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Overview - Lecture 1 - Monday 14th

� Introduction
� Fermionic correlation functions

� Grassmann integration
� Wick’s theorem

� The lattice propagator
� The “point-to-all” method

� Hadronic physics
� Meson and baryon spectroscopy
� Variational methods
� Using other probes
� Hadronic decay and mixing

� “All-to-all” methods
� Stochastic estimation
� Variance reduction

� Smearing



Introduction

� Lattice provides us with a gauge-invariant,
non-perturbative regulator for QCD

� In a finite volume and at a non-zero lattice spacing,
the path-integral is represented by a finite
integration - solve numerically using Monte Carlo.

� Monte Carlo needs importance sampling
variance reduction to give useful results in
reasonable amounts of computer time

� Importance sampling means QCD must be defined
in a Euclidean space-time.

� In Monte Carlo, manipulating quark fields is the
dominant computational cost



Fermionic
correlation functions



Fermions in the path integral

� In path integral, fermions are represented using
Grassmann algebra.

∫

dη = 0,

∫

dη η = 1, η2 = 0

� Higher dimensions - anticommutation rule:

ηiηj = −ηjηi

� Expensive to manipulate directly by computer . . .

Exercise 1
Find 3 4× 4 matrices, α1, α2, μ such that for any f ,

∫

dη1dη2 f (η1, η2) = Tr
�

μ f (α1, α2)
	



Fermions in the path integral

� In QCD the action is (usually) bilinear.
� Consider computing a correlation function for the
ρ-meson in 2-flavour QCD:

Cρ(t1, t0) =

∫

DUDψ̄Dψ ψ̄uγiψd(t1) ψ̄dγiψu(t0) e−SG[U]+ψ̄fMf [U]ψf

∫

DUDψ̄Dψ e−SG[U]+ψ̄fMf [U]ψf

� Integrate the grassmann fields analytically, giving:

Cρ(t1, t0) =

∫

DU Tr γiM
−1
d (t1, t0)γiM−1

u
(t0, t1) detM2[U] e−SG[U]

∫

DU detM2[U] e−SG[U]

� Fermions in lagrangian → fermion determinant
� Fermions in measurement → propagators



Fermions in the path integral

� With more insertions, need Wick’s theorem
� Example — four field insertions:

〈ψiψ̄jψkψ̄l〉

� and the pairwise contraction can be done in two
ways:

ψiψ̄jψkψ̄l and ψiψ̄jψkψ̄l

� ...giving the propagator combination

M−1
ij
M−1
kl
−M−1

jk
M−1
il

� the minus-sign comes from the anti-commutation
needed in the second term.

� More fields means more combinations
� This is important in (eg.) isoscalar meson

spectroscopy.



Exercise 2
For a system with six degrees of freedom, {η̄i, ηi}, i =
1,2,3, evaluate the grassmann integral

I4 =

∫ 3
∏

i=1

dη̄idηi η1η̄2η2η̄1 e−η̄Mη

and compare this answer to the prediction of Wick’s the-
orem.



The lattice propagator



Handling lattice propagators

� On a finite lattice, the propagator is the inverse of a
very large matrix.

� It is impractical to compute all elements of the
propagator directly using a standard elimination
method.

� The action Ma = b for vectors a,b in the space of
quark fields is practical. Can store lattice quark
fields but not matrices.

� Given χ, can solve the linear system

Mψ = χ



Handling lattice propagators

� Krylov space solver: the Krylov space Kn(M, χ) is
defined by

Kn(M, χ) = Span
¦

χ,Mχ,M2χ, . . .Mnχ
©

� Examples include CG, MinRes, BiCG, . . .
� As the physical quark mass is approached, so the

convergence of these algorithm slows rapidly.
� Newer algorithms use deflation: simultaneously

build an approximation to the low-modes of M
� Algebraic multi-grid is re-emerging too



Handling lattice propagators

� Most lattice fermions obey γ5-hermiticity:

M†(x,y) = γ5M(y,x)γ5

� QCD vacuum is translationally invariant. Solving
Mψ = η gives access to one row of M−1

The point-to-all propagator
� Choose an origin y
� For all spin, colour combinations {α,a}

� construct a source, ηx,β,b = δx,yδβ,αδb,a
� solve Mψ(y,α,a) = η with this rhs

� Now have a block-row (at y) of M−1

� Simple isovector meson and baryon creation
operators can be constructed from this data



Hadronic physics



Computing the spectrum (1)

� Energies of colourless QCD states extracted from
two-point functions in Euclidean time

C(t) = 〈Φ(t)|Φ†(0)〉

� Euclidean time: Φ(t) = eHtΦe−Ht so C(t) = 〈Φ|e−Ht|Φ〉
� Insert a complete set of states then:

C(t) =
∞
∑

k=0

|〈Φ|k〉|2 e−Ekt

� Then limt→∞C(t) = Ze−E0t

� If the large-t exponential fall-off of C(t) can be
observed, the energy of a state can be measured



Computing the spectrum (2)

� Excited-state energies measured from matrix of
correlators:

Cij(t) = 〈Φi(t)|Φ†
j
(0)〉

� Solve generalised eigenvalue problem:

C(t1) v = λ C(t0) v

for different t0 and t1
[M. Lüscher & U Wolff, C. Michael]

� Then lim(t1−t0)→∞ λn = e−En(t1−t0)

� Method constructs optimal ground-state creation
operator, then orthogonal states



Isovector meson correlation functions

� To create a meson, we need to build functions that
couple to quarks.

