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Extreme value statistics for i.i.d. random variables

Matrices of real eigenvalues

Matrices of complex eigenvalues

EVS for i.i.d.

For i.i.d. random variables (x1, · · · , xN) drawn from a PDF p(x), only 3 classes of
universality for the Extreme Value Statistics:

p(x)� x−α , ∀α

QN(w) =

[∫ w

0
p(x)dx

]N
→ G(aN(w − bN)) , G(x) = e−e−x

(1)

Gumbel distribution

p(x) ∼ x−α−1 , α > 0

QN(w) =

[∫ w

0
p(x)dx

]N
→ Fα(aN(w − bN)) , Fα(x) = e−x−α (2)

Fréchet distribution

p(x) ∼ (x∗ − x)ν , ν ≥ 0 , x ≤ x∗

QN(w) =

[∫ w

0
p(x)dx

]N
→Wν(aN(w − bN)) , Wν(x) = e−xν+1

(3)

Weibull distribution
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Extreme value statistics for i.i.d. random variables

Matrices of real eigenvalues

Matrices of complex eigenvalues

Gaussian Unitary matrices

See Satya Majumdar’s lecture on Random Matrix Theory

For M a matrix belonging in the Gaussian Unitary Ensemble (GUE) ,

M =


m11 m12 · · · m1N

m∗12 m22 · · · m2N

...
...

. . .
...

m∗1N m∗2N · · · mNN

 , mij = m∗ji ∼ N (0,
1
√

2N
)+iN (0,

1
√

2N
) , mii ∼ N (0,

1
√
N

)

the probability weight is P(M) ∝ e−
1
2

Tr(M†M).

The joint PDF of the (real) eigenvalues is

P(λ1, · · · , λN) =
1

ZN

∏
i<j

|λi − λj |2e−N
∑

k λ
2
k =

1

ZN
exp

−N∑
k

λ2
k +

∑
i 6=j

ln |λi − λj |


The variables are identically distributed but correlated!
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Matrices of real eigenvalues

Matrices of complex eigenvalues

Average density

Semi-circle law

ρN(λ) =
1

N
〈
∑
k

δ(λ− λk )〉 → ρ(λ) =
1

π

√
2− λ2

This must imply for EVS of λmax = maxλk , λmax →
√

2.

Fluctuations |λmax −
√

2| ∼ wN �
√

2∫ √2

√
2−wN

ρ(λ)dλ ∝ w
3
2
N ∼ N−1 , wN ∼ N−

2
3
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Extreme value statistics for i.i.d. random variables

Matrices of real eigenvalues

Matrices of complex eigenvalues

Extreme Value Statistics in GUE

The CDF, Pr(λmax ≤ x) is described in its typical regime |λmax −
√

2| ∼ wN by the
Tracy-Widom distribution

Pr(λmax ≤ x) = F2

(√
2N2/3(x −

√
2)
)
.

This distribution has two tails of the form

F2(x) ∼


e−
|x|3

12 , x → −∞

1− e−
4 x3/2

3 , x → +∞ .
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Matrices of real eigenvalues

Matrices of complex eigenvalues

Large deviations

This CDF Pr(λmax ≤ x) takes large deviation forms on both sides

Pr(λmax ≤ x) ∼



e−N2Φ−(x) , for 0 < (
√

2− x) = O(1)

F2

(√
2N2/3(x −

√
2)
)
, for x −

√
2 = O(N−2/3)

1− e−NΦ+(x) , for 0 < (x −
√

2) = O(1) .

