Quantum Many-Body Physics with Multimode Cavity QED

Synthetic cavity QED: Raman driving

Tunable coupling via Raman

- Real systems: loss ∂_tρ = −i[H, ρ] + κL[a, ρ] +
- To halance loss, counter-rotation

$$H_{\mathrm{eff}} = \dots \frac{MQ}{\Lambda} \sigma_n^{\mathrm{x}} (a + a^{\dagger})$$

[Dimer et al. PRA '07]

ICTS, July 2017

Synthetic cavity QED: Raman driving

Tunable coupling via Raman

- Real systems: loss $\partial_t \rho = -i[H, \rho] + \kappa \mathcal{L}[a, \rho] + \dots$
- To balance loss, counter-rotating:

[Dimer et al. PRA '07]

(Multimode) cavity QED

$$H = \sum_{k} \omega_{k} \mathbf{a}_{k}^{\dagger} \mathbf{a}_{k} + \sum_{n} \omega_{0} \sigma_{n}^{\dagger} \sigma_{n}^{-} + \sum_{n,k} \mathbf{g}_{k,n} (\mathbf{a}_{k}^{\dagger} + \mathbf{a}_{-k}) (\sigma_{n}^{+} + \sigma_{n}^{-})$$

$$\dot{\rho} = -i[H, \rho] + \kappa \sum_{k} \mathcal{L}[\mathbf{a}_{k}, \rho] + \gamma \sum_{i} \mathcal{L}[\sigma_{n}^{-}, \rho]$$

• Compare g (or $g\sqrt{N}$) vs:

(Multimode) cavity QED

$$H = \sum_{k} \omega_{k} \mathbf{a}_{k}^{\dagger} \mathbf{a}_{k} + \sum_{n} \omega_{0} \sigma_{n}^{+} \sigma_{n}^{-} + \sum_{n,k} g_{k,n} (\mathbf{a}_{k}^{\dagger} + \mathbf{a}_{-k}) (\sigma_{n}^{+} + \sigma_{n}^{-})$$

$$\dot{\rho} = -i[H, \rho] + \kappa \sum_{k} \mathcal{L}[\mathbf{a}_{k}, \rho] + \gamma \sum_{i} \mathcal{L}[\sigma_{n}^{-}, \rho]$$

- Compare g (or $g\sqrt{N}$) vs:
 - ightharpoonup κ, γ
 - $\triangleright \omega_k, \omega_0$

(Multimode) cavity QED

$$H = \sum_{k} \omega_{k} \mathbf{a}_{k}^{\dagger} \mathbf{a}_{k} + \sum_{n} \omega_{0} \sigma_{n}^{+} \sigma_{n}^{-} + \sum_{n,k} g_{k,n} (\mathbf{a}_{k}^{\dagger} + \mathbf{a}_{-k}) (\sigma_{n}^{+} + \sigma_{n}^{-})$$

$$\dot{\rho} = -i[H, \rho] + \kappa \sum_{k} \mathcal{L}[\mathbf{a}_{k}, \rho] + \gamma \sum_{i} \mathcal{L}[\sigma_{n}^{-}, \rho]$$

- Compare g (or $g\sqrt{N}$) vs:
 - ightharpoonup κ, γ
 - bandwidth
 - $ightharpoonup \omega_{k}, \omega_{0}$

Multimode cavities

Confocal cavity L = R:

• Modes $\Xi_{l,m}(\mathbf{r}) = H_l(x)H_m(y)$, l+m fixed parity

degenerate vs.non-degenerate

Multimode cavities

Confocal cavity L = R:

• Modes $\Xi_{l,m}(\mathbf{r}) = H_l(x)H_m(y)$, l+m fixed parity

 Tune between degenerate vs non-degenerate

- 1 Introduction: Tunable multimode Cavity QED
- Density wave polaritons
 - Superradiance transition
 - Supermode density wave polariton condensation
 - Degenerate limit
- Spin wave polaritons
 - Spin glass
 - Effects of loss
- Meissner-like effect

