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Fermionic correlation functions
e Grassmann integration
e Wick’s theorem
The lattice propagator
e The “point-to-all” method
Hadronic physics
e Meson and baryon spectroscopy
e Variational methods

e Using other probes
e Hadronic decay and mixing

“All-to-all” methods

e Stochastic estimation
e Variance reduction
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Introduction

Lattice provides us with a gauge-invariant,
non-perturbative regulator for QCD

In a finite volume and at a non-zero lattice spacing,
the path-integral is represented by a finite
integration - solve numerically using Monte Carlo.

Monte Carlo needs importance sampling
variance reduction to give useful results in
reasonable amounts of computer time

Importance sampling means QCD must be defined
in a Euclidean space-time.

In Monte Carlo, manipulating quark fields is the
dominant computational cost



Fermionic
correlation functions



Fermions in the path integral

e In path integral, fermions are represented using
Grassmann algebra.

fdr):o, fdnnzl, n>=0
e Higher dimensions - anticommutation rule:
ninj = —n;ni

o Expensive to manipulate directly by computer ...

Find 3 4 x 4 matrices, a1, az, 1 such that for any f,

dehdflz f(n1, n2) =Tr{u (o1, a2)}




Fermions in the path integral

¢ In QCD the action is (usually) bilinear.

o Consider computing a correlation function for the
p-meson in 2-flavour QCD:

F e g [DUDYDY §uyida(tr) Payitbu(to) e SelUl+¥rMilUlur
p(t1, to) = fDUDl,[_/Dlﬂ e—SclUl+¥rMr[U]¢r

e Integrate the grassmann fields analytically, giving:
JDU T viMZ* (t1, to)yiM;  (to, t1) detM?[U] e=SclY]
[DU detm2[U] e=S6lU]

Co(t1, to) =

e Fermions in lagrangian — fermion determinant
e Fermions in measurement — propagators



Fermions in the path integral

With more insertions, need Wick’s theorem
Example — four field insertions:

(Wig e )

and the pairwise contraction can be done in two
ways: o o

iy and gy
...giving the propagator combination

~1p-1 -1p-1
Mij My, _Mjk M;

the minus-sign comes from the anti-commutation
needed in the second term.

More fields means more combinations

This is important in (eg.) isoscalar meson
spectroscopy.



Exercise 2

For a system with six degrees of freedom, {n;, ni},i =
1, 2, 3, evaluate the grassmann integral

3
la = J]‘[ dijidn; n1fiznz2fiy e~ ™"
i=1

and compare this answer to the prediction of Wick’s the-
orem.




The lattice propagator



Handling lattice propagators

On a finite lattice, the propagator is the inverse of a
very large matrix.

It is impractical to compute all elements of the
propagator directly using a standard elimination
method.

The action Ma = b for vectors a, b in the space of
quark fields is practical. Can store lattice quark
fields but not matrices.

Given x, can solve the linear system

My =X



Handling lattice propagators

Krylov space solver: the Krylov space K,(M, x) is
defined by

Kn(M, x) = Span {x, Mx, M?x, ... M"x}

Examples include CG, MinRes, BIiCG, ...

As the physical quark mass is approached, so the
convergence of these algorithm slows rapidly.

Newer algorithms use deflation: simultaneously
build an approximation to the low-modes of M

Algebraic multi-grid is re-emerging too



Handling lattice propagators

e Most lattice fermions obey ys-hermiticity:
M'(x, ) = YsM(y, X)Ys

e QCD vacuum is translationally invariant. Solving
My = n gives access to one row of M1

e Choose an origin y

e For all spin, colour combinations {a, a}
e construct a source, nNy,g,b = 6x,y08,a0b,a
e solve MyW-2a) — n with this rhs

« Now have a block-row (at y) of M~1

e Simple isovector meson and baryon creation
operators can be constructed from this data



Hadronic physics



Computing the spectrum (1)

Energies of colourless QCD states extracted from
two-point functions in Euclidean time

C(t) = ((t)|07(0))

Euclidean time: ¢(t) = effoe="t so C(t) = (d|e~Ht|d)
Insert a complete set of states then:

[0¢]

C(t) =D l(olk)]* e Bt

k=0

Then lim¢_« C(t) = Ze~Fot
If the large-t exponential fall-off of C(t) can be
observed, the energy of a state can be measured



Computing the spectrum (2)

e Excited-state energies measured from matrix of
correlators:
Cy(t) = (®i(1)|9](0))

e Solve generalised eigenvalue problem:
C(t1) v=AC(to) v

for different tp and t;
[M. Lischer & U Wolff, C. Michael]

e Then |im(t1_t0)_,oo Ny = e—En(tl—tO)

e Method constructs optimal ground-state creation
operator, then orthogonal states



Isovector meson correlation functions

e To create a meson, we need to build functions that
couple to quarks.

e Meson can be created by a quark bilinear.
Appropriate gauge invariant creation operator (for
isospin I = 1) would be

Pmeson(t) = Y, T(x, )Ue(X, y;t)d(y, t)

X

where I is some appropriate Dirac structure, and Ue
a product of (smeared) link variables.

e Operators that transform irreducibly under the
lattice rotation group Op are needed.



