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A quick review: 



Parametric coupling overview 

𝐻𝑐𝑜𝑢𝑝𝑙𝑒 ∝ Φ𝑎Φ𝑏Φ𝑐 

• If frequencies 𝜔𝑎,𝑏,𝑐 all very different, all 

terms die in the rotating wave approx. 

• Drive one mode (𝑐) at 𝜔𝑝 = 𝜔𝑎 + 𝜔𝑏 ≠

𝜔𝑐 

• Stiff pump: 𝑐 → 𝑐 = |𝑐|𝑒𝑖𝜙𝑝 

𝐻𝐺 = ℏ𝑔 𝑎†𝑏†𝑒𝑖𝜙𝑝 + 𝑎𝑏𝑒−𝑖𝜙𝑝  

𝑄𝑎 
𝛷𝑎 

𝑄𝑏 

𝛷𝑏 

𝑄𝑐 
𝛷𝑐 

3-mode  

coupler 

Re-write in terms of 𝑎, 𝑏, 𝑐 

𝐻𝑐𝑜𝑢𝑝𝑙𝑒 = ℏ𝑔3 𝑎 + 𝑎† 𝑏 + 𝑏† 𝑐 + 𝑐†  

= ℏ𝑔3 𝑎𝑏𝑐† + 𝑎†𝑏†𝑐 + 𝑎𝑏†𝑐 + 𝑎†𝑏𝑐† + ⋯  

Physical Implementations: Josephson junctions, opto-mechanics, 

diodes, optical fibers…. 



ℋ

ℏ
= 𝜔𝑎𝑎†𝑎 + 𝜔𝑏𝑏†𝑏 + 𝜔𝑐𝑐

†𝑐 + 𝑔 𝑎†𝑏†𝑐 + 𝑎𝑏𝑐†  

Pay careful attention to coupling, this form 

destroys one c ‘pump’ photon to create one 

photon each in a and b 

- Modes we use for quantum signals should be driven near their resonance 

frequency 

- We need the third ‘pump’ mode to be far away from the pump frequency so the 

pump  can be ‘stiff’ and c becomes a number 

System Dynamics – Phase preserving amplification 



Phase preserving gain (Gain) 

𝐻𝐺 = ℏ𝑔 𝑎†𝑏†𝑒𝑖𝜙𝑝 + 𝑎𝑏𝑒−𝑖𝜙𝑝  
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Sliwa PRX (2015) 



LJ 

CJ 

SUPERCONDUCTING 

TUNNEL JUNCTION 

S 

S 
I Φ 

𝐻 =
𝑄2

2𝐶
− 𝐸𝐽 cos

2𝜋

Φ0
Φ = ℏ𝜔0𝑏

†𝑏 − 𝜆 𝑏†𝑏
2

+ ⋯ 

The Josephson tunnel junction 

100 nm 

𝐼 = 𝐼0sin 
2𝜋

Φ0
Φ  

T ~ 20 mK 

Al/AlOx/Al  

tunnel junction 

1 

µm 
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∆ ∑ 

“b” port “a” port 

Φ 

∆ ∑ 

∑ ∆ 

“c” port 

𝑃𝑆𝐼 𝑃𝑆𝐼 

The three mode Josephson Parametric Converter 

Bergeal Nature Physics (2010) 

+ 

+ 

+ 

+ 

a 

c 

b 

𝐻𝑐𝑜𝑢𝑝𝑙𝑒 ∝ Φ𝑎Φ𝑏Φ𝑐 



The 8-junction Josephson Parametric Converter 

G=20 dB 

NR= 9 dB 

BW= 9 MHz 

D.R. ~ 10 photons @ 4.5 MHz 

Tunability ~100’s of MHz 

ADD SOME REF? 