Mapping transverse pumping to Dicke model

• Atomic states: $\psi(\mathbf{r}) = \psi_{\Downarrow} + \psi_{\Uparrow} \cos(qx) \cos(qz)$

$$H_{ ext{eff}} = \underbrace{(\omega_{ ext{c}} - \omega_{ ext{P}})}_{-\Delta_{ ext{c}}} a^{\dagger} a + \sum_{ ext{n}} rac{\omega_{0}}{2} \sigma_{ ext{n}}^{ ext{z}} + \underbrace{rac{\Omega g_{0}}{\Delta}}_{g_{ ext{eff}}} \sigma_{ ext{n}}^{ ext{x}} (a + a^{\dagger})$$

Extra "feedback" term U, cavity loss rate

- \mathbb{Z}_2 symmetry
- Phase of light.
 - Atom checquerboard

Mapping transverse pumping to Dicke model

• Atomic states: $\psi(\mathbf{r}) = \psi_{\downarrow\downarrow} + \psi_{\uparrow\uparrow} \cos(qx) \cos(qz)$

$$H_{\text{eff}} = \underbrace{(\omega_c - \omega_P)}_{-\Delta_c} a^{\dagger} a + \sum_n \frac{\omega_0}{2} \sigma_n^z + \underbrace{\frac{\Omega g_0}{\Delta}}_{g_{\text{eff}}} \sigma_n^x (a + a^{\dagger}) \underbrace{-\frac{g_0^2}{4\Delta}}_{U} \sigma_n^z a^{\dagger} a$$

• Extra "feedback" term U, cavity loss κ

$$\mathbb{Z}_2$$
 symmetry

Mapping transverse pumping to Dicke model

• Atomic states: $\psi(\mathbf{r}) = \psi_{\downarrow\downarrow} + \psi_{\uparrow\uparrow} \cos(qx) \cos(qz)$

$$H_{ ext{eff}} = \underbrace{(\omega_{c} - \omega_{P})}_{-\Delta_{c}} a^{\dagger} a + \sum_{n} \frac{\omega_{0}}{2} \sigma_{n}^{z} + \underbrace{\frac{\Omega g_{0}}{\Delta}}_{g_{ ext{eff}}} \sigma_{n}^{x} (a + a^{\dagger}) \underbrace{-\frac{g_{0}^{2}}{4\Delta}}_{U} \sigma_{n}^{z} a^{\dagger} a$$

• Extra "feedback" term U, cavity loss κ

 \mathbb{Z}_2 symmetry

Phase of light.

Atom checquerboard

Changing *U*:

U = 0

U > 0

Changing *U*:

$$U = 0$$

$$U \propto rac{g_0^2}{\omega_c - \omega_a}$$

Changing *U*:

U = 0U < 0

U > 0

$$U \propto rac{g_0^2}{\omega_c - \omega_a}$$

Changing *U*:

U = 0U < 0

U > 0

$${\color{red} m{U}} \propto {\color{red} g_0^2 \over \omega_c - \omega_a}$$

Ritsch et al. PRL '02

Ritsch et al. PRL '02

Thermal atoms, momentum state

Ritsch et al. PRL '02

Thermal atoms, momentum state

BEC, momentum state

Baumann et al. Nature '10 (ETH) Kinder et al. PRL '15 (Hamburg)

Ritsch et al. PRL '02

Thermal atoms, momentum state

BEC, momentum state

Baumann et al. Nature '10 (ETH)

Kinder et al. PRL '15 (Hamburg)

BEC, hyperfine states

Baden et al. PRL '14 (Singapore)

Vuletic et al. PRL '03 (MIT)