Majumdar and Schehr, J. Stat. Mech. P01012 (2014)

The tails behave as

Φ−(x) ∼
√

2

6
(
√

2− x)3 , x →
√

2− ,

Φ+(x) ∼
211/4

3
(x −

√
2)

3
2 , x →

√
2+ ,

allowing a smooth matching with the central part.
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Extreme value statistics for i.i.d. random variables

Matrices of real eigenvalues

Matrices of complex eigenvalues

Obtaining the LD rate functions

To compute the CDF Pr(λmax ≤ w), one imposes a wall at w . The LD functions can
be evaluated as the change in the energy with and without the wall

EN(λ1, · · · , λN) = N
∑
k

λ2
k −

∑
i 6=j

ln |λi − λj |

For w <
√

2, all eigenvalues move ∆E ∼ N2, different ρ(λ)

For w >
√

2, only one eigenvalue moves ∆E ∼ N, same ρ(λ)

Bertrand Lacroix-A-Chez-Toine Extreme value statistics in a gas of 2d charged particles
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Extreme value statistics for i.i.d. random variables

Matrices of real eigenvalues

Matrices of complex eigenvalues

Case of Φ−(w)

To evaluate Φ−(w), we use

EN(λ1, · · · , λN) → N2E [ρ,w ] ,

with E [ρ,w ] =

∫ w

0
dλρ(λ)λ2 −

∫∫ w

0
dλdλ′ρ(λ)ρ(λ′) ln |λ− λ′|+ µ(w)

(∫ w

0
dλρ(λ)− 1

)
.

The functional is then minimize with respect to ρ(λ),

δE [ρ,w ]

δρ(λ)

∣∣∣∣
ρ=ρw

= 0 = λ2 − 2

∫ w

0
dλ′ρw (λ′) ln |λ− λ′|+ µ(w)

Then, we evaluate (with ρ∞(λ) = 1
π

√
2− λ2)

Φ−(w) = E [ρw ,w ]− E [ρ∞,∞]

Bertrand Lacroix-A-Chez-Toine Extreme value statistics in a gas of 2d charged particles
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Extreme value statistics for i.i.d. random variables

Matrices of real eigenvalues

Matrices of complex eigenvalues

Case of Φ+

To evaluate Φ+(w), we compute the energy for one charge in the semi-cirle

Ein(w) = w2 −
∫
ρ(λ) ln |λ− w |dλ , −

√
2 < w <

√
2

and the energy out of the semi-cirle

Eout(w) = w2 −
∫
ρ(λ) ln |λ− w |dλ , w >

√
2

and the LD rate function is just the energy difference

Φ+(w) = Eout(w)− Ein(w)
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Extreme value statistics for i.i.d. random variables

Matrices of real eigenvalues

Matrices of complex eigenvalues

Different classes of universality

If we consider the joint PDF of eigenvalues

P(λ1, · · · , λN) =
1

ZN
exp

−β
2

∑
k

λ2
k︸︷︷︸

Potential v(λ)

−
∑
i 6=j

ln |λi − λj |︸ ︷︷ ︸
Interaction




The CDF for λmax can be changed in different ways

Changing the potential v(λ), large class of universality with same typical regime
given by F2 but the large deviations are different

Changing the inverse temperature β, the typical regime given by Fβ but the large
deviations are the same
Majumdar and Schehr, J. Stat. Mech. P01012 (2014)

Changing the interaction, everything is different
See for instance Dahr et al. Phys. Rev. Lett. 119, 060601 (2017) (talk by A. Kundu last week)

Changing the dimension?
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given by F2 but the large deviations are different

Changing the inverse temperature β, the typical regime given by Fβ but the large
deviations are the same
Majumdar and Schehr, J. Stat. Mech. P01012 (2014)

Changing the interaction, everything is different
See for instance Dahr et al. Phys. Rev. Lett. 119, 060601 (2017) (talk by A. Kundu last week)

Changing the dimension?
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Matrices of real eigenvalues

Matrices of complex eigenvalues

Complex Ginibre matrices

G is a Complex Ginbre matrices for

G =
1
√
N


g11 g12 · · · g1N

g21 g22 · · · g2N

...
...