Bergeal et al Nature (2010) 

See also Roch et al PRL (2012) 
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Superconducting transmon qubit 

Potential energy 

f 

Josephson junction with shunting capacitor  anharmonic oscillator 

lowest two levels form qubit 

fge ~ 5.025 GHz, fef ~ 4.805 GHz  

Koch et al., Phys. Rev. A (2007)  

|𝑔  

|𝑒  

|𝑓  



Coaxial cavity + transmon 

Coaxial cavity 

Circular waveguide  

(𝑓𝑐𝑢𝑡𝑜𝑓𝑓 > 𝑓𝑐 , 𝑓𝑞) 

Negligible losses 

at seam Couplers access vertical 

/ horizontal E-fields, both 

Purcell filtered 

Freq ( GHz )

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

T
1
 (

s
)

1e-6

1e-5

1e-4

1e-3

Strong port on the side

Strong port on the top

Cutoff freq: 

8GHz 



Cavity  

fc,g = 7.4817 GHz   

1/ = 30 ns  

 

25 mm 

Qubit 

fQ=5.0252 GHz 

T1 = 30 s   

T2R = 8 s 

Isolating the transmon from the environment 



Qubit environment: circuit QED 

Strongly couple to a resonator (harmonic oscillator) 
Blais et al., Phys. Rev. A (2004) 

transition frequency of resonator 

depends on qubit state 
2/ R

Cavity filters external envt. 

𝐻𝑒𝑓𝑓

ℏ
=  𝜔𝑅𝑎†𝑎 + 𝜔𝑄𝑏†𝑏 + 𝛼 𝑏†𝑏

2
+ 𝜒𝑎†𝑎𝑏†𝑏 

LR 
CR CS 

CC 

CC 

LJ 

Z0 



mixer 

Measurement configuration 

TR 

number of inddent 

signal modes:  

cavity ring-down time 
1 2

r

Q


 
 

/S RM T 

𝑎 𝑔 ⊗ 𝛼𝑔, 0 + 𝑏 𝑒 ⊗ 𝛼𝑒 , 0  

isolator circulator 

Sig Idl 

Pump 

compact  

resonator 

+ qubit 

pulses  

JPC 

HEMT 

𝐼𝑚 = 𝐼 𝑡 𝑑𝑡
𝑇𝑚

0

 

readout 

pulse 

Ref 

transmon 

𝑄𝑚 = 𝑄 𝑡 𝑑𝑡
𝑇𝑚

0

 

on qubit state? 

𝐼𝑚 =  𝐼 𝑡  𝑑𝑡
𝑇𝑚

0

 

Readout  

phase  

tan−1 𝑄𝑚
𝐼𝑚

  

𝜋
2  

width 𝜅 

Readout  

amplitude 

𝐼𝑚
2 + 𝑄𝑚

2  
𝑓 

dispersive shift 𝜒 

Qubit + 

resonator 
+ qubit  

pulses 

JPC 

|𝑔  
|𝑒  

|𝑔  
|𝑒  𝜗 = 2 tan−1 𝜒

𝜅  

readout 

pulse at 

𝑓𝑑  

𝑓 

Ref 

𝑄𝑚 =  𝑄 𝑡  𝑑𝑡
𝑇𝑚

0

 

Sig Idl 

Pump 

𝑓𝑑 

HEMT 

− 𝜋
2  

vacuum 
50Ω 



Part 1: Measurement with coherent 

states 



microwave  

cavity 

coherent  

pulse 

phase  

meter 

dispersive 

cavity/pulse 

interaction 

Dispersive measurement: classical version 

|𝑔  

transmission 

line 



microwave  

cavity 

coherent  

pulse 

phase  

meter 

dispersive 

cavity/pulse 

interaction 

|𝑔  |𝑒  

transmission 

line 

Dispersive measurement: classical version 



microwave  

cavity 

coherent  

pulse 

dispersive 

cavity/pulse 

interaction 

|𝑔  |𝑒  

transmission 

line 

phase  

meter 

Now a wrinkle: finite phase uncertainty 



microwave  

cavity 

coherent  

pulse 

dispersive 

cavity/pulse 

interaction 

|𝑔  |𝑒  

phase  

meter 

Measurement with bad meter (still classical) 

noise added 

by amp.  

AND 

signal lost in 

transmission 

• Each msmt tells us only a little  

• State after msmt not pure!  