• Single mode vs multimode

Momentum state vs hyperfine state

XY vs Ising

Thermal gas vs BEC vs disorder localised

• Single mode vs multimode

• Momentum state *vs* hyperfine state

XY vs Ising

Thermal gas vs BEC vs disorder localised

• Single mode vs multimode

• Momentum state *vs* hyperfine state

XY vs Ising

Thermal gas vs BEC vs disorder localised

• Single mode vs multimode

• Momentum state *vs* hyperfine state

XY vs Ising

• Thermal gas vs BEC vs disorder localised

Density wave polaritons

- Introduction: Tunable multimode Cavity QED
- 2 Density wave polaritons
 - Superradiance transition
 - Supermode density wave polariton condensation
 - Degenerate limit
- Spin wave polaritons
 - Spin glass
 - Effects of loss
- Meissner-like effect

Superradiance in multimode cavity: Even family

Superradiance in multimode cavity: Even family

Superradiance in multimode cavity: Even family

Superradiance in multimode cavity: Odd family

Dependence on cloud position

 Near-degeneracy of (1,0), (0,1) modes broken by matter-light coupling.

Superradiance in multimode cavity: Odd family

• Atomic time-of-flight — structure factor $\psi(\mathbf{r}) = \psi_{\Downarrow}(\mathbf{r}) + \psi_{\Uparrow}(\mathbf{r}) \cos(qy) \cos(qz)$

Dependence on cloud position

 Near-degeneracy of (1,0), (0,1) modes broken by matter-light coupling.

Superradiance in multimode cavity: Odd family

Dependence on cloud position

 Near-degeneracy of (1,0), (0,1) modes broken by matter-light coupling. • Atomic time-of-flight — structure factor $\psi(\mathbf{r}) = \psi_{\downarrow\downarrow}(\mathbf{r}) + \psi_{\uparrow\uparrow}(\mathbf{r}) \cos(qy) \cos(qz)$

Density wave polaritons

- Introduction: Tunable multimode Cavity QED
- Density wave polaritons
 - Superradiance transition
 - Supermode density wave polariton condensation
 - Degenerate limit
- Spin wave polaritons
 - Spin glass
 - Effects of loss
- Meissner-like effect

Degenerate cavity limit

• Multimode cavity — light follows atom cloud

Confocal cavity: mirror image

[Vaidya, Guo, Kroeze, Ballantine, Kollar, JK, Lev, in preparation]

- (ロ) (個) (注) (注) (注) (E) の(O)

Degenerate cavity limit

• Multimode cavity — light follows atom cloud

Confocal cavity: mirror image

Single mode cavity, Gaussian.

[Vaidya, Guo, Kroeze, Ballantine, Kollar, JK, Lev, in preparation]

Degenerate cavity limit

Multimode cavity — light follows atom cloud

Confocal cavity: mirror image

Single mode cavity, Gaussian.

[Vaidya, Guo, Kroeze, Ballantine, Kollar, JK, Lev, in preparation]

Measuring atom-image interaction

• Threshold measures $U(x_0, -x_0)$, cavity Green's function

ICTS, July 2017

Measuring atom-image interaction

• Threshold measures $U(x_0, -x_0)$, cavity Green's function

Measuring atom-image interaction

• Threshold measures $U(x_0, -x_0)$, cavity Green's function

• Small detuning ϵ , short-range part U(x, -x) = u(x, -x) + u(x, -x):

$$u(x,x') \propto rac{M^* \exp(-2M^*|x-x'|)}{\sqrt{1+((x+x')/4M^*)^2}}, \qquad M^* = \sqrt{rac{\Delta_0}{2\epsilon}}$$

15

Measuring atom-image interaction

• Threshold measures $U(x_0, -x_0)$, cavity Green's function

• Small detuning ϵ , short-range part U(x, -x) = u(x, -x) + u(x, -x):

$$u(x,x') \propto rac{M^* \exp(-2M^*|x-x'|)}{\sqrt{1+((x+x')/4M^*)^2}}, \qquad M^* = \sqrt{rac{\Delta_0}{2\epsilon}}$$

Controllable range cavity-mediated interaction

4□ > 4回 > 4 = > 4 = > = 900

Measuring atom-atom interaction

Two BECs,

ICTS, July 2017

Measuring atom-atom interaction

• Two BECs, vary x_1, x_2

Long-range part of interaction

• Atom-atom Green's function at $\epsilon \to 0$:

$$U(x,x') = \frac{1}{4} \left(\delta(x-x') + \delta(x+x') + \frac{1}{\pi} \cos(xx') \right)$$

