisotropy €

0 0 <e<e




A RICH PHASE DIAGRAM (2D WASEP) (e )

Anisotropy €

0° pu(z,¢)/07°
7.5 8

There exists a critical anisotropy €.~0.035 beyond which only one symmetry-broken phase appears



KEY INGREDIENTS BEHIND NEW PHYSICS ?

e What are the key ingredients responsible of the new physics observed!

@ First, by considering vectorial currents, it becomes apparent that current
rotations can trigger first-order transitions between different dynamical phases.

® This is certainly not present in simpler |d models and cannot show up when
studying fluctuations of scalar observables in d>1
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e What are the key ingredients responsible of the new physics observed!

¢ First, by considering vectorial currents, it becomes apparent that current
rotations can trigger first-order transitions between different dynamical phases.

® This is certainly not present in simpler |d models and cannot show up when
studying fluctuations of scalar observables in d>1

Ay o5
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e Second, by including anisotropy it becomes
clear its strong effect on the relative shape
and position of the different jammed
phases
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()

10!

® |n this way, It Is the interplay between
vectorial currents and anisotropy in d>|
that gives rise to the rich and complex
dynamical phase diagram here described.




CURRENT STATISTICS FOR 2D WASEP

e Parameters:
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Gaussian current statistics (G ()

e Parameters: _ ,
for mild current fluctuations
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Gaussian current statistics (G ()
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ORDER PARAMETER: TOMOGRAPHIC COHERENCES

¢ MFT: |d density waves in symmetry-broken phase = jam particle flow

e Tomographic analysis: slice system along &-direction = j-slice is a ring in
2d (due to pbc) = compute angular position of center of mass, Qicm
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® Small dispersion of the angular centers of mass across slices
signals the emergence of order Define tomographic coherences
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¢ MFT: |d density waves in symmetry-broken phase = jam particle flow

e Tomographic analysis: slice system along &-direction = j-slice is a ring in
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signals the emergence of order Define tomographic coherences
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ORDER AND DENSITY WAVE STRUCTURE

Sharp but continuous change in A ()
consistent with 2nd-order DPT
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A, (\)increases steeply across DPT V¢

Ay () remains small and unaffected
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ORDER AND DENSITY WAVE STRUCTURE

A, (\)increases steeply across DPT V¢
A, (A) remains small and unaffected

Sharp but continuous change in A, ()
consistent with 2nd-order DP
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intriguing phenomena of nonequilibrium physics

e However, the nature of DPTs in realistic high-dimensional systems remains puzzling

¢ We report compelling evidences of a complex DPT in the vectorial current
statistics of an archetypal 2d driven diffusive system (VWASEP), and characterize rits
properties using macroscopic fluctuation theory (MFT)

e [he complex interplay among the external field, anisotropy and currents in 2d
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e Different symmetry-broken fluctuation phases separated by lines of |5t and 2"d-
order DPTs

e Key role of divergence-free but structured current fields: weak additivity principle



SUMMARY

® Dynamic phase transitions (DPTs) at the trajectory level are one of the most
intriguing phenomena of nonequilibrium physics

e However, the nature of DPTs in realistic high-dimensional systems remains puzzling

¢ We report compelling evidences of a complex DPT in the vectorial current
statistics of an archetypal 2d driven diffusive system (VWASEP), and characterize rits
properties using macroscopic fluctuation theory (MFT)

e [he complex interplay among the external field, anisotropy and currents in 2d
leads to a rich phase diagram

¢ Different symmetry-broken fluctuation phases separated by lines of 1% and 2"d-
order DPTs

e Key role of divergence-free but structured current fields: weak additivity principle

e Order In the form of coherent jammed states emerges to hinder transport for
low-current fluctuations

e Rare events are associated with coherent, self-organized patterns which enhance
their probability, making them far more probable than anticipated.
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G(q) = lim = max L{p,j, (A8)

7300 T {pils

subject to constraints (A5), (A6) and (A7). The density and current fields solution of this variational problem,
denoted here as pq(r,t) and jq(r,t), correspond to the optimal path the system follows in mesoscopic phase space to
sustain a long-time current fluctuation q. This path may be in general time-dependent, and the associated general
variational problem is remarkably hard.