Isoscalar meson correlation functions

e If we are interested in measuring isoscalar meson
masses, extra diagrams must be evaluated, since
four-quark diagrams become relevant. The Wick
contraction yields extra terms, since

(Widhjgd) = MM = MM

e Now
{0l®1—o(t)®]_(0)I0) =

(O]®—1(t)®]_(0)]0) — (O[Tr M~ TUc(t)Tr M~1TUc(0)]|0)

A A



Isovector meson correlation functions (3)

The most general opera-
tor.

A restricted correlation
function accessible to one
point-to-all computation.



Current insertions

O

e All-to-all important for (eg) current insertion in a
baryon where we want to sum over many insertion
points



Studying scattering with Monte Carlo data

Data from O(4) sigma-model [Giudice, MP and

McManus].
e Maiani-Testa no-go:

scattering data can
not be computed in
Euclidean field theory

e LUscher: can infer
scattering phase
shifts from studying
changes in spectrum
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Computing scattering and decay needs:
e Multiple volumes

e Precision data on the spectrum, including
excitations

e Variational basis including multi-hadron operators




All-to-all quark
propagator methods



Stochastic estimators

Since we are doing Monte Carlo over gauge fields
in any case, it should be sufficient to estimate
diagrams involving quark lines.

Consider {x1, X2,... } a set of complex stochastic
variables with the properties

Elx] =0, ElXix']=35;
Now solve the linear system
M¢ = x

(NB: only access have to M~1 numerically)
Then clearly,

and we have an estimator of all elements of the
quark propagator




Stochastic estimators (2)

¢ Variance too high

e Reduced by recalculating estimator for m different
random sources. Errors fall like 1/+/m. Do better?

e The exact propagator can be computed with finite
(but large) effort (point-propagator methods with
sources put everywhere).

e This suggests a trick; break up vector space of
quark fields, V into d smaller sub-spaces
V=Vi®eV,®... spanned by sub-sets of basis
vectors. E.g. even-odd partitioning:

vi={eM=(1,0,0,0,...),e?=(0,0,1,0...)}

Vo ={e®=(0,1,0,0,...),e% =(0,0,0,1,...)}

This partitioning (“dilution”) is arbitrary. A useful
example is “time dilution”, where Nt sub-spaces
are defined, with support on one time-slice only.



Stochastic estimators (3)

e The basis is complete, so if S; is a projector into
space V; and n) = Sin then n = Zf’zl n. Since
S? = &j, we can write an identity

d d d d ‘ .
Z Z = SEn®n*1si=> En"en*?)
=il i=1 i=1
and another representation of the propagator can

be written as

1= EpD @n*D] where ¢ =@ 1n®
i=1

e The variance in this estimator is reduced by explicit
cancellation of terms that vanished before only as
m — oo, If d = N, the exact propagator is recoved.

e A good choice of dilution should beat statistics.



Spectral representations

Start again with spectral representation of Q = ysM
(Q because it is hermitian so eigenvalues are easier
to compute).

If we can compute all the eigenvectors and
eigenvalues, {A(), v(D} of

=

N
QZZ)\(i)V(i)®V*(i) then Q71 :Zﬁv(i)®v*(i)
i=1 i=1

Unfortunately, finding even a small sub-set of
eigenvectors is computationally expensive, so we
are forced to truncate this representation at

Nev <N



Hybrid method (1)

e Most physics contained in the lowest few
eigenvectors of Q.

e Hybrid method: use an exact representation of the
lowest few eigenvectors and corrects for truncation
using stochastic estimator.

e Break V into two subspaces, V, and Vy, with V, the
space spanned by the lowest Ng, eigenvectors.