Output light, saturate intensity

Long-range part of interaction

• Atom-atom Green's function at $\epsilon \to 0$:

$$U(x,x') = \frac{1}{4} \left(\delta(x-x') + \delta(x+x') + \frac{1}{\pi} \cos(xx') \right)$$

Output light, saturate intensity

ICTS, July 2017

Long-range part of interaction

• Atom-atom Green's function at $\epsilon \to 0$:

$$U(x,x') = \frac{1}{4} \left(\delta(x-x') + \delta(x+x') + \frac{1}{\pi} \cos(xx') \right)$$

Output light, saturate intensity

ICTS, July 2017

Spin wave polaritons

- Introduction: Tunable multimode Cavity QED
- Density wave polaritons
 - Superradiance transition
 - Supermode density wave polariton condensation
 - Degenerate limit
- Spin wave polaritons
 - Spin glass
 - Effects of loss
- Meissner-like effect

Disordered atoms

Multimode cavity, Hyperfine states,

$$H_{ ext{eff}} = -\sum_{\mu} \Delta_{\mu} a_{\mu}^{\dagger} a_{\mu} + \sum_{n} rac{\omega_{0}}{2} \sigma_{n}^{z} + rac{\Omega oldsymbol{g_{0}}}{\Delta} \sum_{\mu} oldsymbol{\Xi_{\mu}}(oldsymbol{r_{n}}) \sigma_{n}^{x} (a_{\mu} + a_{\mu}^{\dagger})$$

Effective XY/Ising spin glass

Disordered atoms

Multimode cavity, Hyperfine states,

$$H_{ ext{eff}} = -\sum_{\mu} \Delta_{\mu} a_{\mu}^{\dagger} a_{\mu} + \sum_{n} rac{\omega_{0}}{2} \sigma_{n}^{z} + rac{\Omega g_{0}}{\Delta} \sum_{\mu} \Xi_{\mu}(\mathbf{r}_{n}) \sigma_{n}^{x} (a_{\mu} + a_{\mu}^{\dagger})$$

• Random atom positions - quenched disorder

Effective XY/Ising spin glasss

Disordered atoms

Multimode cavity, Hyperfine states,

$$H_{ ext{eff}} = -\sum_{\mu} \Delta_{\mu} a_{\mu}^{\dagger} a_{\mu} + \sum_{n} rac{\omega_{0}}{2} \sigma_{n}^{z} + rac{\Omega g_{0}}{\Delta} \sum_{\mu} \Xi_{\mu}(\mathbf{r}_{n}) \sigma_{n}^{x} (a_{\mu} + a_{\mu}^{\dagger})$$

• Random atom positions - quenched disorder

Effective XY/Ising spin glass

$$H_{\mathrm{eff}} = \sum_{n,m} J_{n,m} \begin{cases} \sigma_{n}^{\mathsf{X}} \sigma_{m}^{\mathsf{X}} & \mathit{lsing} \\ \sigma_{n}^{+} \sigma_{m}^{-} & \mathit{XY} \end{cases}, \quad J_{nm} = \sum_{\mu} \frac{\Omega^{2} g_{0}^{2} \Xi_{\mu}(\mathbf{r}_{n}) \Xi_{\mu}(\mathbf{r}_{m})}{\Delta^{2} \Delta_{\mu}}$$

- Dicke Hamiltonian: $H = \omega a^\dagger a + \sum_i \omega_0 \sigma_i^+ \sigma_i^- + g \sigma_i^{\mathsf{X}} (a^\dagger + a)$
- Adding other loss terms

$$\partial_t \rho = -i[H, \rho] + \kappa \mathcal{L}[\hat{a}] + \sum_i \Gamma_{\downarrow} \mathcal{L}[\sigma_i^-] + \Gamma_{\phi} \mathcal{L}[\sigma_i^z]$$
$$\mathcal{L}[X] = X \rho X^{\dagger} - (X^{\dagger} X \rho + \rho X^{\dagger} X)/2$$

Mean field: confusing result

 \bullet \bullet \bullet \bullet \bullet break \bullet conservation.