. . .
...

gN1 gN2 · · · gNN

 , gij , gii ∼ N (0, 1) + iN (0, 1)

Joint PDF of (complex) eigenvalues

Pjoint(z1, · · · , zN) =
1

ZN

∏
i<j

∣∣zi − zj
∣∣2 e−N

∑
k |zk |

2
=

1

ZN
exp

−N
∑
k

|zk |2︸ ︷︷ ︸
Potential

+
∑
i 6=j

ln |zi − zj |︸ ︷︷ ︸
Interaction



Only difference with GUE: eigenvalues live in 2d space
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Matrices of real eigenvalues

Matrices of complex eigenvalues

Average density

Girko’s law

ρN(z) =
1

N
〈
∑
k

δ(z − zk )〉 → ρ(z) =
Θ(1− |z|)

π

Girko, Theory Probab. Appl. 29, 694 (1984)

1.0 0.5 0.0 0.5 1.0

Re z

1.0

0.5

0.0

0.5

1.0

Im
z

For the EVS of rmax = maxk |zk |, rmax → 1.
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Matrices of real eigenvalues

Matrices of complex eigenvalues

Extreme value statistics

We are interested in the CDF QN(w) = Prob. [rmax ≤ w ] with rmax = max
1≤i≤N

|zi |

QN(w) =

∫
|z|≤w

dz1dz
∗
1 · · ·

∫
|z|≤w

dzNdz
∗
NPjoint(z1, · · · , zN) .

In the typical regime |w − 1| � 1, the distribution is a Gumbel as for EVS of i.i.d.
variables

QN(w) ∼ G (aN(w − bN)) , with G(y) = exp(− exp(−y))

aN ∼
√

4NcN , bN − 1 ∼
√

cN/(4N) and cN = lnN − 2 ln lnN − ln 2π.
Rider, J. Phys. A 36(12), 3401, (2003).
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Extreme value statistics for i.i.d. random variables

Matrices of real eigenvalues

Matrices of complex eigenvalues

Large deviations

This CDF QN(w) takes large deviation forms on both sides

QN(w) ∼



e−N2Ψ−(w) , for 0 < (1− w) = O(1)

G(aN(w − bN)) , for (w − bN) = O(a−1
N )

1− e−NΨ+(w) , for 0 < (w − bN) = O(1) .

Cunden et al., J. Stat. Mech. 053303 (2017).

The rate functions are

Ψ−(w) =
1

4
(4w2 − w4 − 4 lnw − 3) , for 0 < w < 1

Ψ+(w) = w2 − 2 lnw − 1 , for w > 1

To obtain Ψ±, one can use the same method as for Φ± (GUE case)
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Extreme value statistics for i.i.d. random variables

Matrices of real eigenvalues

Matrices of complex eigenvalues

Right matching

If one wants to check the right matching:

From the inside, G ′(x)→ exp(−x) , x →∞

Q′N(w) ∼ exp
[
−
√

4NcN(w − bN)
]
, 0 < w − bN � aN

From the outside, Ψ+(w)→ Ψ+(bN) + (w − bN)Ψ′+(bN) , w → bN+

NΨ′+(1 +

√
cN

4N
) = 2N(1 +

√
cN

4N
− (1 +

√
cN

4N
)−1) ∼

√
4NcN

Q′N(w) ∼ exp
[
−
√

4NcN(w − bN)
]
, |w − bN | � 1
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Extreme value statistics for i.i.d. random variables

Matrices of real eigenvalues

Matrices of complex eigenvalues

Left matching

From the inside, G(y)→ exp(− exp(−y)) , y → −∞

QN(w) ∼ exp [− exp(−aN(w − bN))] , 0 < bN − w � aN

From the outside, Ψ−(w)→ 4
3

(1− w)3 , w → 1−

QN(w) ∼ exp

[
−

4N2

3
(1− w)3

]
, 0 < 1− w � 1

No matching!
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Extreme value statistics for i.i.d. random variables

Matrices of real eigenvalues

Matrices of complex eigenvalues

2d One Component Plasma

Gas of charged particles in 2d

Competition between
Coulomb repulsion VC (|ri − rj | = r) = − ln r
External symmetric potential v(r)