• This example optimistic, best 

commercial amp adds 20-30x 

noise 

• We fix this with quantum-limited 

amplification 



microwave  

cavity 

coherent  

pulse 

|𝑔  |𝑒  

phase meter 

w/ P. P. pre-amp 

• state of qubit pure after each msmt 

• For unknown initial state   

𝑐𝑔|𝑔 + 𝑐𝑒|𝑒  , repeat 

many times to estimate 𝑐𝑔
2
, 𝑐𝑒

2 

only quantum 

fluctuations 

coherent  

superposition 

Quantum-limited amplification: projective msmt 



microwave  

cavity 

WEAK 

coherent  

pulse 

|𝑔  |𝑒  

phase meter 

w/ P. P. pre-amp 

• state of qubit pure after each 

msmt 

• counter-intuitive, but is 

achievable in the laboratory 

only quantum  

fluctuations 

coherent  

superposition 

Quantum-limited amplification: ‘partial’ msmt 



Part 2: Partial measurement with 

transmon qubit and JPC 



• 240 ns boxcar filter 

• 𝑇1 𝑛 = 10 ≅ 50s 

|𝑔  

|𝑒  

0 

5 

-5 

𝐼 𝑚
𝜎
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0 50 100 150 
Time 

(s) 

• Fully linear (can see |𝑓 , |ℎ … in IQ plane) 

Quantum jumps 



𝐼𝑚/𝜎 

𝑄
𝑚

/𝜎
 

|𝑔  10 

5 

0 

10 5 0 -5 -10 

102 

104 

1 

|𝑒  

 𝑓 , … 𝑄
𝑚

/𝜎
 

𝐼𝑚/𝜎 

6000 

0 

10 

5 

0 

10 5 0 -5 -10 

|𝑔  
|𝑒  

MA 

 𝑓 , … 

Rotate to z=0 State preparation Confirm state 

8.6 σ 

Rotate to z=0 State preparation Confirm state 

𝑅𝑥 𝜋/2  𝑅𝑥 𝜋  
𝐼𝑑 or 

𝑛   11 𝑛   11 

640 ns 

𝑇𝑚  320 ns 

Trep = 20 µs 

See also Riste et al PRL (2012) 

Johnson et al PRL (2012) 

Preparation by measurement + post-selection 



Rotate to z=0 State preparation Confirm state 

𝑅𝑥 𝜋/2  𝑅𝑥 𝜋  
𝐼𝑑 or 

𝑛   11 𝑛   11 

640 ns 

𝑇𝑚  320 ns 

|𝑒  

102 

104 

1 

MA MB|MA = |𝑔   Trep = 20 µs 

𝐼𝑚/𝜎 

𝑄
𝑚

/𝜎
 

10 

5 

0 

10 5 0 -5 -10 

|𝑔  
|𝑒  

 𝑓 , … 

𝑅𝑥 𝜋  “|𝑒 ” 

𝑄
𝑚

/𝜎
 

𝐼𝑚/𝜎 

10 

5 

0 

10 5 0 -5 -10 

|𝑔  
|𝑒  

 𝑓 , … 

𝐼𝑑 “|𝑔 ” 

Fidelity=0.994! 
Error budget: 

Msmt ~0.003 

T1 ~0.001-0.002 

 rotation <0.002 

Now that we have outcomes MA= |𝑔  
either do nothing  to retain |𝑔  
OR 

rotate qubit by 𝑅𝑥 𝜋  to create |𝑒  
 

Preparation by measurement + post-selection 



𝑄
𝑚

/𝜎
 

𝐼𝑚/𝜎 

10 

5 

0 

10 5 0 -5 -10 

|𝑒  

𝐼𝑚/𝜎 
𝑄

𝑚
/𝜎

 

10 

5 

0 

10 5 0 -5 -10 

102 

104 

1 

|𝑔  
|𝑒  

 𝑓 , … 

|𝑔  
|𝑒  

 𝑓 , … 

𝑅𝑥 𝜋  “|𝑒 ” 𝐼𝑑 “|𝑔 ” 

Fidelity=0.994! 

Strong measurements allow rapid, high-fidelity state 

preparation and tomography 

Say : “practically useful, but doesn’t tell 

us how ideal we are, and how much 

room for improvement in signal 

processing” 

How ideal is this operation? 



with probability 𝑃 𝐼𝑚, 𝑄𝑚  

*Gambetta, et al PRA (2008); Korotkov/Girvin, Les Houches (2011); M. Hatridge et al Science (2013) 

MEASUREMENT 

𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖  

𝑥 

𝑦 

𝑧 

= 0,1,0  

𝑛 𝜅𝑇𝑚 −𝐼 𝑚 𝐼  𝑚 

𝜎𝑖𝑑 

𝑄𝑚 

𝐼𝑚 

𝑄𝑖𝑛 

𝐼𝑖𝑛 

1 to 1 map! 

