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UNIFORM-IN-TIME ERROR ESTIMATES FOR THE
POSTPROCESSING GALERKIN METHOD APPLIED TO A DATA

ASSIMILATION ALGORITHM∗

CECILIA F. MONDAINI† AND EDRISS S. TITI‡

Abstract. We apply the postprocessing Galerkin method to a recently introduced continuous
data assimilation (downscaling) algorithm for obtaining a numerical approximation of the solution
of the two-dimensional Navier–Stokes equations corresponding to given measurements from a coarse
spatial mesh. Under suitable conditions on the relaxation (nudging) parameter, the resolution of the
coarse spatial mesh, and the resolution of the numerical scheme, we obtain uniform-in-time estimates
for the error between the numerical approximation given by the postprocessing Galerkin method and
the reference solution corresponding to the measurements. Our results are valid for a large class of
interpolant operators, including low Fourier modes and local averages over finite volume elements.
Notably, we use here the two-dimensional Navier–Stokes equations as a paradigm, but our results
apply equally to other evolution equations, such as the Boussinesq system of Bénard convection and
other oceanic and atmospheric circulation models.
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1. Introduction. The purpose of data assimilation is to combine a forecast
model with observational data in order to produce an accurate prediction of the future
state of a physical system. Several methods have been developed with this goal. One of
them is the nudging (or Newtonian relaxation) method, in which the original model
is modified by adding an extra term which has the purpose of relaxing the coarse
scales of the solution towards the spatially coarse observations (see, e.g., [4] and also
[6, 31, 32, 41, 42, 48, 53] for a connection with feedback control theory). Notably,
several authors have developed algorithms that combine the nudging approach with
other data assimilation methods with the aim of addressing some of its difficulties,
such as decreasing the effect of the relaxation term as the noise in the observations
increases (see, e.g., [1, 49, 56]).

However, we notice that most of the related works consider rather simplified
scenarios, e.g., in the context of finite-dimensional ordinary differential equations.
Here, we follow the nudging type approach introduced in [5], which consists of a
framework applicable to a large class of dissipative evolution equations, given as
infinite-dimensional partial differential equations, and various types of observables
from a finite coarse spatial mesh. Our goal is to consider a dimensionally reduced
version of the nudging equation represented by a numerical approximation given by
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the postprocessing Galerkin method (PPGM) [27, 28] and to obtain an analytical esti-
mate of the error between this numerical approximation and the full reference solution
of the original (infinite-dimensional) model corresponding to the measurements.

In [5], the authors consider, as a paradigm, a theoretical model given by the two-
dimensional (2D) incompressible Navier–Stokes equations and consider the simplifying
assumptions of continuous-in-time and error-free measurements. Here, we also con-
sider, for simplicity, the same setting. However, we remark that other works extended
this approach to more general situations: continuous-in-time data with stochastic
noise ([8]; see also [9, 39] for the context of the 3DVAR filtering method) and discrete-
in-time data with systematic errors ([23]; see also [34]). Moreover, several works con-
sidered different reference theoretical models [2, 14, 16, 17, 18, 36, 45]. Notably, the
works [14]–[18] dealt with the situation of incomplete data, i.e., observations of fewer
components of the state variables.

We now briefly provide the ideas behind the algorithm used in this paper. The
2D incompressible Navier–Stokes equations are given by

(1.1)
∂u
∂t
− ν∆u + (u · ∇)u +∇p = f , ∇ · u = 0, (x, t) ∈ Ω× [t0,∞) ⊂ R2 × R,

where u = (u1, u2)(x, t) and p = p(x, t) are the unknowns and represent the velocity
vector field and the pressure, respectively, while ν > 0 and f = f(x) are given and
denote the kinematic viscosity parameter and the density of volume body forces,
respectively. We assume that f is time-independent for simplicity, but similar results
are valid for a time-dependent f , whose L2(Ω)2-norm is uniformly bounded in time.

Our reference solution, whose exact value is unknown, is thus a solution u of (1.1).
The given measurements, corresponding to u, are observed from a coarse spatial mesh
and are assumed, as mentioned before, to be continuous in time and error-free. We
denote the operator used for interpolating these measurements in space by Ih, where h
denotes the resolution of the coarse spatial mesh of the observed measurements. Thus,
the interpolated measurements are represented by Ih(u). Since the initial condition
u(t0) for u is missing, one cannot compute u by integrating (1.1) directly. The idea
consists then in recovering the fine scales of u from the coarse scale measurements
Ih(u) through a downscaling algorithm.

In [5], this is done by seeking for a solution v = (v1, v2) of the following modified
system for (x, t) ∈ Ω× [t0,∞):

(1.2)
∂v
∂t
− ν∆v + (v · ∇)v +∇p̃ = f − β(Ih(v)− Ih(u)), ∇ · v = 0,

where the unknown p̃ is the pressure of the approximate flow v; ν > 0 and f are
the same viscosity parameter and forcing term from (1.1), respectively; and β is the
relaxation (nudging) parameter. The second term in the right-hand side of the first
equation in (1.2) is called the feedback control term, and its role is to force (or nudge)
the coarse spatial scales of the approximating solution v towards the coarse spatial
scales of the reference solution u, which is done by suitably tuning the relaxation
parameter β. In [5, Theorems 1 and 2], the authors prove that, provided β is large
enough and h is sufficiently small, both depending on given physical parameters,
the approximate solution v of (1.2), corresponding to an arbitrary initial data v0,
converges, exponentially in time, to the reference solution u of (1.1).