E(r1, · · · , rN) = N
∑
j

v(|rj |)−
∑
k 6=l

ln |rk − rl |

For r = (x , y)↔ z = x + iy = re iθ

For v(r) = r2 this gives Ginibre

Bertrand Lacroix-A-Chez-Toine Extreme value statistics in a gas of 2d charged particles



19/35

Introduction

Results

Derivation of the Ginibre results

Conclusion

Extreme value statistics for i.i.d. random variables

Matrices of real eigenvalues

Matrices of complex eigenvalues

2d One Component Plasma

Gas of charged particles in 2d

Competition between
Coulomb repulsion VC (|ri − rj | = r) = − ln r
External symmetric potential v(r)

E(r1, · · · , rN) = N
∑
j

v(|rj |)−
∑
k 6=l

ln |rk − rl |

For r = (x , y)↔ z = x + iy = re iθ

For v(r) = r2 this gives Ginibre

Bertrand Lacroix-A-Chez-Toine Extreme value statistics in a gas of 2d charged particles



19/35

Introduction

Results

Derivation of the Ginibre results

Conclusion

Extreme value statistics for i.i.d. random variables

Matrices of real eigenvalues

Matrices of complex eigenvalues

2d One Component Plasma

Gas of charged particles in 2d

Competition between
Coulomb repulsion VC (|ri − rj | = r) = − ln r
External symmetric potential v(r)

E(r1, · · · , rN) = N
∑
j

v(|rj |)−
∑
k 6=l

ln |rk − rl |

For r = (x , y)↔ z = x + iy = re iθ

For v(r) = r2 this gives Ginibre

Bertrand Lacroix-A-Chez-Toine Extreme value statistics in a gas of 2d charged particles



20/35

Introduction

Results

Derivation of the Ginibre results

Conclusion

Contents

1 Introduction
Extreme value statistics for i.i.d. random variables
Matrices of real eigenvalues
Matrices of complex eigenvalues

2 Results

3 Derivation of the Ginibre results
Determinantal process
Analysis of the CDF
Matching

4 Conclusion

Bertrand Lacroix-A-Chez-Toine Extreme value statistics in a gas of 2d charged particles



21/35

Introduction

Results

Derivation of the Ginibre results

Conclusion

There is an intermediate deviation regime for the CDF QN(w) close to the edge
redge = 1 on a scale |w − redge| ∼ wN = (2N)−1/2

QN(w) ≈ exp

[
−
redge

wN
φI

(
w − redge

wN

)]

with φI (y) = −
∫ ∞

0
du ln

(
1

2
erfc(−y − u)

)
. 0.5 0.0 0.5 1.0 1.5

s

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

φ
I
(s

)

analytic
numerics

Figure: Numerics by diagonalization of 106

complex Ginibre matrices of rank N = 200

Universal for all symmetric potentials v(r)� ln r2 for r →∞.

In this case redgev
′(redge) = 2 and wN = [2πNρ(redge)]−1/2
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Determinantal process

Analysis of the CDF

Matching

Orthogonal polynomials

We introduce orthogonal polynomials πk (z) = zk−1 for k = 1, · · · ,N which verify

∫
dzdz∗πk (z)π∗l (z)e−N|z|2 =

∫ 2π

0
e i(k−l)θdθ︸ ︷︷ ︸
2πδk,l

∫ ∞
0

rk+l−1e−Nr2
dr = πN−kΓ(k)δk,l

Computing the following quantity

1

N!
det

1≤i,j≤N

N j/2πj (zi )√
πΓ(j)

e−
N|zi |

2

2 det
1≤k,l≤N

Nk/2πk (zl )√
πΓ(k)

e−
N|zl |

2

2 =
1

ZN

∏
i<j

∣∣zi − zj
∣∣2 e−N

∑
k |zk |

2

︸ ︷︷ ︸
Pjoint(z1, · · · , zN)

Chafäı and Péché, J. Stat. Phys., 156(2), 368-383, (2014)

This system of charges (or eigenvalues) is determinantal
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Determinantal process

Analysis of the CDF

Matching

CDF of rmax

Using Cauchy-Binet-Andreiev the CDF QN(w) is now obtained as

QN(w) =

∫
|z|≤w

dz1dz
∗
1 · · ·

∫
|z|≤w

dzNdz
∗
N

1

N!