𝜎 

𝑥 

𝑦 

𝑧 

Back-action of partial measurement* 



mixer 

TR 

number of inddent 

signal modes:  

cavity ring-down time 
1 2

r

Q


 
 

/S RM T 

𝑛   11 𝑛   11 

Tomography 

𝑅𝑥 𝜋/2  

𝑅𝑥 𝜋/2 , 

𝑅𝑦 𝜋/2 , 

700ns 

qubit 

cavity 

𝑥𝑓, 𝑦𝑓, 𝑧𝑓  

variable 𝑛  

𝐼𝑑 or 

𝑇𝑚  320 ns 

Variable 

strength 

measuremen

t 

State preparation 

X = ± 1 𝑥 

𝑦 

𝑧 

or 

or 
Y = ± 1 

Z = ± 1 

(𝐼𝑚, 𝑄𝑚)  

Back-action characterization protocol 



For weak msmt: 

𝜕𝑥𝑓

𝜕𝑄𝑚
 
𝐼𝑚,𝑄𝑚=0

= η
𝐼𝑚
𝑔

− 𝐼𝑚
𝑒

2
 

• Now calculate the effect of some added classical noise on the density matrix 

• Efficiency 𝜂 = 𝜎𝑚
𝜎

2
 

• 𝑥𝑓, 𝑦𝑓 provide important information about efficiency 

Rotation (𝑸𝒎) 
Convergence to 

poles (𝑰𝒎) 
Information loss 

due to 𝜼 < 𝟏 

COWBOY HAT 

w/ curvy arrow 

𝑄𝑚 

𝐼𝑚 

𝐼𝑚 gives latitude information 

𝑄𝑚 gives longitude information 

𝑥 

𝑦 

𝑧 

*Gambetta, et al PRA (2008); Korotkov/Girvin, Les Houches (2011); M. Hatridge et al Science (2013) 

The equator is a dangerous 

place: lost information  pulls 

trajectory towards the z-axis 

A picture is worth a thousand math symbols * : 

Mapping (𝐼𝑚, 𝑄𝑚) to the Bloch vector 



For weak msmt: 

𝜕𝑥𝑓

𝜕𝑄𝑚
 
𝐼𝑚,𝑄𝑚=0

= η
𝐼𝑚
𝑔

− 𝐼𝑚
𝑒

2
 

• Now calculate the effect of some added classical noise on the density matrix 

• Efficiency 𝜂 = 𝜎𝑚
𝜎

2
 

• 𝑥𝑓, 𝑦𝑓 provide important information about efficiency 

Rotation (𝑸𝒎) 
Convergence to 

poles (𝑰𝒎) 
Information loss 

due to 𝜼 < 𝟏 

COWBOY HAT 

w/ curvy arrow 

𝐼𝑚 gives latitude information 

𝑄𝑚 gives longitude information 

See Hatridge et al., Science 2013 

Efficiency 𝜂 = 𝜎
𝜎𝑖𝑑𝑒𝑎𝑙 

2
 

𝑥𝑓 = sech
𝐼𝑚𝐼  𝑚
𝜎2 sin

𝑄𝑚𝐼  𝑚
𝜎2 exp −

𝐼 𝑚
𝜎

2
1 − 𝜂

𝜂
 

𝑦𝑓 = sech
𝐼𝑚𝐼  𝑚
𝜎2 cos

𝑄𝑚𝐼  𝑚
𝜎2 exp −

𝐼 𝑚
𝜎

2
1 − 𝜂

𝜂
 

𝑧𝑓 = tanh
𝐼𝑚𝐼  𝑚
𝜎2  

 

Rotation  

(𝑸𝒎) 

Convergence  

to poles (𝑰𝒎) 

−𝐼 𝑚 𝐼  𝑚 

𝜎 

𝑄𝑚 

𝐼𝑚 

Measurement induced 

dephasing 

Determining efficiency with partial measurement 



histogram of measurement 

after p/2 pulse 

tomography along X, Y and Z after 

measurement 
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𝑋 𝑐 𝑌 𝑐 

𝑍 𝑐 

6 

0 

6 0 -6 

𝐼  𝑚 

𝜎 

Measurement with 𝑰 𝒎 𝝈 = 0.4 



histogram of measurement 

after p/2 pulse 

tomography along X, Y and Z after 

measurement 
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𝐼𝑚/𝜎 
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6 0 -6 
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6 0 -6 