We rewrite system (1.2) in the following equivalent functional form:

(1.3)
dv
dt

+ νAv +B(v,v) = g − βPσ(Ih(v)− Ih(u)),
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where Pσ is the orthogonal projection of (L2(Ω))2 onto the phase space H associ-
ated to (1.2), which is endowed with the norm of (L2(Ω))2, | · |L2 ; A = −Pσ∆ is
the Stokes operator; B(v,v) = Pσ[(v · ∇)v] is a bilinear operator (see section 2 for
more detailed definitions); and g = Pσf . Since A is a positive and self-adjoint oper-
ator with compact inverse, the space H admits an orthonormal basis of eigenvectors
{wi}i∈N of A. Then, for each N ∈ N, we can consider the finite-dimensional space
HN = span{w1, . . . ,wN} = PNH, with PN denoting the orthogonal projection of
H onto HN . A numerical approximation of the solution v of (1.3) can be obtained
by computing the Galerkin approximation vN ∈ PNH, which satisfies the following
system of ordinary differential equations:

(1.4)
dvN
dt

+ νAvN + PNB(vN ,vN ) = PNg − βPNPσ(Ih(vN )− Ih(u)).

Notice that since vN ∈ PNH, the error committed in approximating v by vN
must be greater than or equal to the error associated with the best approximation of
v in PNH, PNv, i.e.,

|v − vN |L2 ≥ |v − PNv|L2 = |QNv|L2 ,

where QN = I − PN .
The PPGM provides us with an efficient way of obtaining a better approximation

of v than vN . The idea consists in complementing the finite-dimensional approxi-
mation vN ∈ PNH of v with a suitable part lying in the complement space QNH.
Adapting the algorithm introduced in [27, 28] to our situation, we can summarize it
in the following steps.

For obtaining an approximation of v at a certain time T > t0,
(i) integrate (1.4) in time, over the time interval [t0, T ], to obtain vN and compute

vN (T );
(ii) obtain qN satisfying νAqN = QN [g −B(vN (T ),vN (T ))];
(iii) compute the new approximation to v(T ), and hence to u(T ), given by vN (T ) +

qN .
The equation satisfied by qN in step (ii) is inspired by the definition of the

approximate inertial manifold introduced in [21], in which the authors obtain an
approximation of QNu, with u being a solution of (1.1), given by

(1.5) QNu ≈ Φ1(PNu) := (νA)−1QN [g −B(PNu, PNu)].

The graph of the mapping Φ1 : PNH → QNH is called an approximate inertial
manifold. This approximation is obtained by applying the projection QN to equation
(1.1) and, based on theoretical arguments, neglecting all lower-order terms, i.e., the
time derivative of QNu and the nonlinear terms involving QNu, in comparison to the
remaining terms. Since our idea is to ultimately obtain an approximation of u, it is
natural to consider as an approximation of QNv the same type of approximation used
for QNu in (1.5), in which PNu is replaced by vN , given that this is the approximation
of PNu that we consider.

Our results show that the PPGM yields a better convergence rate than the stan-
dard Galerkin method, as also obtained in [28] (see also [43] for an explanation on
why the PPGM is actually the correct leading order approximating scheme and not
the standard Galerkin method as commonly believed). However, an important differ-
ence in our results is that our error estimate is uniform in time, while in [27, 28] it
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grows exponentially in time. This remarkable difference is due to the fact that sys-
tem (1.4) has a stabilizing mechanism imposed by the feedback control term, which
kills the instabilities in the large (coarse) spatial scales caused by the nonlinear term.
Consequently, as proved in [5, Theorems 1 and 2], under suitable conditions on the
parameters β and h, the solutions of (1.2), corresponding to arbitrary initial data, all
converge to the same reference solution u. This shows that, with appropriate condi-
tions on β and h, system (1.2) is globally asymptotically stable. Hence, the Galerkin
approximation vN of v converges to v uniformly in time, as N tends to infinity.
Such stabilizing effect was also observed by the numerical computations performed in
[3, 30], which also showed that the required conditions on the parameters β and h are
remarkably less strict than suggested by the analytical results in [5].

It is worth mentioning that the introduction of the PPGM was preceded by an-
other spectral method also derived from the standard Galerkin approach and inspired
by the idea of approximate inertial manifold, known as the nonlinear Galerkin method
(see, e.g., [13, 19, 35, 44] and references therein). This latter method presents a sim-
ilar convergence rate to the PPGM, but it has the disadvantage of being a lot more
computationally expensive and thus, in practice, less efficient (cf. [27, 28, 33, 43]).

This paper is organized as follows. In section 2, we provide a summary of the nec-
essary background concerning the 2D incompressible Navier–Stokes equations. Sec-
tion 3 contains the main results of this paper. The purpose is to show a uniform-in-
time estimate of the error committed when applying the PPGM described in (i)–(iii)
above to system (1.2) in order to obtain an approximation of the reference solution
u satisfying (1.1) (Theorems 3.8 and 3.12). We divide the presentation into two sub-
sections: subsection 3.1 deals with the case of an interpolant operator given by a low
Fourier modes projector, while subsection 3.2 deals with a more general class of inter-
polant operators satisfying suitable properties, for which an example is given by the
operator defined as local averages over finite volume elements, in the case of periodic
boundary conditions. Finally, in the Appendix, we show for completeness that such
an example of interpolant operator verifies the properties considered in subsection 3.2.

Readers seeking more elaborate details of the proofs given here may also want to
consult the arXiv version of this paper [47].

2. Preliminaries. In this section, we briefly recall the necessary background on
the 2D incompressible Navier–Stokes equations (1.1). For further details, see, e.g.,
[12, 20, 50, 52].

Consider a spatial domain Ω ⊂ R2 and a time interval [t0,∞) ⊂ R. We assume, for
simplicity, that the forcing f is time-independent and lies in the space L2(Ω)2. We re-
mark, however, that similar results are also valid in the case f ∈ L∞([t0,∞);L2(Ω)2).

We consider two types of boundary conditions for system (1.1): periodic or no-
slip Dirichlet. In the periodic case, we consider the fundamental domain Ω = (0, L)×
(0, L). Moreover, we assume that the velocity field and the pressure are periodic with
period L in each spatial direction xi, i = 1, 2, and that f has zero spatial average, i.e.,∫

Ω
f(x)dx = 0.

In the no-slip Dirichlet case, we consider Ω as a bounded subset of R2 with sufficiently
smooth boundary ∂Ω and assume that u = 0 on ∂Ω.