[Dalla Torre et al., PRA (Rapid) 2016, Kirton & JK, PRL 2017]

ICTS, July 2017

Jonathan Keeling Multimode cavity QED

- Dicke Hamiltonian: $H = \omega a^\dagger a + \sum_i \omega_0 \sigma_i^+ \sigma_i^- + g \sigma_i^{x} (a^\dagger + a)$
- Adding other loss terms

$$\partial_t \rho = -i[H, \rho] + \kappa \mathcal{L}[\hat{a}] + \sum_i \Gamma_{\downarrow} \mathcal{L}[\sigma_i^-] + \Gamma_{\phi} \mathcal{L}[\sigma_i^z]$$
$$\mathcal{L}[X] = X \rho X^{\dagger} - (X^{\dagger} X \rho + \rho X^{\dagger} X)/2$$

- Mean field: confusing result:
 - Always: Normal state unstable for $g>g_c$

[Dalla Torre et al., PRA (Rapid) 2016, Kirton & JK, PRL 2017]

- Dicke Hamiltonian: $H = \omega a^\dagger a + \sum_i \omega_0 \sigma_i^+ \sigma_i^- + g \sigma_i^{x} (a^\dagger + a)$
- Adding other loss terms

$$\partial_t \rho = -i[H, \rho] + \kappa \mathcal{L}[\hat{a}] + \sum_i \Gamma_{\downarrow} \mathcal{L}[\sigma_i^-] + \Gamma_{\phi} \mathcal{L}[\sigma_i^z]$$
$$\mathcal{L}[X] = X \rho X^{\dagger} - (X^{\dagger} X \rho + \rho X^{\dagger} X)/2$$

- Mean field: confusing result:
 - Always: Normal state unstable for $g>g_c$
 - ▶ $\Gamma_{\phi} \neq 0, \Gamma_{\downarrow}$ no SR solution

[Dalla Torre et al., PRA (Rapid) 2016, Kirton & JK, PRL 2017]

- Dicke Hamiltonian: $H = \omega a^\dagger a + \sum_i \omega_0 \sigma_i^+ \sigma_i^- + g \sigma_i^{x} (a^\dagger + a)$
- Adding other loss terms

$$\partial_t \rho = -i[H, \rho] + \kappa \mathcal{L}[\hat{a}] + \sum_i \Gamma_{\downarrow} \mathcal{L}[\sigma_i^-] + \Gamma_{\phi} \mathcal{L}[\sigma_i^z]$$
$$\mathcal{L}[X] = X \rho X^{\dagger} - (X^{\dagger} X \rho + \rho X^{\dagger} X)/2$$

- Mean field: confusing result:
 - Always: Normal state unstable for $g>g_c$
 - ▶ $\Gamma_{\phi} \neq 0, \Gamma_{\downarrow}$ no SR solution
- Γ_{\downarrow} , Γ_{ϕ} break **S** conservation.

[Dalla Torre et al., PRA (Rapid) 2016, Kirton & JK, PRL 2017]

• Wigner function $W(\hat{a} = \hat{x} + i\hat{p})$

• Γ_{ϕ} only: MFT \rightarrow no SR

N = 30: no symmetry breaking

[Kirton & JK, PRL 2017]

• Wigner function $W(\hat{a} = \hat{x} + i\hat{p})$

• N = 30: no symmetry breaking

[Kirton & JK, PRL 2017]

• Wigner function $W(\hat{a} = \hat{x} + i\hat{p})$

 \bullet N = 30: no symmetry breaking

[Kirton & JK, PRL 2017]

Jonathan Keeling

• Wigner function $W(\hat{a} = \hat{x} + i\hat{p})$

 \bullet N = 30: no symmetry breaking

[Kirton & JK, PRL 2017]