Q=0 +0y=0"1P.+Q 1Py

. (:?L is the truncated eigenvector representation, and
Qn can be_estimated with the dilution method. The
action of Qy is

Qu=0"'Py=0711-7)

which is a Gram-schmidt orthogonalisation against
known eigenvectors followed by application of M~1,



Hybrid methods (2)

e Compute N, eigenvectors and eigenvalues,
TONURVIUAY

Generate one noise vector, and dilute

{n®,n®,.. .}

For each dilute vector, compute ¢() = Q=1(1 -7, )n?)
Now Q71! is estimated as

Nev 1 o Ng .
Q_l = Zl Wv(’) ® v*(’) +Zl w(f) ® r’*(f)
1= =

Since both terms are sums of outer products, they
can be packed into a single sum over
j=1...Ney+Ny. The “hybrid list” representation

becomes Q! = Zj:ef'vd ud @ w*0)



Isovector mesons - comparing methods
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t/a
B =5.7,123 x 24 lattice Wilson fermions,
k =0.1675(mn/my = 0.50) 75 configurations. 100
eigenvectors. Time/even-odd/colour/spin dilution.



The static-light meson
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123 x 80 anisotropic lattice Wilson fermions
Uses variational method to get excitations



Using a toy model for a propagator in one dimension
M~1(x,y) = exp{=Alx — y|} (using a periodic distance),
investigate numerically the variance in an estimator of
this propagator using different dilution schemes for a
small 1-d lattice.




Hopping parameter expansion

e The hopping parameter expansion of the inverse of
the Wilson fermion matrix starts with M =1 —kD.
e Taylor series expansion (for small k) about M =1 is

M~ = |4+kD+k?D?+k3D3 ...
(0.0]
Z kD"
h=0
o Splitting at H terms gives

M-l = ZKhDh—I— Z K"

h=H+1

_ Z KhDh + KH+1DH+1 Z KhDh
h=0 h=0

H
_ Z KhDh + KH+1DH+1M—1
h=0



Hopping parameter expansion (2)

e Splitting at H terms gives

H
M—l _ Z KhDh + KH+1DH+1M—1
h=0

« For a number of local insertions (like ¢(x)y(x)) the
first term can be computed analytically for small H
(depends on small Wilson loops).

e The second term is handled stochastically or by
hybrid methods.

e It is usually smaller and so has smaller variance.
» Works for any approximation to the inverse, M:

Mt=M+M1-M=M+1-MMM1



Example - nucleon strangeness

Nsrc=64 —eo— |

0.04 | Nsrc= 4 —v—
0.02 -
e Example - strangeness =
content of the nucleon 002
« Doi et. al Raad ‘ ‘ ‘ ‘
Phys.Rev.D80:094503,2009. 4V Pt
¢ Requires stochastic
computation of the o | Noro=62 ]|

disconnected diagram
with a strange quark
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Quark-field smearing



Smearing - an essential ingredient for precision

e To build an operator that projects effectively onto a
low-lying hadronic state need to use smearing

¢ Instead of the creation operator being a direct
function applied to the fields in the lagrangian first
smooth out the UV modes which contribute little to
the IR dynamics directly.

e A popular gauge-covariant smearing algorithm;
Jacobi/Wuppertal smearing: Apply the linear
operator

0 = exp(0A?)

e A? is a lattice representation of the 3-dimensional
gauge-covariant laplace operator on the source
time-slice

A =66,y ZU X)Bxsty + UT(X = Dox—iy

o Correlation functions look like TrgM-gM-1o...



Gaussian smearing

e Gaussian smearing:
ov2\"
: _ 2
,JLrQo (1+ - ) =exp(oV?)

e This acts in the space of coloured scalar fields on a
time-slice: Ns x N
1

L 1 E
Ul _o01f
< E
_ 06 0.01F
=S [ F \ \ \
0.4 0.001
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0.2 i
0 \ \ \ \ \ \
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Eigenvector index, i

o Data from as ~ 0.12fm 163 lattice: 163 x 3 =12288.



Can redefining smearing help?

e Computing quark propagation in configuration
generation and observable measurement is
expensive.

e Objective: extract as much information from
correlation functions as possible.

Two problems:

@ Most correlators: signal-to-noise falls exponentially
® Making measurements can be costly:
e Variational bases
e Exotic states using more sophisticated creation
operators
e |soscalar mesons
e Multi-hadron states

e Good operators are smeared; helps with problem
1, can it help with problem 27



Smearing

Smeared field: ¢ from ¢, the “raw” quark field in
the path-integral:

g(t) =alu(t)] ¢(t) J

Extract the essential degrees-of-freedom.
Smearing should preserve symmetries of quarks.
Now form creation operator (e.g. a meson):

Om(t) = ()T () J

I': operator in {s, 0, c} = {position,spin,colour}
Smearing: overlap (n|Oum|0) is large for low-lying
eigenstate |n)