The definition of the space of test functions, denoted here by V, depends on the
type of boundary condition being considered. In the periodic case, V is defined as
the set of all L-periodic trigonometric polynomials from R2 to R2 that are divergence
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free and have zero spatial average. In the no-slip Dirichlet case, we define V as the
family of C∞ vector fields with values in R2 that are divergence free and compactly
supported in Ω.

We denote by H the closure of V with respect to the norm in L2(Ω)2 and by V
the closure of V under the H1(Ω)2 Sobolev norm. Following the notation from [20],
we denote the inner products in H and V by (·, ·)L2 and ((·, ·))H1 , respectively. They
are defined as

(u,v)L2 =
∫

Ω
u(x) · v(x)dx, ∀u,v ∈ H,

((u,v))H1 =
∫

Ω

2∑
i=1

∂u
∂xi
· ∂v
∂xi

dx, ∀u,v ∈ V,

and the associated norms are given by |u|L2 = (u,u)1/2
L2 , ‖u‖H1 = ((u,u))1/2

H1 .
The fact that ‖ · ‖H1 defines a norm in V is justified via the Poincaré inequality,

given by

(2.1) λ
1/2
1 |u|L2 ≤ ‖u‖H1 ∀u ∈ V,

where λ1 is the first eigenvalue of the Stokes operator, defined in (2.3) below.
Given R > 0, we denote by BH(R) and BV (R) the closed balls centered at 0 with

radius R, with respect to the norms in H and V , respectively.
We also consider the dual spaces of H and V , denoted by H ′ and V ′, respectively.

After identifying H with its dual, we obtain V ⊆ H ⊆ V ′, with the injections being
continuous and compact and each space dense in the following one. Moreover, we
denote the duality product between V and V ′ by 〈·, ·〉V ′,V .

Let Pσ be the Leray–Helmholtz projector, i.e., the orthogonal projection of L2(Ω)2

onto H. Applying Pσ to system (1.1), we obtain its following equivalent functional
formulation:

(2.2)
du
dt

+ νAu +B(u,u) = g in V ′,

where g = Pσf ∈ H, B : V ×V → V ′ is the bilinear operator defined as the continuous
extension of the operator given by

B(u,v) = Pσ((u · ∇)v) ∀u,v ∈ V,

and A : D(A) ⊆ V → V ′ is the Stokes operator, defined as the continuous extension of

(2.3) Au = −Pσ∆u ∀u ∈ V,

with the domain of A, D(A), given by V ∩H2(Ω)2.
The Stokes operator is a positive and self-adjoint operator with compact inverse.

Therefore, it admits an orthonormal basis of eigenvectors {wm}m∈N associated with a
nondecreasing sequence of positive eigenvalues {λm}m∈N, with λm →∞ as m→∞.

We also consider, for each N ∈ N, the low modes projector PN , which is defined as
the orthogonal projector of H onto the subspace HN = span{w1, . . . ,wN}. Moreover,
we denote QN = I − PN .

The bilinear operator B satisfies the following property:

(2.4) 〈B(u1,u2),u3〉V ′,V = −〈B(u1,u3),u2〉V ′,V ∀u1,u2,u3 ∈ V.
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Recall the Brézis–Gallouet inequality [10, 22], given by

(2.5) ‖u‖L∞ ≤ cB‖u‖H1

[
1 + log

(
|Au|L2

λ
1/2
1 ‖u‖H1

)]1/2

∀u ∈ D(A),

where cB is a nondimensional (scale invariant) constant and ‖ · ‖L∞ denotes the usual
norm in L∞(Ω)2.

We now recall some inequalities satisfied by the bilinear term B. Using the Brézis–
Gallouet inequality (2.5), we obtain that, for every u1 ∈ D(A) with u1 6= 0 and every
u2 ∈ V and u3 ∈ H,

(2.6) |(B(u1,u2),u3)L2 | ≤ cB‖u1‖H1‖u2‖H1 |u3|L2

[
1 + log

(
|Au1|L2

λ
1/2
1 ‖u1‖H1

)]1/2

.

We also recall the following logarithmic inequalities from [54].
For every u1,u2,u3 ∈ V , with u3 6= 0,

(2.7) |(B(u1,u2),u3)L2 | ≤ cT ‖u1‖H1‖u2‖H1 |u3|L2

[
1 + log

(
‖u3‖H1

λ
1/2
1 |u3|L2

)]1/2

.

For every u1 ∈ V and every u2,u3 ∈ D(A), with u2 6= 0,
(2.8)

|(B(u1,u2), Au3)L2 | ≤ cT ‖u1‖H1‖u2‖H1 |Au3|L2

[
1 + log

(
|Au2|L2

λ
1/2
1 ‖u2‖H1

)]1/2

.

Also, for every u1,u2 ∈ V , we have

B(u1,u1)−B(u2,u2) = B

(
u1 − u2,

u1 + u2

2

)
+B

(
u1 + u2

2
,u1 − u2

)
.

Then it follows from the result in [12, Proposition 6.1] that, for every α > 1/2
and u1,u2 ∈ V ,

(2.9) |A−α(B(u1,u1)−B(u2,u2))| ≤ cα|Ω|α−
1
2 ‖u1 + u2‖H1 |u1 − u2|L2 ,

where |Ω| denotes the area of Ω and cα is a positive constant depending on α through
the Sobolev constants from the Sobolev embeddings of H2α(R2) into L∞(R2) and of
Hs(R2) into Lq(R2), with 1 > s > (2 − 2α), and q = 2/(1 − s). Thus, cα → ∞ as
α→ 1

2
+.

In this paper, we denote by c a positive absolute constant or a nondimensional
positive constant depending on Ω, whose value may change from line to line, while the
capital letter C denotes a dimensional constant, depending on the physical parameters,
such as ν, λ1 and |g|L2 .