This problem becomes simpler however in different limiting cases. For instance, in the steady state the system
exhibits translation symmetry with an homogeneous stationary density profile p..(r) = pp and a constant average

current jst(r) = (q) = 00 AE, where we have defined o9 = o(po). Now, small fluctuations of the empirical current
q away from the average behavior (q) will typically result from weakly-correlated local events in different parts of
the system which add up incoherently to yield the desired q. Thus, the optimal density field associated to these
small fluctuations still corresponds to the homogeneous, stationary one, i.e. pq(r,t) = po for |q — (q)| < 1, while the

optimal current field is constant, j4(r,t) = q, leading to a quadratic current LDF corresponding to Gaussian current
statistics,

N (q - oofiE) AT (q - aoﬁE) , (A9)

20’0

as indeed corroborated in our simulations for a broad range of q’s. As an interesting by-product, note that current
fluctuations in this Gaussian regime obey an anisotropic version of the Isometric Fluctuation Theorem [4, 5], which

links in simple terms the probability of two different but A-isometric current vector fluctuations. In particular,

Jim TIF In [2((;))] =E-(q-q), (A10)

Vq,q’ in the Gaussian regime such that q- Aq = q’ - Aq'.



Interestingly, the above flat profiles remain a solution of the full variational problem Yq, but the question remains
as to whether other solutions with more complex spatiotemporal structure may yield a better maximizer of the

MFT action (A8) for currents. To address this question, we now perturb the above flat solution with small but
otherwise arbitrary functions of space and time, and study the local stability of the homogeneous solution against

such perturbations. In particular, we ask whether the perturbed fields yield in some case a larger G(q). With this
aim in mind, we write

p(r,t) = po + dp(r,t), j(r,t) =q+dj(r,t), (All)

where both p(r,t) and j(r,t) remain constrained by Eqs. (A5), (A6) and (A7). Inserting these expressions in Eq.
(A8) and expanding to second order in the perturbations, we obtain the leading correction to the quadratic form
Ggc(q) of Eq. (A9) (termed here 02)

. dz / dr { A(po, Q)60 + Vép - B(po)Vp +53- Cloo)di + 8- Flpn,@)dp} . (A12)
where we have defined
o2 ol e : o T _ _0g 21
A(po,q) = (;3— 200)(1 A 'q+ o E- AE, B(p) = ZA’ C(po) = o F(po,q)——;gA q, (Al3)

with ’ denoting derivative with respect to the argument, and Dy = D(p,;). We next expand the perturbations
dp(r,t) and 6j(r,t) in Fourier series, taking advantage of the spatial periodic boundary conditions, and imposing
explicitly along the way the constraints (A5), (A6) and (A7). For simplicity we particularize hereafter our results
for dimension two, d = 2, though the generalization to arbitrary d is straightforward. The O2 correction above is of
course a quadratic form of the perturbations with constant coefficients, so that the different Fourier modes decouple
simplifying the problem. In this way the stability analysis melts down as usual to an eigenvalue problem, which in
this case splits into different problems for only temporal modes, spatiotemporal modes with structure along just one
dimension, z or y, and fully 2d spatiotemporal modes, which can be analyzed separately [6]. This straightfoward but
lengthy calculation leads to the following conclusion: the flat solution corresponding to Gaussian current statistics
remains stable (i.e. the O2 correction is negative) whenever the following conditions hold,

amk’*’D + H(E,q) >0
Gsk®. & +H(E,q) >0 (A14)

(Gmink? + Gmaxk ) + H(E,q) >0,

with k, = 2mn and k,, = 2mm the different spatial mod% asociated to each perturbation along either direction,
@min = Min{aq, @ € [1,d]} and amax = max{aq, e € [1,d]}, and

H(E,q) =2 (E AE - 052q- A~ lq) (A15)



A number of important conclusions can be directly derived from this set of conditions, namely:
(i) The first mode to become unstable (if any) is always the fundamental mode k; = 2.