∣∣∣∣∣ det
1≤i,j≤N

N j/2πj (zi )√
πΓ(j)

e−
N|zi |

2

2

∣∣∣∣∣
2

QN(w) = det
1≤i,j≤N

(
2N j

Γ(j)

∫ w

0
r2j−1e−Nr2

drδi,j

)
=

N∏
k=1

[
γ(k,Nw2)

Γ(k)

]

rmax is the maximum of independent but non-identically distributed

random variables xk such that qk(w) = Pr [xk ≤ w ] = γ(k,Nw2)
Γ(k)
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Using Cauchy-Binet-Andreiev the CDF QN(w) is now obtained as

QN(w) =

∫
|z|≤w

dz1dz
∗
1 · · ·

∫
|z|≤w

dzNdz
∗
N

1

N!

∣∣∣∣∣ det
1≤i,j≤N

N j/2πj (zi )√
πΓ(j)

e−
N|zi |

2

2

∣∣∣∣∣
2

QN(w) = det
1≤i,j≤N

(
2N j

Γ(j)

∫ w

0
r2j−1e−Nr2

drδi,j

)
=

N∏
k=1

[
γ(k,Nw2)

Γ(k)

]

rmax is the maximum of independent but non-identically distributed

random variables xk such that qk(w) = Pr [xk ≤ w ] = γ(k,Nw2)
Γ(k)
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Regime of interest

The average density can be obtained for finite N as

ρN(r) =
1

N
〈

N∑
k=1

δ(r − zk )〉 =
Γ(N,Nr2)

πΓ(N)

For infinite N, the average density follows the Girko’s law ρb(r) =
Θ(1− r)

π

For large but finite N, there is a scaling form on a scale wN = (2N)−1/2

ρN(r)→
1

π
ρ̃

(
r − redge

wN

)
with ρ̃(u) =

1

2
erfc(u)

Forrester and Honner, J. Phys. A 32, 2961 (1999)

This scale matches the unknown regime for the CDF!
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Individual CDF

By setting u = k/N, the individual CDF qk reads

qNu(w) =

∫ w
0 e−N(r2−2u ln r) dr

r∫∞
0 e−N(r2−2u ln r) dr

r

The function ϕu(r) = r2 − 2u ln r has a single minimum at ru =
√
u

This integral is evaluated by a saddle point approximation,

qNu(w) ≈


1
2

erfc
[√

2N(
√
u − w)

]
, w >

√
u ,

√
u

2πN
e
N

[
u−w2−ln

(
u
w2

)]
u−w2 , w <

√
u .
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Intermediate regime

The full CDF takes the following form

QN(w) ≈ exp

[
N

∫ 1

0
du ln

1

2
erfc

[√
2N(
√
u − w)

]
−
∫ 1

0
duΘ(u − w2)f (u,w)

]
.

For |w − 1| ∼ wN = (2N)−1/2, the second integral vanishes and introducing

p =
√

N/2(1− u)

QN(w) ≈ exp

[
−
√

2N

∫ ∞
0

dp ln
1

2
erfc

[√
2N(1− w)− p

]]
The intermediate deviation rate function is

φI (y) = −
∫ ∞
y

dp ln
1

2
erfc(−p)
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Matching with the typical regime

For p � 1, erfc(−p)→ 2− e−p2
/(
√
πp),

φI (y) = −
∫ ∞
y

dp ln(1−
e−p2

2
√
πp

) ≈
∫ ∞
y

dp
e−p2

2
√
πp

=
e−y2

4
√
πy2

Then we may use from the outside part of the distribution

y =
√

2N(w − 1) =
√

2N(bN − 1 + x/aN) =
√

cN/2 + x/
√

2cN ,

QN(x = aN(w − bN)) = exp

[
−
√

2NφI (
√

cN/2 +
x
√

2cN
)