Finally, we recall some results concerning uniform bounds, with respect to the
norms in H and V , for the solutions of (1.1). It is well known that, given u0 ∈ H, there
exists a unique weak solution of (1.1) satisfying u(t0) = u0 and u ∈ C([t0,∞);H) ∩
L2

loc(t0,∞;V ), with du/dt ∈ L2
loc(t0,∞;V ′). From now on, whenever we refer to a

solution of (1.1), we mean a solution in this sense.
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The proof of the next proposition can be found in any of the references listed
above [12, 20, 50, 52]. Recall the definition of the Grashof number, which is the
nondimensional quantity given by

G =
|g|L2

ν2λ1
.

Proposition 2.1. Let u0 ∈ H, and let u be a solution of (1.1) satisfying u(t0) =
u0. Then there exists T = T (ν, λ1, |g|L2 , |u0|L2) ≥ t0 such that the following hold:

(i) In the case of periodic boundary conditions,

(2.10) |u(t)|L2 ≤ 2νG, ‖u(t)‖H1 ≤ 2νλ1/2
1 G, ∀t ≥ T.

(ii) In the case of no-slip boundary conditions,

(2.11) |u(t)|L2 ≤ 2νG, ‖u(t)‖H1 ≤ cνλ1/2
1 G e

G4
2 , ∀t ≥ T.

In order to simplify the notation, we write the uniform bounds in the H and V
norms from Proposition 2.1 by using constants M0 and M1, respectively, i.e.,

(2.12) |u(t)|L2 ≤M0, ‖u(t)‖H1 ≤M1, ∀t ≥ T.

Notice that the value of M1 changes according to the boundary condition being con-
sidered.

The following theorem follows immediately from the result proved in [21, Theorem
1.1] (see also [55]).

Theorem 2.2. Let u0 ∈ H, and let u be a solution of (1.1) satisfying u(t0) = u0.
Then there exists T = T (ν, λ1, |g|L2 , |u0|L2) ≥ t0 such that

(2.13) |QNu(t)|L2 ≤ C0
LN
λN+1

, ∀t ≥ T, ∀N ∈ N

(2.14) ‖QNu(t)‖H1 ≤ C1
LN

λ
1/2
N+1

, ∀t ≥ T, ∀N ∈ N

where

(2.15) LN =
[
1 + log

(
λN
λ1

)]1/2

(2.16) C0 = c

(
|QNg|L2 +M2

1

ν

)

(2.17) C1 = c

(
|QNg|L2 +M2

1

ν
+
M0M

2
1

ν2

)
and M0 and M1 are as given in (2.12).

The next theorem was proved in [21, Theorem 2.1], and it provides uniform-in-
time estimates, in the H and V norms, for the distance between a solution u of (1.1)
and its vertical projection on the graph of the mapping Φ1, given in (1.5).
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Theorem 2.3. Let u0 ∈ H and let u be a solution of (1.1) satisfying u(t0) = u0.
Then there exists T = T (ν, λ1, |g|L2 , |u0|L2) ≥ t0 such that

(2.18) |Φ1(PNu(t))−QNu(t)|L2 ≤ C LN

λ
3/2
N+1

, ∀t ≥ T, ∀N ∈ N,

and

(2.19) ‖Φ1(PNu(t))−QNu(t)‖H1 ≤ C LN
λN+1

, ∀t ≥ T, ∀N ∈ N,

where C is a constant depending on ν, λ1 and |g|L2 but independent of N .

Remark 2.4. In the results of section 3, we will assume that the reference solution
of (1.1) has evolved long enough so that the uniform bounds from Proposition 2.1,
Theorem 2.2, and Theorem 2.3 are always valid; i.e., for simplicity, we assume that
T = t0. Notice that, in particular, the uniform bounds from Proposition 2.1, Theorem
2.2, and Theorem 2.3 are valid for any trajectory u = u(t) lying in the global attractor
of (1.1) for every t ∈ R.

3. Main results. The purpose of this section is to establish analytical estimates
of the error that occurs when using the PPGM applied to the data assimilation al-
gorithm (1.2) in order to obtain an approximation of the reference solution u, which
satisfies the 2D Navier–Stokes equations (1.1). This means we want to establish an
estimate of the difference [(vN + Φ1(vN ))− u] in some appropriate norm, where vN
denotes the Galerkin approximation of v, the solution of (1.2), in PNH. This is done
here for the norms in the spaces H and V .

We start by giving some of the main ideas behind our results. From now on,
we reserve the letter N ∈ N for the number of modes in the Galerkin approximation
of (1.2), and we adopt the following notation for the low and high modes of the
reference solution u: p = PNu and q = QNu, respectively. Moreover, we assume
that u satisfies the bounds from (2.12)–(2.19) for every t ≥ t0.

First, we rewrite the error in implementing the PPGM as

(3.1) (vN + Φ1(vN ))− u = (vN − p) + (Φ1(p)− q) + (Φ1(vN )− Φ1(p)).

Theorem 2.3 provides estimates, in the L2 and H1 norms, of the second term in
the right-hand side of (3.1). Moreover, it is not difficult to see that the restriction
of Φ1 to the set PNBV (R), for any R > 0, is a Lipschitz continuous mapping with
respect to the norms in both H and V (see, e.g., [13, Appendix]). More specifically,
we have

(3.2) |Φ1(p1)− Φ1(p2)|L2 ≤ l|p1 − p2|L2 ∀p1,p2 ∈ PNBV (R)

and

(3.3) ‖Φ1(p1)− Φ1(p2)‖H1 ≤ l‖p1 − p2‖H1 ∀p1,p2 ∈ PNBV (R),

where l = Cλ
−1/4
N+1 , with C being a constant depending on ν, λ1 and R.

It follows from Propositions 3.2 and 3.9 below that, given a solution u of (1.1)
satisfying (2.12)–(2.14), for every t ≥ t0, and given v0 ∈ BV (M1), under suitable
conditions on the parameters β and h, the solution vN of (1.2), with vN (t0) = PNv0,
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satisfies vN (t) ∈ BV (3M1) for all t ≥ t0. Thus, using (2.18), (2.19), and (3.2)–(3.3)
with R = 3M1, we obtain from (3.1) that, for every t ≥ t0,

(3.4) |(vN (t) + Φ1(vN (t)))− u(t)|L2 ≤ (1 + l)|vN (t)− p(t)|L2 + C
LN

λ
3/2
N+1

and

(3.5) ‖(vN (t) + Φ1(vN (t)))− u(t)‖H1 ≤ (1 + l)‖vN (t)− p(t)‖H1 + C
LN
λN+1

.

