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Motivation / Outline

Many non-equilibrium systems can be described by irreversible
Markov chains (with persistent currents/broken detailed balance).

We will consider the large deviation rate function associated to
dynamical fluctuations of the probability-density and the
probability-current of the system.

There is a natural way to characterise this rate function in terms of a
‘force’ F , which can be split in a symmetric and an anti-symmetric
part.

This splitting of the force satisfies a ‘generalised orthogonality’
condition, which allows to separate the contributions to the rate
function in a reversible part and an irreversible part.

Application: These new insights can be useful to obtain a better
understanding of physical/stochastic processes, which can e.g. be
helpful for developing new sampling techniques.
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I. Introductory example
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Prior example: Independent diffusions

Consider N independently diffusing particles x1, x2, . . . , xN on a ring
with fixed initial condition xi(0) = x0 and dynamics

ẋi =
√

2kBT ξi

where ξi is white noise.
x0

x1(t)

Denote with ρt(x) the probability that xi is in x at time t. ρ evolves
by the Fokker-Planck equation (FPE)

ρ̇ = kBT∆ρ = −div J(ρ)

for the probability current

J(ρ) := −kBT∇ρ.
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Prior example: Independent diffusions

Fix a time interval [0, τ ] and let (ρ̂t)t∈[0,τ ] be the solution to the FPE.

Now consider the empirical measure

ρNt :=
1

N

N∑
i=1

δxi(t).

In the large N limit, we should have

(ρNt )t∈[0,τ ] ≈ (ρ̂t)t∈[0,τ ].

Similar, the empirical current jN should satisfy

(jNt )t∈[0,τ ] ≈ (J(ρNt ))t∈[0,τ ].
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Prior example: Independent diffusions

Fluctuations are characterised by a large deviation principle
(LDP).

Consider a path of densities and currents (ρt, jt)t∈[0,τ ] with
ρ0 = δx0 that satisfies the continuity equation

ρ̇t = −div jt.

The probability to observe this path is asymptotically, as N →∞,
given by

Prob
(

(ρNt , j
N
t )t∈[0,τ ] ≈ (ρt, jt)t∈[0,τ ]

)
� exp

{
−NI[0,τ ]

(
(ρt, jt)t∈[0,τ ]

)}
,

for the rate function

I[0,τ ]

(
(ρt, jt)t∈[0,τ ]

)
=

1

4

∫ τ

0

dt

∫
du (kBTρt)

−1
(
jt − J(ρt)

)2
.

Note:
I[0,τ ] is uniquely minimised for the solution of the FPE (ρ̂t, J(ρ̂t))t∈[0,τ ].
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Linear flux-force relation

What makes this rate functional quadratic? We claim this is due to a
linear flux-force relation.

For diffusive systems, currents J are given by the linear flux-force
relation

J(ρ) = χ(ρ)F (ρ)

for a “force” F (ρ) and a ”mobility” χ(ρ) (as in MFT, see
[Bertini et al., Reviews of Modern Physics 87.2 (2015): 593]).

Example: For the diffusion from before

ρ̇ = kBT∆ρ = − div J(ρ),

where
J(ρ) = −kBT∇ρ = (kBTρ)(−∇ log ρ),

such that
χ(ρ) = kBTρ and F (ρ) = −∇ log ρ.
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Ψ-Ψ? formalism

The rate function is

I[0,τ ]

(
(ρt, jt)t∈[0,τ ]

)
=

1

2

∫ τ

0

dt Φ(ρt, jt, F (ρt)),

where

Φ(ρ, j, F ) =
1

2

∫
Λ

(
j − J(ρ)

)
· χ(ρ)−1

(
j − J(ρ)

)
du

=
1

2

∫
Λ

(
j − χ(ρ)F

)
· χ(ρ)−1

(
j − χ(ρ)F

)
du

=
1

2

∫
Λ

j · χ(ρ)−1j du −
∫

Λ

j · F du +
1

2

∫
Λ

F · χ(ρ)F du.
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Ψ-Ψ? formalism

We obtain

Φ(ρ, j, F ) = Ψ(ρ, j) −
∫

Λ

j · F du + Ψ?(ρ, F )

for

Ψ(ρ, j) :=
1

2

∫
Λ

j · χ(ρ)−1j du, and Ψ?(ρ, F ) :=
1

2

∫
Λ

F · χ(ρ)F du.