ICTS, July 2017

• Wigner function $W(\hat{a} = \hat{x} + i\hat{p})$

• N = 30: no symmetry breaking

• Γ_{ϕ} only: MFT \rightarrow no SR

• Wigner function $W(\hat{a} = \hat{x} + i\hat{p})$

• N = 30: no symmetry breaking

- Γ_{ϕ} only: MFT \rightarrow no SR
- Asymptotic scaling

21

[Kirton & JK, PRL 2017]

• Wigner function $W(\hat{a} = \hat{x} + i\hat{p})$

• *N* = 30: no symmetry breaking

- Γ_{ϕ} only: MFT \rightarrow no SR
- Asymptotic scaling

Meissner-like effect

- Introduction: Tunable multimode Cavity QED
- Density wave polaritons
 - Superradiance transition
 - Supermode density wave polariton condensation
 - Degenerate limit
- Spin wave polaritons
 - Spin glass
 - Effects of loss
- Meissner-like effect

• [Spielman, PRA '09] scheme, hyperfine states A, B

$$H = \begin{pmatrix} \psi_A & \psi_B \end{pmatrix} \begin{pmatrix} E_A + (\nabla - Q\hat{x})^2 & \Omega/2 \\ \Omega/2 & E_B + (\nabla + Q\hat{x})^2 \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$$

- IM-

► Willy ! → Malcanar offs

• [Spielman, PRA '09] scheme, hyperfine states A, B

$$H = \begin{pmatrix} \psi_A & \psi_B \end{pmatrix} \begin{pmatrix} E_A + (\nabla - Q\hat{x})^2 & \Omega/2 \\ \Omega/2 & E_B + (\nabla + Q\hat{x})^2 \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$$

Ground state:
$$E_{-}(\mathbf{k}) \simeq \frac{(\mathbf{k} - \frac{(E_B - E_A)Q\hat{\mathbf{x}}}{\Omega})^2}{2m^*}$$

• [Spielman, PRA '09] scheme, hyperfine states A, B

$$H = egin{pmatrix} \psi_A & \psi_B \end{pmatrix} egin{pmatrix} E_A + (\nabla - Q\hat{x})^2 & \Omega/2 & \Omega/2 & E_B + (\nabla + Q\hat{x})^2 \end{pmatrix} egin{pmatrix} \psi_A & \psi_B \end{pmatrix}$$

- Feedback
 - ► Why?
 - ★ Meissner effect, Anderson-Higgs mechanism, confinement-deconfinement transition.

23

• [Spielman, PRA '09] scheme, hyperfine states A, B

$$H = \begin{pmatrix} \psi_A & \psi_B \end{pmatrix} \begin{pmatrix} E_A + (\nabla - Q\hat{x})^2 & \Omega/2 \\ \Omega/2 & E_B + (\nabla + Q\hat{x})^2 \end{pmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}$$

- Feedback
 - ► Why?
 - ★ Meissner effect, Anderson-Higgs mechanism, confinement-deconfinement transition.
 - ► How?
 - ★ Multimode cavity QED

Follow Spielman scheme

$$\begin{pmatrix} E_A + (\nabla - Q\hat{x})^2 & \Omega/2 \\ \Omega/2 & E_B + (\nabla + Q\hat{x})^2 \end{pmatrix}$$

• E_A , $E_B \propto |\varphi|^2$ from cavity Stark shift

• Ground state $E_{-}(\mathbf{k}) \propto (\mathbf{k} - Q\mathbf{k}|\varphi|^2)^2$

- > Multimode cQED ightarrow local matter-light coupling
- Variable profile synthetic gauge field?
- Reciprocity: matter affects field

Follow Spielman scheme

$$\begin{pmatrix} E_A + (\nabla - Q\hat{x})^2 & \Omega/2 \\ \Omega/2 & E_B + (\nabla + Q\hat{x})^2 \end{pmatrix}$$

• $E_A, E_B \propto |\varphi|^2$ from cavity Stark shift

Follow Spielman scheme

$$\begin{pmatrix} E_A + (\nabla - Q\hat{x})^2 & \Omega/2 \\ \Omega/2 & E_B + (\nabla + Q\hat{x})^2 \end{pmatrix}$$