Moreover, we also have

(3.6) ‖vN (t)− p(t)‖H1 ≤ λ1/2
N |vN (t)− p(t)|L2 .

Thus, using also (3.6), we see from (3.4) and (3.5) that it suffices to obtain an
estimate of |vN (t)− p(t)|L2 in order to achieve our goal.

Applying PN to (2.2), we see that p = PNu satisfies the equation

(3.7)
dp
dt

+ νAp + PNB(p,p)− PNg = −PNG,

where

(3.8) G(t) = B(u(t),u(t))−B(p(t),p(t))
= B(p(t),q(t)) +B(q(t),p(t)) +B(q(t),q(t)).

Now, denoting w = vN −p and taking the difference between (3.7) and (1.4), we
obtain that

(3.9)
dw
dt

+ νAw + βw + PN [B(vN ,vN )−B(p,p)] = PNG− βPNPσ[Ih(w)−w]

+ βPNPσIh(q).

The terms νAw and βw represent the dissipative terms in (3.9), which act on stabi-
lizing w. The term Aw has a stronger effect than βw on the high modes of w for
small values of ν, while βw has a stronger effect than νAw on the low modes of w.

The estimate of |w|L2 follows by applying Duhamel’s (variation of constants)
formula to (3.9) and by using the smoothing effect of the operator e−(s−t)(νAPN+βPN ),
with the finite-dimensionality of the operator PN also playing a crucial role. Moreover,
the estimates make use of suitable properties of the interpolant operator Ih.

We consider two types of interpolant operators Ih, treated in two different sec-
tions. In the first one, section 3.1, we consider Ih as a low Fourier modes projector,
i.e., Ih = PK , K ∈ N. In this case, we notice that we can commute PN with Ih = PK ,
and thus the last term on the right-hand side of (3.9) is zero, which simplifies the
analysis.

In section 3.2, we consider a more general class of interpolant operators, satisfying
suitable properties (see properties (P1)–(P3) in section 3.2, below), which are, in
particular, satisfied by the example of a low Fourier modes projector considered in
section 3.1. Another particular example of such class of interpolant operators is given
by local averages over finite volume elements, which is illustrated in the Appendix in
the case of periodic boundary conditions. In this latter example, this approach can
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be viewed as a hybrid method in the sense that observations are acquired through a
finite elements method, while the approximate model is numerically solved through a
spectral method, the PPGM.

The proof of the estimate for |vN − p|L2 , in both cases, follows similar ideas to
the proof given in [28, Theorem 2], where, for a given initial condition u(t0) = u0, an
estimate was obtained for |uN − p|L2 , with uN being the Galerkin approximation of
u satisfying uN (t0) = PNu0. We remark, however, that an advantage of our result is
that the estimate for |vN −p|L2 is uniform in time (see Theorems 3.5 and 3.10), while
the estimate for |uN−p|L2 given in [28, Theorem 2] grows exponentially in time. This
important difference is justified by the presence of the additional dissipative term βw
in (3.9), which helps to stabilize the large scales of w when the parameter β is suitably
chosen. More specifically, β needs to be chosen large enough in order to stabilize the
large spatial scales of w but not too large so as not to destabilize the small spatial
scales of w as well, which are dissipated by νAw, for small values of ν. For this
reason, we need, roughly, β ≤ cν/h2.

Using the previous ideas, we prove in Theorems 3.5 and 3.10 below that, for
sufficiently large t,

(3.10) |vN (t)− p(t)|L2 ≤ O(L4
Nλ
−3/2
N+1 )

in the case of an interpolant operator given by a low Fourier modes projector and

(3.11) |vN (t)− p(t)|L2 ≤ O(LNλ
−5/4
N+1 )

in the general interpolant operator case.
Thus, from (3.4) and (3.5), it follows that, for t large enough,

(3.12) |(vN (t) + Φ1(vN (t)))− u(t)|L2 ≤ O(L4
Nλ
−3/2
N+1 )

and

(3.13) ‖(vN (t) + Φ1(vN (t)))− u(t)‖H1 ≤ O(L4
Nλ
−1
N+1)

in the case of an interpolant operator given by a low Fourier modes projector (cf.
Theorem 3.8) and

(3.14) |(vN (t) + Φ1(vN (t)))− u(t)|L2 ≤ O(LNλ
−5/4
N+1 )

and

(3.15) ‖(vN (t) + Φ1(vN (t)))− u(t)‖H1 ≤ O(LNλ
−3/4
N+1 )

in the general interpolant operator case (cf. Theorem 3.12 below).
On the other hand, from (2.13), (2.14), (3.6), (3.10), and (3.11), we obtain that

the error between the Galerkin approximation vN of v and the reference solution u
satisfies, for t large enough,

(3.16) |vN (t)− u(t)|L2 ≤ |vN (t)− p(t)|L2 + |q(t)|L2 ≤ O(LNλ−1
N+1)

(3.17) ‖vN (t)− u(t)‖H1 ≤ ‖vN (t)− p(t)‖H1 + ‖q(t)‖H1 ≤ O(LNλ
−1/2
N+1 )

in both cases of interpolant operators (cf. Corollaries 3.7 and 3.11 below).
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Comparing (3.12) and (3.14) with (3.16) and (3.13) and (3.15) with (3.17), we
see that, as mentioned in section 1, the PPGM indeed yields a better convergence
rate than the standard Galerkin method. Notably, this improved rate is achieved
due to essentially three facts: first, by using the Lipschitz property of Φ1 (cf. (3.2),
(3.3)); second, by exploring the fact that the error in the low modes, |vN − p|L2 , is
much smaller than the error committed in the high modes in the Galerkin approx-
imation, |q|L2 (cf. (3.10), (3.11), and (2.13)); and, finally, by complementing the
finite-dimensional approximation vN ∈ PNH with a suitable approximation of the
high modes, given by Φ1(vN ) ∈ QNH, which, due to the previous two facts, yields a
better approximation to q than 0.