Note that Ψ and Ψ? are convex Legendre duals, which are
symmetric in j, resp. F , as opposed to j · F , which is
anti-symmetric (in fact linear) in both arguments.
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II. Markov chains
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Questions

Why is the rate functional for diffusions quadratic?
→ linear flux-force relation

What can we say about Markov chains?
→ nonlinear flux-force relation, thus rate functional not quadratic

Marcus Kaiser 11/28



Rate functional for Markov chains

Consider an ergodic Markov chain with transition rates rxy and
unique steady state π > 0. We assume that rxy > 0⇔ ryx > 0.
We interpret the Markov chain as a graph with states x, y ∈ V and
edges xy ∈ E whenever rxy > 0.

x yxy

yx

z

The probability current for Markov chains is given by

Jxy(ρ) := ρ(x)rxy − ρ(y)ryx.

The probability distribution of the Markov chain then evolves by

ρ̇t(x) = −div J(ρt)(x) := −
∑
y

Jxy(ρt).

Marcus Kaiser 12/28



Rate functional for Markov chains

Consider an ergodic Markov chain with transition rates rxy and
unique steady state π > 0. We assume that rxy > 0⇔ ryx > 0.
We interpret the Markov chain as a graph with states x, y ∈ V and
edges xy ∈ E whenever rxy > 0.

x yxy

yx

z

The probability current for Markov chains is given by

Jxy(ρ) := ρ(x)rxy − ρ(y)ryx.

The probability distribution of the Markov chain then evolves by

ρ̇t(x) = −div J(ρt)(x) := −
∑
y

Jxy(ρt).

Marcus Kaiser 12/28



Rate functional for Markov chains

Consider an ergodic Markov chain with transition rates rxy and
unique steady state π > 0. We assume that rxy > 0⇔ ryx > 0.
We interpret the Markov chain as a graph with states x, y ∈ V and
edges xy ∈ E whenever rxy > 0.

x yxy

yx

z

The probability current for Markov chains is given by

Jxy(ρ) := ρ(x)rxy − ρ(y)ryx.

The probability distribution of the Markov chain then evolves by

ρ̇t(x) = −div J(ρt)(x) := −
∑
y

Jxy(ρt).

Marcus Kaiser 12/28



Rate functional for Markov chains

The rate function for fluctuations of the density and the current is
given by

I[0,τ ]

(
(ρt, jt)t∈[0,τ ]

)
=

1

2

∫ τ

0

∑
xy∈E

[
jt
(
arcsinh(jt/a)− arcsinh(jF /a)

)
−
(√

a2 + (jt)2 −
√
a2 + (jF )2

)]
dt,

where a = a(ρt) and jF = jF (ρt) are discussed later, see
[Maes and Netočnỳ, EPL (Europhysics Letters) 82.3 (2008): 30003] and
[Bertini et al., Stoch. Proc. and their Appl. 125.7 (2015): 2786-2819].

This expression is not quadratic, but can be bounded above by a
quadratic approximation, see e.g.
[Gingrich et al., Physical Review Letters 116.12 (2016): 120601].
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Non-linear flux-force relation

For a Markov chain with rates rxy, the force is defined as

Fxy(ρ) := log
ρ(x)rxy
ρ(y)ryx

.

The associated current satisfies the non-linear flux-force relation

J(ρ) = a(ρ) sinh
(

1
2F (ρ)

)
where axy(ρ) = 2

√
ρ(x)rxyρ(y)ryx. We can invert J to recover the

force
F (ρ) = 2 arcsinh

(
J(ρ)/a(ρ)

)
.

More general, we define for generic forces F and currents j

jF (ρ) := a(ρ) sinh
(

1
2F
)

and F j(ρ) := 2 arcsinh
(
j/a(ρ)

)
.
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Ψ-Ψ? formalism

Recall: The rate functional is given in terms of

Φ(ρ, j, F ) =
∑
xy∈E

j
(
arcsinh(j/a(ρ))− arcsinh(jF /a(ρ))

)
−
(√

a(ρ)2 + j2 −
√
a(ρ)2 + (jF )2

)
=
∑
xy∈E

(
1
2jF

j −
√
a(ρ)2 + j2)− 1

2

∑
xy∈E

jF +
∑
xy∈E

√
a(ρ)2 + (jF )2

= Ψ(ρ, j) − j · F + Ψ?(ρ, F ),

where

j · F =
1

2

∑
xy∈E

jxyFxy,

Ψ?(ρ, F ) =
∑
xy∈E

axy(ρ)
(
cosh

(
1
2
Fxy
)
− 1
)
,

and Ψ is the Legendre transformation

Ψ(ρ, j) = sup
F

(
j · F −Ψ?(ρ, F )
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Quick recap

For a large family of models (diffusions, Markov chains, MFT, ...(?))
with dynamics

ρ̇ = −div J,

we can define a dual pairing j · F and Legendre duals Ψ(j), Ψ?(F ).