]
≈ exp

[
−
√

2N
e−

cN
2
−x

2
√
πcN

]
= e−e−x
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Matching with the left LD

For 0 < −p � 1, erfc(−p)→ e−|p|
2
/(
√
π|p|)Θ(−p),

φI (y) ≈ −
∫ 0

y
dp ln(

e−p2

2
√
πp

) ≈
|y |3

3
+ o(|y |3)

From the inside of the distribution

QN(w) = e−
√

2NφI (
√

2N(w−1)) ≈ e−
4N2

3
(1−w)3+o(N2) , 0 < 1− w � (2N)−1/2

From the outside of the distribution

QN(w) = e−N2Ψ−(w) ≈ e−
4N2

3
(1−w)3

, 0 < 1− w � 1
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Ginibre results

All regimes match smoothly!
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Universality

If v(r)� ln r2 for r →∞,

There is a finite edge redge at which the density drops to zero

The typical regime is still Gumbel

The left large deviation rate function vanishes as a power cube

Ψ−(w) ∼ (redge − w)3 , w → redge

The polynomials πk (z) = zk−1 are still orthogonal∫
dzdz∗πk (z)π∗l (z)e−Nv(|z|) = 2πδk,l

∫ ∞
0

r2k−1e−Nv(r)dr

The same saddle point approximation can be used with ϕu(r) = v(r)− 2u ln r

The intermediate rate function φI is universal w.r.t. v(r)
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We found a Universal intermediate deviation regime solving a puzzle in the matching
of typical regimes and large deviations

QN(w) ∼



e−N2Ψ−(w) , for 0 < (redge − w) = O(1)

e
−

redge
wN

φI

(
w−redge

wN

)
, for (redge − w) = O(N−1/2)

G(aN(w − bN)) , for (w − bN) = O(a−1
N )

1− e−NΨ+(w) , for 0 < (w − bN) = O(1) .

These 4 regimes match smoothly

A similar result was observed for fermions in a hard box
See LACT et al. arXiv. 1706.03598 and talk by G. Schehr tomorrow
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Other classes of universality

We have seen that for i.i.d. random variables, there are three classes for the EVS.
What about the case of independent NON identically distributed variables?

Large tail joint PDF vα(r) = (1 + α/N) ln(1 + r2) with α > 0

For α = 1, this is realized by computing the jPDF of eigenvalues of M = A−1B
with A,B independent Ginibre matrices
Hough, Krishnapur, Peres, Virag, American Mathematical Society (Vol. 51) (2009).

Joint PDF with hard edge vν(r) = −ν/N ln(1− r2) with ν ≥ 0

For any positive integer ν, this is realized computing the jPDF of a sub-block of a
random unitary matrix.
Zyczkowski and Sommers, J. Phys. A, 33, 2045 (2000)
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Other classes of universality

We have seen that for i.i.d. random variables, there are three classes for the EVS.
What about the case of independent NON identically distributed variables?

Large tail joint PDF vα(r) = (1 + α/N) ln(1 + r2) with α > 0

For α = 1, this is realized by computing the jPDF of eigenvalues of M = A−1B
with A,B independent Ginibre matrices
Hough, Krishnapur, Peres, Virag, American Mathematical Society (Vol. 51) (2009).

Joint PDF with hard edge vν(r) = −ν/N ln(1− r2) with ν ≥ 0

For any positive integer ν, this is realized computing the jPDF of a sub-block of a
random unitary matrix.
Zyczkowski and Sommers, J. Phys. A, 33, 2045 (2000)

Bertrand Lacroix-A-Chez-Toine Extreme value statistics in a gas of 2d charged particles



35/35

Introduction

Results

Derivation of the Ginibre results

Conclusion

Thank you for your attention!

Bertrand Lacroix-A-Chez-Toine Extreme value statistics in a gas of 2d charged particles
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