Remark 3.1. We notice that the convergence rates with respect to N in (3.14)–
(3.15), obtained for the error committed when implementing the PPGM to (1.2) in
the general interpolant operator case, is not as good as the rate in (3.12)–(3.13) for
the case of an interpolant operator given by a low Fourier modes projector. In general
terms, as pointed out before, this is due to the fact that the former case concerns a
hybrid method, where the observations are acquired through, e.g., a finite elements
method, while the approximate model (1.2) is discretized in space through a spectral
method, the PPGM. On the mathematical side, this is represented by the possible
lack of commutativity between the operators PσIh and A, an issue that does not
occur in the case of an interpolant operator given by a low Fourier modes projector
and which introduces additional error to the estimates.

3.1. The case of an interpolant operator given by a low Fourier modes
projector. We consider an interpolant operator given by the orthogonal projection
on low modes of the Fourier domain, i.e., Ih = PK for some K ∈ N. The data
assimilation algorithm (1.3) is given in this particular case by

(3.18)
dv
dt

+ νAv +B(v,v) = g − βPK(v − u).

For every N ∈ N with N ≥ K, we consider the Galerkin approximation system
of (3.18) in the space PNH, given by

(3.19)
dvN
dt

+ νAvN + PNB(vN ,vN ) = PNg − βPK(vN − p),

with the initial condition vN (t0) = PNv0, where v0 is chosen in a suitable space but
arbitrarily. We assume either periodic or no-slip Dirichlet boundary conditions.

The condition N ≥ K is assumed here for simplicity purposes. Nevertheless, it is
a natural assumption since one would expect to have the resolution of the numerical
method to be greater than or equal to the resolution associated to the observations.

The following result provides a first uniform in time bound of the finite-dimension-
al difference vN − p in the H1 norm under suitable conditions on β and K. Since
we assume that the reference solution u satisfies the bounds from (2.12)–(2.14), for
every t ≥ t0, we also have in particular that p is uniformly bounded in V . Thus,
as a consequence of the following proposition, we obtain that vN is also uniformly
bounded in V , provided β and K satisfy the appropriate conditions.

In the statement below, we consider an auxiliary parameter m ∈ N that is used
for one of the lower bounds needed for β. More specifically, we choose β such that,
in particular, β ≥ νλm. This auxiliary parameter plays a more important role in the
proof of Theorem 3.5 below, but we also use it here in order to be consistent.
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Proposition 3.2. Let u be a solution of (1.1) satisfying (2.12)–(2.14) for every
t ≥ t0. Let v0 ∈ BV (M1), with M1 as in (2.12). For every N ∈ N, let vN be the
unique solution of (3.19) satisfying vN (t0) = PNv0. Consider m ∈ N large enough
such that

(3.20) λm ≥ max

{
λ1 e

2
, c
C1

ν
L2
m, c

(
C2

1

νM1

)2/3

L2
m

}
.

If β > 0 and K ∈ N are large enough such that

(3.21) β ≥ max

{
νλm, c

M2
1

ν

[
1 + log

(
M1

νλ
1/2
1

)]}

and

(3.22) λK+1 ≥
2β
ν
,

then, for every N ≥ K,

(3.23) sup
t≥t0
‖vN (t)− p(t)‖H1 ≤ 2M1.

Proof. Projecting (1.1) onto PNH, we have

(3.24)
dp
dt

+ νAp + PNB(u,u) = PNg.

Denote w = vN − p. Subtracting (3.24) from (3.19), we obtain that

(3.25)
dw
dt

+ νAw + PN [B(vN ,vN )−B(u,u)] = −βPKw.

Notice that

(3.26) B(vN ,vN )−B(u,u) = B(vN ,vN )−B(p + q,p + q)
= B(vN ,vN )−B(p,p)−B(p,q)−B(q,p)−B(q,q)

= B(w,p) +B(p,w) +B(w,w)−B(p,q)−B(q,p)−B(q,q).

Thus, from (3.25) and (3.26), we have

(3.27)
dw
dt

+ νAw = −βPKw

− PN [B(w,p) +B(p,w) +B(w,w)−B(p,q)−B(q,p)−B(q,q)].

Taking the inner product in L2 of (3.27) with Aw yields

(3.28)
1
2

d
dt
‖w‖2H1 + ν|Aw|2L2 = −β‖PKw‖2H1 − (B(w,p), Aw)L2 − (B(p,w), Aw)L2

− (B(w,w), Aw)L2 + (B(p,q), Aw)L2 + (B(q,p), Aw)L2 + (B(q,q), Aw)L2 .
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Now we estimate the terms in the right-hand side of (3.28).
Using (2.6) and (2.12), we obtain that

(3.29) |(B(w,p), Aw)L2 | ≤ cBM1‖w‖H1 |Aw|L2

[
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

)]1/2

(3.30) |(B(w,w), Aw)L2 | ≤ cB‖w‖2H1 |Aw|L2

[
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

)]1/2

.

Thanks to (2.6), (2.12), and (2.14), we have

(3.31) |(B(p,q), Aw)L2 | ≤ cB‖p‖H1‖q‖H1 |Aw|L2

[
1 + log

(
|Ap|L2

λ
1/2
1 ‖p‖H1

)]1/2

≤ cBM1C1
L2
N

λ
1/2
N+1

|Aw|L2 ≤ ν

12
|Aw|2L2 + c

C2
1

ν

L4
N

λN+1
M2

1 .

From (2.7) and (2.14), it follows that

(3.32) |(B(q,q), Aw)L2 | ≤ cT ‖q‖2H1 |Aw|L2

[
1 + log

(
|A3/2w|L2

λ
1/2
1 |Aw|L2

)]1/2

≤ cTC2
1
L3
N

λN+1
|Aw|L2 ≤ ν

12
|Aw|2L2 + c

C4
1

ν

L6
N

λ2
N+1

.