(ii) For any value of the anisotropy, the first perturbations to become unstable are those with structure along one
spatial dimension, z or y.

(iii) For anisotropic systems, @min < @max, the leading unstable perturbation has structure in the direction of
minimum anisotropy.

(iv) For isotropic systems, @min = @max = @, both one-dimensional perturbations trigger the instability of the flat
solution at the same point. In this case, the orientation of the current vector q determines the most probable
profile immediately after the instability kicks in, with structure only along the z- or y-direction, as dictated by
the term proportional to F(po,q) in the O2 correction, see Eq. (A12).

Therefore there exists a line of critical values for the current q. at which the instability appears, given by
-1 2 2 D} 20
000

For systems with o > 0 (as e.g. the Kipnis-Marchioro-Presutti model of heat transport [3 4, 7]), the instability
appears always, regardless of the value of the external field (even for E = 0) separating a regime of Gaussian current
StatlSthS forq-A-lq < o2Z. and a non-Gaussian region for q - Alq> 02=.. On the other hand, for systems with

o < 0 (as the weakly asymmetric simple exclusion process ~-WASEP- studied in this paper [8- 10]) a line of critical
valuw of the external field exists, defined by

Dj

E. - AE. = 87%amin——- alot] = |X.|. (A17)

beyond which the instability appears, E- AE > |.|. In this strong field case, Gaussian statistics are expected for all
currents except for a region around q = 0, defined by q- A-lq< o2Z=., where current fluctuations are non-Gaussian.
For weak external fields, E - AE < |2/, only Gaussian statistics are observed.

Whenever the instability emerges, the first two frequencies to become unstable are v. = £2mq,0q/0o, with g the
component of the current vector along the direction of structure formation (that we denote here as z). It can be

then easily proved [6] that, immediately after the instability kicks in, the perturbation of the density profile takes the
form of a one-dimensional traveling wave

al
ép(z),t) = Asin [211' (x” - zﬂ - q:lj_oo)] : (A18)



with A and zﬁ two arbitrary constants. With this result in mind, we consider now that the relevant density fields

well below the instability conserve a traveling-wave structure, i.e. p(r,t) = w(r — vt) which, taking into account
constraints (A5), (A6) and (A7), implies current fields of the form

j(r,t) =q—v|py — w(r —vt)] + ¢(r — vt) (A19)

where ¢(r — vt) is a possibly structured but divergence-free vector field with zero integral. Hence, under these
assumptions, the current LDF of Eq. (A8) can now be written, after a change of variables (r — vt) = r, as

6@ =~ min, [ dryts To(w.6v)- A T o 8,V), (A20)
with the definition
T q(w, @,v) = q— v |[py — w(r)] + ¢(r) + D(w)AVw — o(w) AE, (A21)
and with the additional constraints
- /A wie)dr (A22)
/ @(r)dr =0 (A23)
A
V-o(r)=0 (A24)

9

The optimal fields and velocity solution of this complex variational problem, denoted as wq(r), @4(r), and vq, obey
the following system of coupled equations,

[ Ve i) jq] c A - [(1—’(3‘-!)—2-)'%q + 9-(-“’—")—2v] - AVwq + %a'(wq)r-:-js -(=0

o(wq) 20(wq)? 20 (wq) 0 (wq)
D(wq)Vwg + A~ q + o(wq) [k — V¥] =0, (A25)
W,
/A dr (———;(wq) ) A1, =0, (A26)

where we have defined jo(r) = q — vq [po — wq(r)] + @q(r) for simplicity in notation, and ¢, x and ¥(r) are Lagrange
multipliers associated to the constraints (A22), (A23) and (A24), respectively.



