Exploiting \mathcal{PT} -symmetry for all-optical applications: Soliton steering in \mathcal{PT} -symmetric non-Kerr media

A. Govindarajan

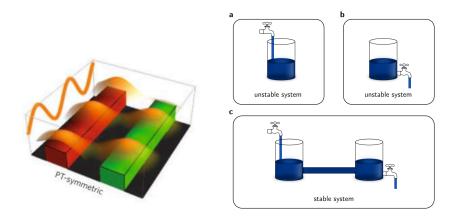
Centre for Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirappalli-620 024, India

Non-Hermitian Physics - PHHPQ XVIII, ICTS, Bengaluru

Collaborator: Prof. M. Lakshmanan

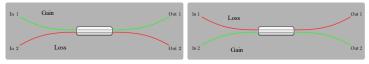
Professor of Eminence and DST-SERB Distinguished Fellow

• Why \mathcal{PT} -symmetric dimer?

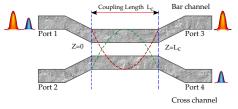

- Why \mathcal{PT} -symmetric dimer?
- Why soliton steering?

- Why \mathcal{PT} -symmetric dimer?
- Why soliton steering?
- O Theoretical model

- Why \mathcal{PT} -symmetric dimer?
- Why soliton steering?
- O Theoretical model
- **③** Role of \mathcal{PT} -symmetry in different sorts of couplers


- Why \mathcal{PT} -symmetric dimer?
- Why soliton steering?
- O Theoretical model
- **③** Role of \mathcal{PT} -symmetry in different sorts of couplers
- Conlusion

$\mathcal{PT}\text{-}\mathsf{Symmetric}\ \mathsf{Dimer}$



- Some intriguing applications like power oscillations¹ and non-reciprocal wave transport²
- What about steering dynamics?
- ¹S. Longhi, Phys. Rev. Lett. **103**, 2009.
- ²E. Rüter et al., Nat. Phys. 6, 2010.
- A. Govindarajan (CNLD, BDU)

Model under study and soliton steering

(a) Type I \mathcal{PT} -symmetric coupler (b) Type 2 \mathcal{PT} -symmetric coupler

(c) Steering dynamics of solitons in nonlinear directional couplers

Governing Equations:

• CNLSE in a normalized form^a ^b,

$$i\frac{\partial\Psi_{1}}{\partial\zeta} + \frac{1}{2}\frac{\partial^{2}\Psi_{1}}{\partial\tau^{2}} + |\Psi_{1}|^{2}\Psi_{1} - \gamma|\Psi_{1}|^{4}\Psi_{1} + \kappa\Psi_{2} = i\Gamma\Psi_{1}, \quad (\mathbf{I})$$

$$i\frac{\partial\Psi_{2}}{\partial\zeta} + \frac{1}{2}\frac{\partial^{2}\Psi_{2}}{\partial\tau^{2}} + |\Psi_{2}|^{2}\Psi_{2} - \gamma|\Psi_{2}|^{4}\Psi_{2} + \kappa\Psi_{1} = -i\Gamma\Psi_{2}. \quad (\mathbf{2})$$

^aG. Burlak and B. A. Malomed, Phys. Rev. E 88, 062904 (2013)
 ^bG. Burlak, S. Garcia-Paredes, and B. A. Malomed, Chaos 26, 113103 (2016).

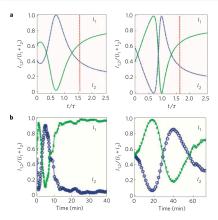
System Parameters:

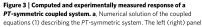
- Second and third terms respectively denote GVD and SPM
- $\gamma \approx$ quintic (non-Kerr) nonlinearity
- $\Gamma \approx$ the balanced gain and loss

Numerical Integration:

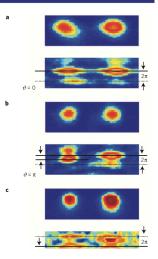
- Difficult to solve analytically (can't utilize methods like TMM, LA)
- Pseudospectral methods with $\kappa > \Gamma$ (unbroken \mathcal{PT} -symmetry)
- Initial conditions:

$$1(\zeta = 0, \tau) = q \operatorname{sech}(\tau), \quad \Psi_2(\zeta = 0, \tau) = 0,$$
(3)
Norms: $P(0) = \int_{-\infty}^{\infty} |\Psi_1(0, \tau)|^2 d\tau,$
 $P_j = \int_{-\infty}^{\infty} |\Psi_j(L_c, \tau)|^2 d\tau, \ (j = 1, 2).$ (4)


Transmittance & Extinction Ratio


Ψ

$$T_{j} = \frac{P_{j}}{P_{1} + P_{2}} , \quad (j = 1, 2).$$
Xratio = 10 log₁₀ $\left(\frac{P_{1}}{P_{2}}\right)$
(5)


Observation of \mathcal{PT} -symmetry

LETTERS

NATURE PHYSICS DOI: 10.1038/NR

Role of \mathcal{PT} -Symmetry

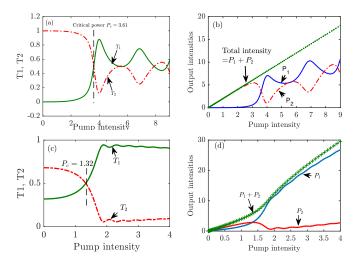


Figure 1: Steering dynamics of solitons in conventional couplers (top panels) and \mathcal{PT} -symmetric (type 1) couplers (bottom panels).

$\mathcal{PT}\text{-symmetry}$ and Xratio

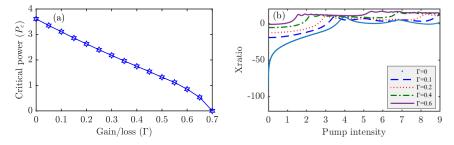


Figure 2: Relation between (a) the critical power and gain/loss parameter in (Γ, P_c) plane and (b) the extinction ratio as a function of pump intensity.

On 2π Coupler

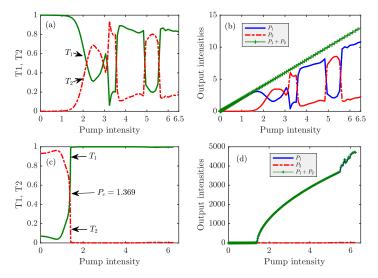


Figure 3: The same steering dynamics (as in the case of $\pi/2$ coupler) for 2π conventional couplers (top panels) and \mathcal{PT} -symmetric couplers (bottom panels).

A. Govindarajan (CNLD, BDU)

On 4π Coupler

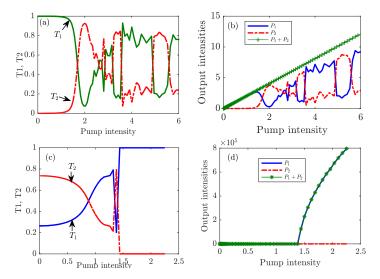


Figure 4: The steering dynamics for 4π conventional couplers (top panels) and \mathcal{PT} -symmetric couplers (bottom panels).

A. Govindarajan (CNLD, BDU)

Type 2 \mathcal{PT} -symmetric coupler

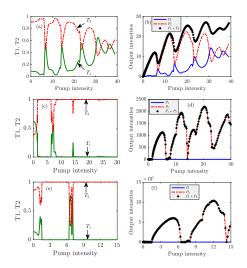


Figure 5: Transmittance and output intensities of solitons in the two channels of type 2 \mathcal{PT} -symmetric couplers for various coupling lengths. Top panel corresponds to $\pi/2$ coupler, center panel is for 2π and bottom panel refers to 4π coupler.

A. Govindarajan (CNLD, BDU)

Tabulation

Table 1: Critical power for various lengths of different types of $\mathcal{PT}\xspace$ -symmetric couplers.