From (2.8) and (2.12), we obtain that

(3.33) |(B(p,w), Aw)L2 | ≤ cTM1‖w‖H1 |Aw|L2

[
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

)]1/2

.

Moreover, (2.8) and (2.14) imply

(3.34) |(B(q,p), Aw)L2 | ≤ cT ‖q‖H1‖p‖H1 |Aw|L2

[
1 + log

(
|Ap|L2

λ
1/2
1 ‖p‖H1

)]1/2

≤ cTC1
L2
N

λ
1/2
N+1

M1|Aw|L2 ≤ ν

12
|Aw|2L2 + c2T

C2
1

ν

L4
N

λN+1
M2

1 .

Also, observe that

(3.35) − β‖PKw‖2H1 = −β‖w‖2H1 + β‖QKw‖2H1

≤ −β‖w‖2H1 +
β

λK+1
|Aw|2L2 ≤ −β‖w‖2H1 +

ν

2
|Aw|2L2 ,

where in the last inequality we used hypothesis (3.22).
Plugging estimates (3.29)–(3.35) into (3.28), we obtain that
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(3.36)
d
dt
‖w‖2H1 +

ν

2
|Aw|2L2 ≤ −β‖w‖2H1

+ cM1‖w‖H1 |Aw|L2

[
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

)]1/2

+ c‖w‖2H1 |Aw|L2

[
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

)]1/2

+ c
C4

1

ν

L6
N

λ2
N+1

+ c
C2

1

ν

L4
N

λN+1
M2

1 .

Since vN ∈ C([t0,∞);V ) [5, Theorem 5] and

‖w(t0)‖H1 ≤ ‖PNv0‖H1 + ‖p(t0)‖H1 ≤ 2M1,

then there exists τ ∈ (t0,∞) such that

‖w(t)‖H1 ≤ 3M1, ∀t ∈ [t0, τ ].

Define

(3.37) t̃ = sup
{
τ ∈ (t0,∞) : max

t∈[t0,τ ]
‖w(t)‖H1 ≤ 3M1

}
.

Suppose that t̃ <∞.
Then, from (3.36), we obtain that, for all t ∈ [t0, t̃],

(3.38)
d
dt
‖w‖2H1 +

ν

2
|Aw|2L2 ≤ −β‖w‖2H1

+ cM1‖w‖H1 |Aw|L2

[
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

)]1/2

+ c
C4

1

ν

L6
N

λ2
N+1

+ c
C2

1

ν

L4
N

λN+1
M2

1 .

Observe that

(3.39)
ν

4
|Aw|2L2 − cM1‖w‖H1 |Aw|L2

(
1 + log

(
|Aw|L2

λ
1/2
1 ‖w‖H1

))1/2

+
β

2
‖w‖2H1

=
νλ1

4
‖w‖2H1

[
|Aw|2L2

λ1‖w‖2H1

− c M1

νλ
1/2
1

|Aw|L2

λ
1/2
1 ‖w‖H1

(
1 + log

(
|Aw|2L2

λ1‖w‖2H1

))1/2

+
2β
νλ1

]
.

Define

(3.40) φ(r) = r2 − ρr(1 + log(r2))1/2 +M, r ≥ 1,

where

(3.41) ρ = c
M1

νλ
1/2
1

, M =
2β
νλ1

.

Notice that

(3.42) φ(r) =
r(φ̃(r2) +M) + ρ(1 + log(r2))1/2

r + ρ(1 + log(r2))1/2 ,
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where φ̃(r) = r − ρ2(1 + log r).
One easily verifies that

(3.43) min
r≥1

φ̃(r) ≥ −ρ2 log(ρ2).

Thus, from (3.42) and (3.43), it follows that if

(3.44) M ≥ ρ2 log(ρ2),

then

(3.45) φ(r) ≥ 0 ∀r ≥ 1.

Now, by the definition of ρ and M in (3.41), we see that (3.44) follows from
hypothesis (3.21) on β.

Using (3.45) with r = |Aw|L2/(λ1/2
1 ‖w‖H1) ≥ 1, we conclude that the right-hand

side of (3.39) is nonnegative. Thus, from (3.38), it follows that

(3.46)
d
dt
‖w‖2H1 +

ν

4
|Aw|2L2 ≤ −

β

2
‖w‖2H1 + c

C4
1

ν

L6
N

λ2
N+1

+ c
C2

1

ν

L4
N

λN+1
M2

1 .

Ignoring the second term on the left-hand side of (3.46) and integrating from t0
to t ∈ [t0, t̃], we obtain that

(3.47) ‖w(t)‖2H1 ≤ ‖w(t0)‖2H1 e−
β
2 (t−t0)

+
c

β

[
C4

1

ν

L6
N

λ2
N+1

+
C2

1

ν

L4
N

λN+1
M2

1

]
(1− e−

β
2 (t−t0)).

Notice that the functions f1(x) = (1 + log x)3/x2 and f2(x) = (1 + log x)2/x are
both decreasing for x ≥ e. Since N ≥ K and, by hypotheses (3.20), (3.21), and (3.22),
we have

λN+1

λ1
≥ λK+1

λ1
≥ 2β
νλ1
≥ 2λm

λ1
≥ e,

it then follows that

(3.48)
L6
N

λ2
N+1

≤ cL
6
m

λ2
m

and
L4
N

λN+1
≤ cL

4
m

λm
.

Using the estimates from (3.48) into (3.47) and using hypothesis (3.20) with a
suitable absolute constant c, we obtain that

(3.49) ‖w(t)‖2H1 ≤ ‖w(t0)‖2H1 e−
β
2 (t−t0) +4M2

1 (1− e−
β
2 (t−t0)) ≤ 4M2

1 , ∀t ∈ [t0, t̃].

Thus,

(3.50) ‖w(t)‖H1 ≤ 2M1 ∀t ∈ [t0, t̃].

In particular, ‖w(t̃)‖H1 ≤ 2M1, which, by the definition of t̃ and the fact that w ∈
C([t0,∞);V ), contradicts the assumption that t̃ <∞. Therefore, the above argument
implies that ‖w(t)‖H1 ≤ 2M1 for every t ≥ t0.