As discussed above, our local stability analysis shows that whenever the transition is unleashed, the leading insta-
bility is a density wave with structure in one dimension only, determined either by the minimum-anisotropy direction,
see condition (iii) above, or by the orientation of the current vector for isotropic systems, see (iv). Such a 1d traveling
wave will dominate the optimal solution of our variational problem at least in a finite region below the transition
line, so we now assume 1d optimal traveling-wave fields of the form wq(z;) and @q(z;) (recall that we denote as z|
the direction of structure formation, and z; the orthogonal, structureless direction). Next we decompose the opti-

mal vector field ¢4 along the ||- and L-directions, ¢q(z)) = [¢l|,(z||),¢é(z" ). The divergence-free and zero-integral
constraints on @q, see Egs. (A23) and (A24) above, thus immediately imply that ¢l|,(:z:") = 0, while Eq. (A25) leads
to ¢ (2)|) = —@maxko|wq(z))], where & is a constant which comprises in this simplified 1d problem both Lagrange
multipliers £ and ¥(r). In this situation, the system of coupled integro-differential equations for the optimal fields is

2
X(wq) (%‘) — Y (wq) + Kwq(zy) — K =0, (A27)
1 3
/o dz, [w:ilg(wq,;o] [gy — v4(po — wq(zy))] =0, (A28)
1
po = /0 wq(z)) dzy (A29)

with K and K two constants to be specified below, and where we have defined
D(w)?

e (A30)
_ 0w (o e @1 —vi(po—w)]? 2
Y(w)=—5 (E AE + Amino (w)? sl a(w)dz")g) : (A31)

In order to solve this system of equations, we now introduce a reparametrization which simplifies the numerical
evaluation of the optimal 1d density wave profile and thus of the current LDF G(q). First note that, in our geometry,
Eq. (A27) leads to a periodic optimal profile symmetric around z; = 1/2 (recall that z; € [0,1]), i.e. with reflection
symmetry z; — 1 — 2. Next we consider the possible maxima and minima of the optimal density wave. For
models with a quadratic mobility transport coefficient o(w), as the WASEP and KMP models typically studied
in literature, the number of possible maxima w. and minima w_ of the curve wq(z;) is rather restricted, see Eq.

(A27) once particularized for wg(zy) = 0. In the simplest case [3, 6, 10, a single maximum w, = wq(a:l‘l*) and
minimum w_ = wq(z]) will appear, such that the position of two consecutive extrema zﬁ' and z is such that

Ixﬁ‘(k) — z (k)| = 1/2n, with n the number of cycles in the unit interval. One can then study numerically the
dependence of the current LDF on the number n of cycles, finding that n = 1 is the optimal case. We hence restrict



hereafter to 1d density waves with a single maximum and minimum with n = 1. As a result, we can express now the
constants K and K of Eq. (A27) in terms of these extrema

Y(wi) = f(wi - K. (A32)

The values of these extrema w. can be obtained from the constraints on the distance between them and the total
density of the system. In particular, the first constraint leads to the following equation,

1 Wy C&U WL
1 =/ dzy = 2/ 9 2 [ flwg) dwq (A33)
0 W wq W
with
X(w
flwq) = o) (A34)
Y(wq) — Kwq+ K
as derived from Eq. (A27), while the constraint on the total density leads to
1 W w +
po= [ wa@de =2 [ D=2 [ waf(wa)du. (A35)
W q =

Note that the unknown variables w+ appear as integration limits in Egs. (A33) and (A35), difficulting the numerical
solution of this problem. However, a suitable change of variables allows to drop this dependence. In particular, we
write now wq(N) = w- + Yw+ —w_), with Q € [0,1], and define A(Q) = (w+ — w_) flw- + Yw; —w_)]. With this
choice, constraints (A33) and (A35), together with Eq. (A28) for the velocity, now read

1 1
= /0 h(Q)dD2. (A36)
Po 1
o /0 wa(Q)R(Q) dQ, (A37)
H oy @a(®) — pol n
| hie 22 = [y — w00 — ()] a2 =o0. (A38)

The solution of this three integral equations for a particular model and a given current vector q leads to particular
values of the parameters w_, w; and v, which can be used in turn to solve numerically the differential equation for
the optimal density wave profile [3, 6, 10] and thus obtain the current LDF G(q).