Device length	Soliton input	Critical power for various types		
		Conventional	Туре І	Туре 2
			$\mathcal{PT} extsf{-coupler}$	$\mathcal{PT} extsf{-coupler}$
$\pi/2$		3.61	1.32	Incomplete
2π	sech(au)	2.17	1.36	1.10*
4π		1.69	0.85	6.50 [*]

* Indicates the first steering threshold intensity

Influence of Quintic Nonlinearity

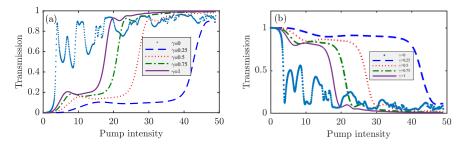


Figure 6: Influence of defocusing quintic nonlinearity on the steering dynamics of solitons in $\pi/2$ conventional couplers. Transmitted energy in (a) channel I and (b) channel 2 with the system parameters $\alpha = \Gamma = 0$.

In \mathcal{PT} -symmetric coupler

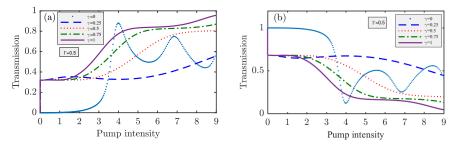


Figure 7: Plots showing the rapid variation of defocusing quintic nonlinearity on the transmittance of solitons in (a) the first channel and (b) second channel of $\pi/2$ \mathcal{PT} -symmetric couplers. Here we fixed the gain/loss parameter as $\Gamma = 0.5$.

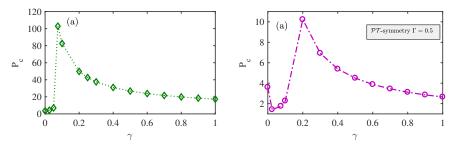
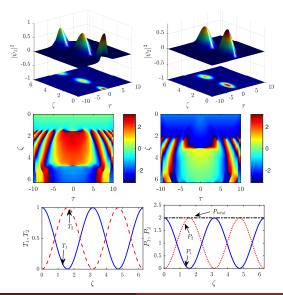
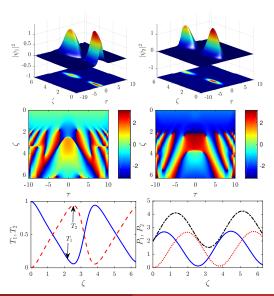
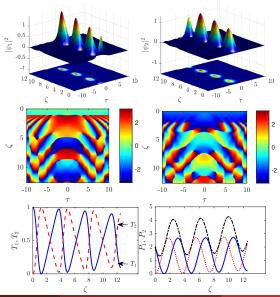



Figure 8: Relation between the critical power and defocusing nonlinearity in (γ, P_c) plane for (a) conventional and (b) \mathcal{PT} -symmetric couplers. The parameters are same as in Fig. 7.

Spatio-temporal dynamics in conventional coupler



 Energy route of the form In₁ → Out₃.


 Periodic transfer with constant (total) power

In Type I \mathcal{PT} coupler

- A new energy route of the form! *In*₁ → *Out*₄.
- Power of the soliton pulse gets amplified
- Coupling length is increased

In Type 2 \mathcal{PT} coupler

Concluding Remarks

- To wrap-up, we have numerically demonstrated the steering dynamics of optical (bright) solitons in \mathcal{PT} -symmetric couplers by taking into account the cubic-quintic nonlinearities.
- Have identified that the 'phenomenological' \mathcal{PT} -symmetric effect dramatically reduces the steering critical power with a sharp steering in the competing \mathcal{PT} -symmetric couplers, which was further corroborated by the evolution dynamics.
- Ramifications of such phenomenological \mathcal{PT} -symmetric driven couplers may open up new possibilities of enabling ultralow- power and ultrafast all-optical soliton switch in the light-wave communication systems.
- Also, the \mathcal{PT} -symmetric dimer can be exploited for other potential applictions such as all-optical logical gates and soliton compression, which are being currently investiged.

Thank You!

ANY QUERIES