𝑋 𝑐 𝑌 𝑐 

𝑍 𝑐 

6 

0 

6 0 -6 

𝐼  𝑚 

𝜎 

Measurement with 𝑰 𝒎 𝝈 = 1.0 



histogram of measurement 

after p/2 pulse 

tomography along X, Y and Z after 

measurement 

P
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g
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u
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-1 

Counts 

Max 0 

𝑄
𝑚

/𝜎
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𝑄
𝑚

/𝜎
 

𝐼𝑚/𝜎 
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0 

6 0 -6 
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0 

6 0 -6 

6 

0 

6 0 -6 

𝑋 𝑐 𝑌 𝑐 

𝑍 𝑐 

6 

0 

6 0 -6 

 𝑓 , … show at  

~10-4 contamination 

𝐼  𝑚 
𝜎 

Measurement with 𝑰 𝒎 𝝈 = 2.8 



𝑛 

Measurement strength 𝐼𝑚/𝜎 

𝑄
𝑚

/𝜎
 

𝑄
𝑚

/𝜎
 

𝑛 

Experiment Theory 

0 2 
𝐼𝑚/𝜎 

0 

4 

0 

4 

𝑌 𝑐 along 𝐼𝑚 = 0 

𝑋 𝑐 along 𝐼𝑚 = 0 

𝑋
𝑐
,

𝑌
𝑐
 

0 6 

0 

-1 

1 

Amplitude determined by one fit parameter: 𝜼 = 0.57 ± 0.02 

 

𝑰 𝒎 𝝈 = 0.82 

𝑋 𝑐 = sin
𝑄𝑚

𝜎

𝐼  𝑚
𝜎

+ 𝜃 exp −
𝐼 𝑚
𝜎

2
1 − 𝜂

𝜂
 

𝑌 𝑐 = cos
𝑄𝑚

𝜎

𝐼  𝑚
𝜎

+ 𝜃 exp −
𝐼 𝑚
𝜎

2
1 − 𝜂

𝜂
 

 

-6 

𝜼 ≥ 𝟎. 𝟓 → 3 body entanglement (qubit, signal, idler) 

𝑄𝑚/𝜎 

x- and y-component along 𝑰𝒎 = 𝟎 



Part 3A: Remote Entanglement via 

joint measurement 

(two mode squeezing) 



ALICE 

BOB 

bert 

arnie 

|𝐺  

|𝑔  

|𝑔  

|𝐺  

1/ 2 |𝐺𝑔 + |𝐸𝑒  

⊗ 

1/ 2 |𝐺𝑔 + |𝐸𝑒  

How can we do this with a superconducting system? 

Instead of qubits 

use coherent 

states 

How do we entangle 

flying qubits? 

How well can we transmit our flying qubit? 

How do we build 

efficient detector? 

quantum-limited 

amplification 

𝑅𝑥 𝜋/2 , 

𝑅𝑥 𝜋/2 , 

1/ 2 |𝐺𝐺 + |𝐸𝐸  

or 

1/ 2 |𝐺𝐺 − |𝐸𝐸  

or 

1/ 2 |𝐺𝐸 + |𝐸𝐺  

or 

1/ 2 |𝐺𝐸 − |𝐸𝐺  

measure 

 X 

(sign) 

measure 

Z 

(parity) 

Remote entanglement with flying qubits 



G g

ALICE 

BOB 

( )G E g+

bert 

G g

( )G E g+

( )

( )

G g E e

G g E e

+ ´

+

measure 

 X 

measure 

Z 

arnie 

|𝐺  

dispersive 

interaction 

|𝛼  

Yp/2 

|𝛼  

|𝐺  

𝐽𝑃𝐶 

Yp/2 

𝜌𝑓 = 𝑀𝜇𝜌𝑖𝑀𝜇
†
 

𝜇 = 𝐼𝑚, 𝑄𝑚  

JPC’s role is to provide 

C-NOTesque interaction 

~Parity info 

~phase info 

dispersive 

interaction 

1/ 2 |𝐺𝛼𝑔 + |𝐸𝛼𝑒  

⊗ 

1/ 2 |𝐺𝛼𝑔 + |𝐸𝛼𝑒  

 Remote entanglement with transmon and JPC 



For weak msmt: 