� Meson can be created by a quark bilinear.
Appropriate gauge invariant creation operator (for
isospin I = 1) would be

Φmeson(t) =
∑

x

ū(x, t)ΓUC(x,y; t)d(y, t)

where Γ is some appropriate Dirac structure, and UC
a product of (smeared) link variables.

� Operators that transform irreducibly under the
lattice rotation group Oh are needed.



Isoscalar meson correlation functions

� If we are interested in measuring isoscalar meson
masses, extra diagrams must be evaluated, since
four-quark diagrams become relevant. The Wick
contraction yields extra terms, since

〈ψiψ̄jψkψ̄l〉 = M−1
ij
M−1
kl
−M−1

il
M−1
jk

� Now
〈0|ΦI=0(t)Φ†

I=0(0)|0〉 =

〈0|ΦI=1(t)Φ†
I=1(0)|0〉 − 〈0|Tr M−1ΓUC(t)Tr M−1ΓUC(0)|0〉



Isovector meson correlation functions (3)

The most general opera-
tor.

A restricted correlation
function accessible to one
point-to-all computation.



Current insertions

� All-to-all important for (eg) current insertion in a
baryon where we want to sum over many insertion
points



Studying scattering with Monte Carlo data

Data from O(4) sigma-model [Giudice, MP and
McManus].
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� Maiani-Testa no-go:
scattering data can
not be computed in
Euclidean field theory

� Lüscher: can infer
scattering phase
shifts from studying
changes in spectrum

Computing scattering and decay needs:
� Multiple volumes
� Precision data on the spectrum, including

excitations
� Variational basis including multi-hadron operators



All-to-all quark
propagator methods



Stochastic estimators

� Since we are doing Monte Carlo over gauge fields
in any case, it should be sufficient to estimate
diagrams involving quark lines.

� Consider {χ1, χ2, . . .} a set of complex stochastic
variables with the properties

E[χi] = 0, E[χiχ
∗
j

] = δij

� Now solve the linear system

Mϕ = χ

(NB: only access have to M−1 numerically)
� Then clearly,

E[ϕiχ
∗
j

] = M−1
ij

� and we have an estimator of all elements of the
quark propagator



Stochastic estimators (2)

� Variance too high
� Reduced by recalculating estimator for m different

random sources. Errors fall like 1/
p
m. Do better?

� The exact propagator can be computed with finite
(but large) effort (point-propagator methods with
sources put everywhere).

� This suggests a trick; break up vector space of
quark fields, V into d smaller sub-spaces
V = V1 ⊕ V2 ⊕ . . . spanned by sub-sets of basis
vectors. E.g. even-odd partitioning:

V1 =
¦

e(1) = (1,0,0,0, . . . ),e(3) = (0,0,1,0 . . . )
©

V2 =
¦

e(2) = (0,1,0,0, . . . ),e(4) = (0,0,0,1, . . . )
©

This partitioning (“dilution”) is arbitrary. A useful
example is “time dilution”, where NT sub-spaces
are defined, with support on one time-slice only.



Stochastic estimators (3)

� The basis is complete, so if Si is a projector into
space Vi and η(i) = Siη then η =

∑d
i=1 η

(i). Since
S2
i

= Si, we can write an identity

1 =
d
∑

i=1

Si =
d
∑

i=1

S2
i

=
d
∑

i=1

SiE[η⊗ η∗]Si =
d
∑

i=1

E[η(i) ⊗ η∗(i)]

and another representation of the propagator can
be written as

Q−1 =
d
∑

i=1

E[ψ(i) ⊗ η∗(i)] where ψ(i) = Q−1η(i)

� The variance in this estimator is reduced by explicit
cancellation of terms that vanished before only as
m→∞. If d = N, the exact propagator is recoved.

� A good choice of dilution should beat statistics.



Spectral representations

� Start again with spectral representation of Q = γ5M
(Q because it is hermitian so eigenvalues are easier
to compute).

� If we can compute all the eigenvectors and
eigenvalues, {λ(i),v(i)} of

Q =
N
∑

i=1

λ(i)v(i) ⊗ v∗(i) then Q−1 =
N
∑

i=1

1

λ(i)
v(i) ⊗ v∗(i)

� Unfortunately, finding even a small sub-set of
eigenvectors is computationally expensive, so we
are forced to truncate this representation at
Nev� N



Hybrid method (1)

� Most physics contained in the lowest few
eigenvectors of Q.

� Hybrid method: use an exact representation of the
lowest few eigenvectors and corrects for truncation
using stochastic estimator.

� Break V into two subspaces, VL and VH, with VL the
space spanned by the lowest Nev eigenvectors.

