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e To connect the SeparableConv2D to Dense layers, a Global Average Pooling is
implemented. 3 Dense layers are connected, with decreasing number of nodes in the
network. Dropout is implemented before the dense layer with high number of parameters
to prevent any potential overfitting.

For the detection problem, the output layer 1s a 1 unit Softmax, where 1 corresponds to an

eccentric signal (eccentricity & (0.001, 0.5)) and 0 to a non-eccentric signal.

For the classification problem, the output layer 1s a 3 unit Softmax, where the labels are the

one-hot-encodings for the 3 classes.

Introduction

e (Quasi-circular or eccentric binary black hole mergers typically arise in dense stellar
environments like AGNs or core collapse globular clusters, featuring high mass ratios. They
fall within the frequency bandwidth of ground-based detectors.

e GWI190521 marked the first detection of an eccentric (quasi-circular) binary black hole
merger involving massive black holes with masses of 85M and 66M  resulting in a
remnant 142M , akin to an intermediate mass black hole (IMBH).

e Upgraded detectors for future runs demonstrate an increased likelthood of detecting
eccentric mergers, expanding the sensitivity band.

_ Motivation and Research Problem

e Bayesian Parameter Estimation (PE) faces challenges due to the absence of waveform
models covering the entire Eccentricity range, hindering likelthood sampling.
e Including Eccentricity as a free parameter in PE becomes computationally intensive.
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Fig. 1: Luminosity and Frequency Sensitivity range for various LIGO runs e Training done for 30 epochs (detection) and 100 epochs (classification) with accuracies
X X converging to 1 and 0.98 respectively.
_ Machine Learning Model _ e Testing resulted in showing real distribution produced better performing NNis.
We use a Separable Convolutional Neural Network (SCNN) as our learning model, which 1s e Testing the SCNN model on waveforms generated from TEOBResumS, to check if the

trained on time-frequency representations of the detector strain, called Q-transform patterns learned by the model were generic to eccentric waveform models as well or just

spectrograms (Q-Scans). The model expects Eccentricity to modulate the shape within these for EccentricTD.

Q-Scans 1n a detectable way for 1dentification and classitication. e For the detection problem, the accuracy for the best performing NN (real trained for 20
2 epochs) was 0.97, the loss and accuracy for both converged after around 15 epochs.
2 ecc=0.001 : e For the classification problem, the accuracy for the best performing NN (real trained for

94 epochs) was 0.92, the loss and accuracy for both converged after around 50 epochs.
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Fig. 4: Accuracy and Loss curves for Testing data

e Currently training the model and re-tune it to work on a dataset injected with
real-detector noise from the LIGO-Virgo detectors. To obtain noise data and further
manipulate 1t easily I built a new data generation pipeline gw data.

e The pipeline currently employs classes and its functions additionally from GWPy.

e The main aim of the data generation pipeline 1s to automate the process and make it
more flexible for anyone to use the LIGO-Virgo noise data, for further analysis,
recoloring, injection, etc.
distribution. e Additional functionalities to handle data for multiple detectors at once.

e Luminosity distance implicitly sampled through three-detector SNR (injection SNR) in the e Currently most of the studies being conducted have been on simulated and colored
gaussian noise but this will help obtain real detector noise.

e The current model when ran with real detector noise, experienced a drop in its accuracy
to 0.81 for the classification problem, shows the architecture needs to be restructured.

m Future Work

e Using other model architectures like Transformers or Normalizing flows to build a better
Machine Learning model for the detection and classification while training on real noise.

e Adding more parameters for the detection problem like Black-hole spin as currently we
are assuming them as non-spinning Black-holes and Orbital precession.

Fig. 5: Outline for the current pipeline

The model 1s trained on Q-Scans of detector strain, generated from simulated Eccentric

Training with Real-detector Noise
waveforms injected with whitened Gaussian noise. Dataset specifications include:

e EccentricTD approximant for template generation.
e Uniform eccentricity sampling: [0.001, 0.01] for non-eccentric, [0.01, 0.2] for moderately

eccentric, [0.2, 0.5] for highly eccentric.
® Binaries' masses uniformly sampled from 10-40M
e Sky locations sampled uniformly on a two-sphere, and inclination sampled from a cosine

range 15-85 with a Universal distribution (P(p) o p™) for astrophysical sources (real) and
a uniform distribution (P(p) o< constant) (uniform)

e Waveform and Gaussian noise sampled at 4096Hz.

e Gaussian Noise generated using the Zero-Detuning High-Power design sensitivity curve for
LIGO detectors.

e Signal tapered, embedded into noise, bandpass-filtered (20Hz-512Hz), and whitened.

e (-transforms cropped, resulting in fixed 1image size 256x256x3 (3rd index representing 3

detectors).

Network Architecture
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e The model architecture uses Separable-Convolutional (SeparableConv2d) layers instead
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of the usual Convolutional layers.

The depthwise-separable convolution factorizes a regular convolution, and this
factorization drastically reduces computation and model size while maintaining accuracy
Moving down the network, the number of channels 1n layers continues to increase while
the height and width of the layer decrease. All convolutional layers are followed by
batch normalization layers.

The input layer takes in the 256x256x3 i1mage, where 3 channels correspond to
LIGO-Hanford (H1), LIGO-Livingston (L1) and Virgo (V1) detectors.
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