𝜕𝑥𝑓

𝜕𝑄𝑚
 
𝐼𝑚,𝑄𝑚=0

= η
𝐼𝑚
𝑔

− 𝐼𝑚
𝑒

2
 

• Now calculate the effect of some added classical noise on the density matrix 

• Efficiency 𝜂 = 𝜎𝑚
𝜎

2
 

• 𝑥𝑓, 𝑦𝑓 provide important information about efficiency 

Rotation (𝑸𝒎) 
Convergence to 

poles (𝑰𝒎) 
Information loss 

due to 𝜼 < 𝟏 

COWBOY HAT 

w/ curvy arrow 

𝑄𝑚 

𝐼𝑚 

𝐼𝑚 gives info on even vs. odd 

parity (a bit too much, actually) 

𝑄𝑚 gives sign info for odd 

parity states 

Even parity states: 

= |𝑔𝑔  

= |𝑒𝑒  

= |𝑔𝑒 − |𝑒𝑔  

= |𝑔𝑒 + 𝑖|𝑒𝑔  

= |𝑔𝑒 + |𝑒𝑔  

= |𝑔𝑒 − 𝑖|𝑒𝑔  

Odd parity states: 

Make note about which we keep…which are good ones 

The climax… this is my favorite part.. 

Back action of two qubit msmt creates entanglement 



𝑇1 = 30 𝜇s 𝑇2𝑅 = 15𝜇s 

 𝑓𝑄
𝑔𝑒

= 4.672 GHz 
𝜒

2𝜋 = 2.7 MHz  𝜅 2𝜋 = 6.7 MHz 

𝑇1 = 15𝜇s 𝑇2𝑅 = 15 𝜇s 

 𝑓𝑄
𝑔𝑒

= 6.074GHz 
𝜒

2𝜋 = 3.5 MHz  𝜅 2𝜋 = 4.1 MHz 

𝑓𝑝 = 16.58 GHz 

𝑓𝑟
𝑑 = 7.464 GHz 𝑓𝑟

𝑑 = 9.116 GHz 

50 Ω 

Two qubit readout schematic 
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G 1
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G 1

signal port idler port 

signal output 

Sig alone 

signal output 
Idler alone 

signal output 

both at  

once 

Since outputs are at same 

frequency 

They have well defined relative 

phase 

𝛺𝑃 = 𝜔𝑆 + 𝜔𝐼 

𝜙𝑃 = 0 

X 
recall our pump relationship 

Trans gain converts frequency 

coherently, e.q. 𝜔𝐼 → 𝜔𝑆 = 𝜔𝐼 − 𝛺𝑃 

How do coherent states at different frequencies interact? 

Silveri PRA 2015   
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Tomography with full 2-bit joint readout 

𝑄𝑚(Qidl) 

𝐼𝑚(𝑄𝑠𝑖𝑔) 

|𝑒𝑒  

|𝑔𝑔  

|𝑔𝑒  

|𝑒𝑔  

“Joint Readout” 

• From sign of 𝐼𝑚we learn 𝑍𝐼 = ±1 

• From sign of 𝑄𝑚 we learn 𝐼𝑍 = ±1 

• From these, we get 𝑍𝑍 for free 

• 9 pre-rotations gives us all two-qubit 

corelators, and each single qubit component 3x 

 

• Because we’re paranoid we also do single  

qubit readout and compare the answers 



Tomography 

(pre-rotation + 

 joint msmt) 

Variable 

strength 

entangling 

 measurement 

Trep = 20 µs 

Remote entanglement pulse sequence 

Qsig 

Csig 

Qidl 

Cidl / 

Rotate 

to |𝝍𝒊   
Prep|𝒈𝒈  

(post-selected)  