- $E_A, E_B \propto |\varphi|^2$ from cavity Stark shift
- Ground state $E_{-}(\mathbf{k}) \propto (\mathbf{k} Q\hat{\mathbf{x}}|\varphi|^2)^2$

Follow Spielman scheme

$$\begin{pmatrix} E_A + (\nabla - Q\hat{x})^2 & \Omega/2 \\ \Omega/2 & E_B + (\nabla + Q\hat{x})^2 \end{pmatrix}$$

- $E_A, E_B \propto |\varphi|^2$ from cavity Stark shift
- Ground state $E_{-}(\mathbf{k}) \propto (\mathbf{k} Q\hat{\mathbf{x}}|\varphi|^2)^2$

- Multimode cQED → local matter-light coupling
- Variable profile synthetic gauge field?

Follow Spielman scheme

$$\begin{pmatrix} E_A + (\nabla - Q\hat{x})^2 & \Omega/2 \\ \Omega/2 & E_B + (\nabla + Q\hat{x})^2 \end{pmatrix}$$

- E_A , $E_B \propto |\varphi|^2$ from cavity Stark shift
- Ground state $E_{-}(\mathbf{k}) \propto (\mathbf{k} Q\hat{\mathbf{x}}|\varphi|^2)^2$

- ► Multimode cQED → local matter-light coupling
- Variable profile synthetic gauge field?
- Reciprocity: matter affects field

• Atoms:
$$i\partial_t \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = \begin{bmatrix} -\frac{\nabla^2}{2m} + \begin{pmatrix} -\mathcal{E}_\Delta |\varphi|^2 + i\frac{q}{m}\partial_x & \Omega/2 \\ \Omega/2 & \mathcal{E}_\Delta |\varphi|^2 - i\frac{q}{m}\partial_x \end{pmatrix} + \dots \end{bmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}.$$

[Ballantine et al. PRL 2017]

25

$$\bullet \ \, \text{Atoms:} \quad i\partial_t \begin{pmatrix} \psi_{\mathsf{A}} \\ \psi_{\mathsf{B}} \end{pmatrix} = \begin{bmatrix} -\frac{\nabla^2}{2m} + \begin{pmatrix} -\mathcal{E}_\Delta |\varphi|^2 + i\frac{q}{m}\partial_x & \Omega/2 \\ \Omega/2 & \mathcal{E}_\Delta |\varphi|^2 - i\frac{q}{m}\partial_x \end{pmatrix} + \ldots \end{bmatrix} \begin{pmatrix} \psi_{\mathsf{A}} \\ \psi_{\mathsf{B}} \end{pmatrix}.$$

• Light:
$$i\partial_t \varphi = \left[\frac{\delta}{2} \left(-I^2 \nabla^2 + \frac{r^2}{I^2}\right) - \Delta_0 - i\kappa - N\mathcal{E}_{\Delta}(|\psi_A|^2 - |\psi_B|^2)\right] \varphi$$

[Ballantine et al. PRL 2017]

25

• Atoms:
$$i\partial_t \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = \begin{bmatrix} -\frac{\nabla^2}{2m} + \begin{pmatrix} -\mathcal{E}_\Delta |\varphi|^2 + i\frac{q}{m}\partial_x & \frac{\Omega/2}{\mathcal{E}_\Delta |\varphi|^2 - i\frac{q}{m}\partial_x \end{pmatrix} + \dots \end{bmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}.$$

• Light:
$$i\partial_t \varphi = \left[\frac{\delta}{2} \left(-l^2 \nabla^2 + \frac{r^2}{l^2}\right) - \Delta_0 - i\kappa - N\mathcal{E}_{\Delta}(|\psi_A|^2 - |\psi_B|^2)\right] \varphi$$