For a particular choice F̂ , we can describe the fluctuations in the
system in terms of

Φ(j, F̂ ) := Ψ(j)− j · F̂ + Ψ?(F̂ ).

Moreover Φ is minimised for j = ∂F̂Ψ?. The minimiser is given by J ,

such that J = ∂F̂Ψ?. In particular, J = χF̂ if and only if

Ψ?(F̂ ) =
1

2

∫
χF̂ 2.
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III. Splitting forces and currents
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Adjoint process and splitting of forces

Given a process with force F (ρ), we assume the existence of a
time-reversed (or adjoint) process with force F ∗(ρ), the same
stationary distribution π, and rate function

I∗[0,τ ]

(
(ρt, jt)t∈[0,τ ]

)
=

1

2

∫ τ

0

dt Φ(ρt, jt, F
∗(ρt)),

such that

I0(ρτ ) + I∗[0,τ ]

(
(ρτ−t,−jτ−t)t∈[0,τ ]

)
= I0(ρ0) + I[0,τ ]

(
(ρt, jt)t∈[0,τ ]

)
,

where I0 is the rate function corresponding to sampling the initial
condition from the stationary distribution π.

Reversible (equilibrium) processes are characterised by F (ρ) = F ∗(ρ).

Marcus Kaiser 18/28



Adjoint process and splitting of forces

Given a process with force F (ρ), we assume the existence of a
time-reversed (or adjoint) process with force F ∗(ρ), the same
stationary distribution π, and rate function

I∗[0,τ ]

(
(ρt, jt)t∈[0,τ ]

)
=

1

2

∫ τ

0

dt Φ(ρt, jt, F
∗(ρt)),

such that

I0(ρτ ) + I∗[0,τ ]

(
(ρτ−t,−jτ−t)t∈[0,τ ]

)
= I0(ρ0) + I[0,τ ]

(
(ρt, jt)t∈[0,τ ]

)
,

where I0 is the rate function corresponding to sampling the initial
condition from the stationary distribution π.

Reversible (equilibrium) processes are characterised by F (ρ) = F ∗(ρ).

Marcus Kaiser 18/28



Adjoint process and splitting of forces

Given a process with force F (ρ), we assume the existence of a
time-reversed (or adjoint) process with force F ∗(ρ), the same
stationary distribution π, and rate function

I∗[0,τ ]

(
(ρt, jt)t∈[0,τ ]

)
=

1

2

∫ τ

0

dt Φ(ρt, jt, F
∗(ρt)),

such that

I0(ρτ ) + I∗[0,τ ]

(
(ρτ−t,−jτ−t)t∈[0,τ ]

)
= I0(ρ0) + I[0,τ ]

(
(ρt, jt)t∈[0,τ ]

)
,

where I0 is the rate function corresponding to sampling the initial
condition from the stationary distribution π.

Reversible (equilibrium) processes are characterised by F (ρ) = F ∗(ρ).

Marcus Kaiser 18/28



Splitting of forces for Markov chains

In general, we define the reversible (equilibrium) part

FS(ρ) := 1
2

(
F (ρ) + F ∗(ρ)

)
,

and an irreversible (non-equilibrium) part

FA(ρ) := 1
2

(
F (ρ)− F ∗(ρ)

)
.

For a Markov chain with steady state π, the force

Fxy(ρ) = log
ρ(x)rxy
ρ(y)ryx

is split as

FSxy(ρ) = −∇x,y log
ρ

π
and FAxy = log

π(x)rxy
π(y)ryx

,

where ∇x,yf = f(y)− f(x).

Note that FA is independent of ρ.
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IV. Justification for the splitting
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Physical interpretation of the splitting

Note that FSxy(ρ) = −∇x,y[∂ρF(ρ)] for the free energy

F(ρ) =
∑
x∈V

ρ(x) log
ρ(x)

π(x)
.