𝜙𝑠𝑖𝑔 = 0 always 

𝜙𝑖𝑑𝑙 = 0  𝜙𝑖𝑑𝑙 = 𝜋/2  𝜙𝑖𝑑𝑙 = 0  

(𝐼𝑚, 𝑄𝑚)  Trep = 6 µs 

𝑅𝑥 𝜋/2  

𝑅𝑥 𝜋/2  

𝑅𝑥 𝜋/2  

𝑅𝑥 𝜋/2  



Signal Alone 

𝑄𝑚 

𝐼𝑚 

|𝑒𝑠  

|𝑔𝑠  

Idler Alone 

𝑄𝑚 

𝐼𝑚 

|𝑒𝑖  

|𝑔𝑖  

Together 

𝑄𝑚 

𝐼𝑚 

|𝑒𝑒  

|𝑔𝑔  

|𝑔𝑒  

|𝑒𝑔  

“Joint Readout” 

|𝑒𝑠  |𝑔𝑠  

|𝑔𝑖  

|𝑒𝑖  

𝐼𝑚 encodes Z info 

𝑄𝑚 encodes Z info 

CHANGE ALL TO FUZZY BALLS 

|𝑒𝑒  

|𝑔𝑔  |𝑔𝑒  

|𝑒𝑔  

Simultaneous readout of two qubits 



Signal Alone 

𝑄𝑚 

𝐼𝑚 

|𝑒𝑠  

|𝑔𝑠  

Idler Alone 

𝑄𝑚 

𝐼𝑚 

Together 

𝐼𝑚 encodes Z info 

𝐼𝑚 encodes Z info 

𝑄𝑚 

(sign

) 

𝐼𝑚 

(parity) 

|𝑒𝑒  |𝑔𝑔  

|𝑔𝑒 , |𝑒𝑔  

“Entangling Readout” 

|𝑒𝑖  

|𝑔𝑖  

|𝑔𝑖  

|𝑒𝑖  

• 𝐼𝑚 is now blind to contents of 

|𝑔𝑒 , |𝑒𝑔  

• With/ appropriate initial state, 

outcome is Bell state w/ 50 % success 

rate 

• 𝑄𝑚 encodes phase of Bell state 

 

|𝑒𝑒  |𝑔𝑔  

|𝑔𝑒 , |𝑒𝑔  

How to perform “entangling readout” 



An aside on tomography and Bloch vectors 
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Note: All 15 numbers NOT linearly independent, and pure states sum to 3 
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Bell Basis 

| − 𝑌−𝑌  

I’ missing 
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Tomography of strong entangling msmt 

See Zalys-Gellar arxiv:1803.01275 (2018) 
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Tomography of weak entangling msmt 
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Signature of entangling operation 



Part 3B: Remote Entanglement via 

sequential measurement  

(bounce-bounce) 



Measurement based entanglement 

Can one use the entanglement 

between the qubit and the 

microwave field  to entangle two 

qubits ? Riste et al. , Nature 502 , 350-354 (2013) 

Deterministic entanglement with parity measurement and feedback 

Shankar et al. , Nature 504, 419–422 (2013)  

 Lehtas et al. , Phys. Rev. A 88, 023849 (2013) 

Stabilizing entanglement by dissipation engineering 

Y  |00  +  |11 

Roch et al. , Phys. Rev. Lett. 112, 170501 (2014)  , Entanglement in remote qubits  



Entangling remote qubits 

Kerckhoff, Bouten, Silberfarb & Mabuchi, Phys Rev A (2009)  

Roch et al. , Phys. Rev. Lett. 112, 170501 (2014)  



cQED Setup 

Roch et al. , Phys. Rev. Lett. 112, 170501 (2014)  



Pointer state encoding 

𝑄𝑚 

𝐼𝑚 

Before Q/C #1 

𝑄𝑚 

𝐼𝑚 

|𝑒  

|𝑔  

After Q/C #1 

π shift if Q1 |𝑒  
0 shift if Q1 |𝑔  

𝑄𝑚 

𝐼𝑚 

|𝑒𝑒  

|𝑔𝑔  

|𝑔𝑒  

|𝑒𝑔  

After Q/C #2- Parity Msmt 

π shift if Q2 |𝑒  
0 shift if Q2 |𝑔  



Remote Entanglement 

Roch et al. , Phys. Rev. Lett. 112, 170501 (2014)  



Outlook 

• Parametric amplifiers are near quantum-limited and enable rapid, single-shot, 

QND measurements required for quantum information 

 

• We can keep quantum light coherent in our systems long enough for basic 

manipulations– results: exotic measurement operators, remote qubit 

entanglement 

 

• They have several shortcomings which we are learning to eliminate via 

Hamiltonian engineering and more sophisticated (multiple) parametric 

couplings 