Q−1 = Q̄L + Q̄H = Q−1PL +Q−1PH

� Q̄L is the truncated eigenvector representation, and
Q̄H can be estimated with the dilution method. The
action of Q̄H is

Q̄H = Q−1PH = Q−1(1−PL)

which is a Gram-schmidt orthogonalisation against
known eigenvectors followed by application of M−1.



Hybrid methods (2)

The Hybrid all-to-all method
� Compute Nev eigenvectors and eigenvalues,
{λ(i),v(i)}

� Generate one noise vector, and dilute
{η(1), η(2), . . .}

� For each dilute vector, compute ψ(i) = Q−1(1−PL)η(i)

� Now Q−1 is estimated as

Q−1 =

Nev
∑

i=1

1

λ(i)
v(i) ⊗ v∗(i) +

Nd
∑

j=1

ψ(j) ⊗ η∗(j)

� Since both terms are sums of outer products, they
can be packed into a single sum over
j = 1 . . .Nev +Nd. The “hybrid list” representation
becomes Q−1 =

∑Nev+Nd

j=1 u(j) ⊗w∗(j)



Isovector mesons - comparing methods
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β = 5.7,123 × 24 lattice Wilson fermions,
κ = 0.1675(mπ/mρ = 0.50) 75 configurations. 100
eigenvectors. Time/even-odd/colour/spin dilution.



The static-light meson
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123 × 80 anisotropic lattice Wilson fermions
Uses variational method to get excitations



Exercise 3
Using a toy model for a propagator in one dimension
M−1(x,y) = exp{−λ|x − y|} (using a periodic distance),
investigate numerically the variance in an estimator of
this propagator using different dilution schemes for a
small 1-d lattice.



Hopping parameter expansion

� The hopping parameter expansion of the inverse of
the Wilson fermion matrix starts with M = I− κD.

� Taylor series expansion (for small κ) about M = I is

M−1 = I+ κD+ κ2D2 + κ3D3 + . . .

=
∞
∑

h=0

κhDh

� Splitting at H terms gives

M−1 =
H
∑

h=0

κhDh +
∞
∑

h=H+1

κhDh

=
H
∑

h=0

κhDh + κH+1DH+1
∞
∑

h=0

κhDh

=
H
∑

h=0

κhDh + κH+1DH+1M−1



Hopping parameter expansion (2)

� Splitting at H terms gives

M−1 =
H
∑

h=0

κhDh + κH+1DH+1M−1

� For a number of local insertions (like ψ̄(x)ψ(x)) the
first term can be computed analytically for small H
(depends on small Wilson loops).

� The second term is handled stochastically or by
hybrid methods.

� It is usually smaller and so has smaller variance.
� Works for any approximation to the inverse, M̄:

M−1 = M̄+M−1 − M̄ = M̄+ (1− M̄M)M−1



Example - nucleon strangeness

� Example - strangeness
content of the nucleon

� Doi et. al
Phys.Rev.D80:094503,2009.

� Requires stochastic
computation of the
disconnected diagram
with a strange quark
loop
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Quark-field smearing



Smearing - an essential ingredient for precision

� To build an operator that projects effectively onto a
low-lying hadronic state need to use smearing

� Instead of the creation operator being a direct
function applied to the fields in the lagrangian first
smooth out the UV modes which contribute little to
the IR dynamics directly.

� A popular gauge-covariant smearing algorithm;
Jacobi/Wuppertal smearing: Apply the linear
operator

�J = exp(σ∆2)
� ∆2 is a lattice representation of the 3-dimensional

gauge-covariant laplace operator on the source
time-slice

∆2
x,y

= 6δx,y −
3
∑

i=1

Ui(x)δx+ι̂,y +U†
i
(x− ι̂)δx−ι̂,y

� Correlation functions look like Tr �JM−1�JM−1�J . . .



Gaussian smearing

� Gaussian smearing:

lim
n→∞

�

1 +
σ∇2

n

�n

= exp(σ∇2)

� This acts in the space of coloured scalar fields on a
time-slice: Ns ×Nc
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� Data from as ≈ 0.12fm 163 lattice: 163 × 3 = 12288.



Can redefining smearing help?

� Computing quark propagation in configuration
generation and observable measurement is
expensive.

� Objective: extract as much information from
correlation functions as possible.

Two problems:

1 Most correlators: signal-to-noise falls exponentially
2 Making measurements can be costly:

� Variational bases
� Exotic states using more sophisticated creation

operators
� Isoscalar mesons
� Multi-hadron states

� Good operators are smeared; helps with problem
1, can it help with problem 2?



Smearing

� Smeared field: ψ̃ from ψ, the “raw” quark field in
the path-integral:

ψ̃(t) = �[U(t)] ψ(t)

� Extract the essential degrees-of-freedom.
� Smearing should preserve symmetries of quarks.
� Now form creation operator (e.g. a meson):

OM(t) =
¯̃ψ(t)Γψ̃(t)

� Γ: operator in {s, σ,c} ≡ {position,spin,colour}
� Smearing: overlap 〈n|OM|0〉 is large for low-lying

eigenstate |n〉