Consequently, for a path ρ̇t = −div jt the change of free energy is
given by

d

dt
F(ρt) = −jt · FS(ρt).

The anti-symmetric force FAxy can be identified with the house keeping
heat for a single transition from x to y. In particular

jt · FA

corresponds to the rate of flow of housekeeping heat into the
environment.
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Orthogonality of forces

In the case of diffusions (or MFT using local Einstein relation), we
have ∫

Λ

FS(ρ) · χ(ρ)FA(ρ)du = 0,

or simply (by the polarisation identity)∫
Λ

(FS + FA) · χ(ρ)(FS + FA)du =

∫
Λ

(FS − FA) · χ(ρ)(FS − FA)du.

In terms of Ψ?, we can rewrite this as

Ψ?
(
ρ, FS(ρ) + FA(ρ)

)
= Ψ?

(
ρ, FS(ρ)− FA(ρ)

)
.

One can show that this formula also holds for Markov chains!
[K., Jack, Zimmer, arXiv preprint arXiv:1708.01453 (2017)]

We may interpret this as as generalised orthogonality.
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V. Applications
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Monotonicity of the free energy

The generalised orthogonality can be shown to imply that

Φ(ρ, j, F (ρ)) = −j · FS(ρ) + ΦS(ρ, 0, FS(ρ)) + Φ(ρ, j, FA(ρ)),

(where for Markov chains ΦS is Φ with axy(ρ) = 2
√
ρ(x)rSxyρ(y)rSyx and for

diffusions ΦS = Φ).

We can use this to recover the well known fact that the free energy is
decreasing along the dynamics of the Markov chain: For
ρ̇t = −div J(ρt), we have Φ(ρt, J(ρt), F (ρt)) = 0, and therefore

d

dt
F(ρt) = −ΦS(ρt, 0, F

S(ρt))− Φ(ρt, J(ρt), F
A(ρt)).
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Level 2 and 2.5

For the ‘level-2.5’ large deviation one considers a single copy of the
system and observes the fluctuations of the time average(

1

T

∫ T

0

ρ1
t dt,

1

T

∫ T

0

j1
t dt

)
≈ (ρ, j)

as T →∞.

The rate function I2.5(ρ, j) 6=∞ for div j = 0 only. In this case, we
have Prob � exp{−TI2.5(ρ, j)} with

I2.5(ρ, j) =
1

2
Φ(ρ, j, F (ρ)) =

1

2

[
ΦS(ρ, 0, FS(ρ)) + Φ(ρ, j, FA(ρ))

]
.

From here, one can contract to ‘level-2’

I2(ρ) = inf
j:div j=0

1

2
Φ(ρ, j, F (ρ)) =

1

2

[
ΦS(ρ, 0, FS(ρ))+Φ(ρ, J ss, FA(ρ))

]
.
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Finite time Gallavotti-Cohen type symmetry

When we sample the initial data from π, the process has the rate
function (note that F and I0 from before coincide)

I[0,τ ]

(
(ρt, jt)t∈[0,τ ]

)
= F(ρ0) +

1

2

∫ τ

0

dt Φ(ρt, jt, F (ρt)).

In this case we obtain the following version of a finite time
Gallavotti-Cohen type symmetry

− 1

N
log

Prob
[
(ρNt , j

N
t )t∈[0,τ ] ≈ (ρt, jt)t∈[0,τ ]

]
Prob

[
(ρNt , j

N
t )t∈[0,τ ] ≈ (ρτ−t,−jτ−t)t∈[0,τ ]

]
� F(ρ0)−F(ρT ) +

1

2

∫ τ

0

dt
[
Φ(ρt, jt, F (ρt))− Φ(ρt,−jt, F (ρt))

]
= F(ρ0)−F(ρT )−

∫ τ

0

dt jt · F (ρt) = −
∫ τ

0

dt jt · FA(ρt).
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Conclusion

Ψ-Ψ? can be seen as an universal structure for dynamical fluctuations
of a large class of systems.

The above formulas can be defined in terms of forces, which satisfy a
generalised orthogonality condition.

In the special case of a linear flux-force relation, this is an
orthogonality w.r.t. some inner product. In this case, the
orthogonality of forces is equivalent to an orthogonality of currents
(see MFT).

This structure also allows to identify thermodynamic quantities on
the scale of Markov chains, such as free energy, housekeeping heat,
and entropy production.
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Thank you!
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