• Low energy:
$$|\psi_{A}|^2 - |\psi_{B}|^2 = \frac{Q}{im\Omega} \left(\psi_{-}^* \partial_x \psi_{-} - \psi_{-} \partial_x \psi_{-}^* \right) + 2 \frac{\mathcal{E}_{\Delta}}{\Omega} |\psi_{-}|^2 |\varphi|^2$$

[Ballantine et al. PRL 2017]

• Atoms:
$$i\partial_t \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix} = \begin{bmatrix} -\frac{\nabla^2}{2m} + \begin{pmatrix} -\mathcal{E}_\Delta |\varphi|^2 + i\frac{q}{m}\partial_x & \frac{\Omega/2}{\mathcal{E}_\Delta |\varphi|^2 - i\frac{q}{m}\partial_x \end{pmatrix} + \dots \end{bmatrix} \begin{pmatrix} \psi_A \\ \psi_B \end{pmatrix}.$$

• Light:
$$i\partial_t \varphi = \left[\frac{\delta}{2} \left(-I^2 \nabla^2 + \frac{r^2}{I^2}\right) - \Delta_0 - i\kappa - N\mathcal{E}_{\Delta}(|\psi_{\mathbf{A}}|^2 - |\psi_{\mathbf{B}}|^2)\right] \varphi + f(\mathbf{r}).$$

$$\bullet \text{ Low energy: } |\psi_{\textit{A}}|^2 - |\psi_{\textit{B}}|^2 = \frac{Q}{\textit{im}\Omega} \left(\psi_{-}^* \partial_{\textit{X}} \psi_{-} - \psi_{-} \partial_{\textit{X}} \psi_{-}^* \right) + 2 \frac{\mathcal{E}_{\Delta}}{\Omega} |\psi_{-}|^2 |\varphi|^2$$

[Ballantine et al. PRL 2017]

(□▶ 4♂≯ 4 Ē Þ 4 Ē Þ Ē 쒼९(

25

- Consider $f(\mathbf{r})$ such that $|\varphi|^2 \propto v$.
- Without feedback ($\mathcal{E}_{\Lambda} = 0$) for field

[Ballantine et al. PRL 2017]

Atoms

Cavity light

- Consider $f(\mathbf{r})$ such that $|\varphi|^2 \propto v$.
- Without feedback ($\mathcal{E}_{\Lambda}=0$) for field
- With feedback

[Ballantine et al. PRL 2017]

Atoms

Cavity light

- Consider $f(\mathbf{r})$ such that $|\varphi|^2 \propto v$.
- Without feedback ($\mathcal{E}_{\Lambda}=0$) for field
- With feedback
 - Field expelled

[Ballantine et al. PRL 2017]

Atoms

Cavity light

- Consider $f(\mathbf{r})$ such that $|\varphi|^2 \propto y$.
- Without feedback ($\mathcal{E}_{\Delta} = 0$) for field
- With feedback
 - Field expelled
 - Cloud shrinks

[Ballantine et al. PRL 2017]

Atoms

Cavity light

Synthetic field

Acknowledgments

Experiment (Stanford): Benjamin Lev

Theory:

Ben Simons (Cambridge), Joe Bhaseen (KCL), James Mayoh (Southampton)

Sarang Gopalakrishnan (CUNY)
Surya Ganguli, Jordan Cotler (Stanford)
Peter Kirton, **Kyle Ballantine**, Laura Staffini (St Andrews)

EPSRC
Engineering and Physical Sciences

Research Council

Topological Protection and Non-Equilibrium States in Strongly Correlated Electron Systems

The Leverhulme Trust

←□ → ←□ → ← □ → ← □ → ← □

WE-Heraeus-Seminar: Condensates of Light Physikzentrum Bad Honnef, Germany 14th - 17th JANUARY 2018

Summary

• Supermode polariton condensation [Kollár et al. Nat. Comms. 2017]

• Variable range atom-atom interaction [Vaidya et al. in preparation]

• Open Dicke model, κ , Γ_{ϕ} , Γ_{\downarrow} [Kirton & JK, PRL 2017]

• Meissner like effect [Ballantine et al. PRL 2017]

ICTS, July 2017