Next, we present a technical lemma.
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Lemma 3.3. Assume that y : [t0,∞)→ [0,∞) is a continuous function satisfying

(3.51) y(s) ≤ a e−b(s−t) y(t) + γ sup
t≤τ≤s

y(τ) + ε ∀s ≥ t ≥ t0

with ε ≥ 0, a ≥ 0, b > 0 and γ ∈ (0, 1) such that

(3.52) θ = a

(
e−

b
νλ1 +

γ

1− γ

)
< 1.

Then

(3.53) y(t) ≤ aθ
(t−t0)νλ1−1

1− γ
y(t0) +

(
a

(1− θ)(1− γ)
+ 1
)

ε

1− γ
∀t ≥ t0.

Proof. Taking the sup on both sides of (3.51) over s ∈ [t, t+ (νλ1)−1], it follows
that

sup
t≤s≤t+(νλ1)−1

y(s) ≤ ay(t) + γ sup
t≤τ≤t+(νλ1)−1

y(τ) + ε.

Thus,

(3.54) sup
t≤τ≤t+(νλ1)−1

y(τ) ≤ a

1− γ
y(t) +

ε

1− γ
.

Using (3.54) in (3.51) with s = t+ (νλ1)−1, t ≥ t0, yields

(3.55) y(t+ (νλ1)−1) ≤ θy(t) +
ε

1− γ

with θ as defined in (3.52).
For each n ∈ N, let tn = t0 + n(νλ1)−1. Since (3.55) is valid for every t ≥ t0, in

particular,

(3.56) y(tn) = y(tn−1 + (νλ1)−1) ≤ θy(tn−1) +
ε

1− γ
∀n ∈ N.

Hence, by induction, one has

(3.57) y(tn) ≤ θny(t0) +
ε

(1− θ)(1− γ)
∀n ∈ N.

Using (3.57) in (3.54) with t = tn, it follows that

(3.58) sup
tn≤s≤tn+1

y(s) ≤ a θn

1− γ
y(t0) +

(
a

(1− θ)(1− γ)
+ 1
)

ε

1− γ
.

Notice that, for every t ∈ [tn, tn+1],

(3.59) n = (tn+1 − t0)νλ1 − 1 ≥ (t− t0)νλ1 − 1.

Since θ ∈ [0, 1), by hypothesis (3.52), it then follows from (3.58) and (3.59) that,
for every t ∈ [tn, tn+1],

(3.60) y(t) ≤ sup
tn≤s≤tn+1

y(s) ≤ aθ
(t−t0)νλ1−1

1− γ
y(t0) +

(
a

(1− θ)(1− γ)
+ 1
)

ε

1− γ
.

Since (3.60) is valid for any n ∈ N, (3.53) follows.
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The following proposition is a direct consequence of the result proved in [28,
Lemma 1] (see also [55]).

Proposition 3.4. Let u be a solution of (1.1) satisfying (2.12)–(2.14) for every
t ≥ t0. Then the following inequalities hold

(3.61) |A−1PNB(p,q)|L2 , |A−1PNB(q,p)|L2 ≤ cM1LN‖q‖V ′ ,

(3.62) |A−1PNB(q,q)|L2 ≤ cLN |q|2L2 ,

with LN as defined in (2.15).

Using the results of Lemma 3.3 and Propositions 3.2 and 3.4, we can now obtain
a uniform-in-time estimate for |vN (t)−p(t)|L2 . The proof below follows similar ideas
to the proof of [28, Theorem 2]. We use the notation ‖ · ‖L(X) to denote the operator
norm in the space L(X), the space of bounded linear operators on a Hilbert space X.

Theorem 3.5. Let u be a solution of (1.1) satisfying (2.12)–(2.14) for every
t ≥ t0. Let v0 ∈ BV (M1), with M1 as in (2.12). For every N ∈ N, let vN be the
unique solution of (3.19) satisfying vN (t0) = PNv0. Fix α ∈ (1/2, 1), and consider
m ∈ N large enough such that
(3.63)

λm ≥ max

λ1 e
2
, c
C1

ν
L2
m, c

(
C2

1

νM1

)2/3

L2
m,

[
ccα

(
1 +

e−α

1− α

)
|Ω|α− 1

2M1

ν

] 1
1−α
 ,

where cα is the constant from (2.9).
If β > 0 and K ∈ N are large enough such that

(3.64) β ≥ max

{
νλm, c

M2
1

ν

[
1 + log

(
M1

νλ
1/2
1

)]}

and

(3.65) λK+1 ≥
2β
ν
,

then there exists θ = θ(β) ∈ [0, 1) and a constant C = C(ν, λ1, |g|L2) such that, for
every N ≥ K,

(3.66) |vN (t)− p(t)|L2 ≤ cθ(t−t0)νλ1−1|vN (t0)− p(t0)|L2 + C
L4
N

λ
3/2
N+1

.

Proof. Denote w = vN − p. Subtracting (3.24) from (3.19) yields

(3.67)
dw
dt

+ νAw = −PN [B(vN ,vN )−B(u,u)]− βPKw

= −PN [B(vN ,vN )−B(p,p)] + PNG− βPKw,

where

(3.68) G(t) = B(u(t),u(t))−B(p(t),p(t)) ∀t ≥ t0.
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Using that PNw = w, we can also rewrite (3.67) as

(3.69)
dw
dt

+ [νAPN + βPK ]w = −PN [B(vN ,vN )−B(p,p)] + PNG.

Using Duhamel’s formula, it follows that, for every s ≥ t ≥ t0,

(3.70) |w(s)|L2 ≤ | e−(s−t)(νAPN+βPK) w(t)|L2

+
∫ s

t

∣∣∣e−(s−τ)(νAPN+βPK) PN [B(vN (τ),vN (τ))−B(p(τ),p(τ))]
∣∣∣
L2

dτ

+
∫ s

t

∣∣∣e−(s−τ)(νAPN+βPK) PNG(τ)
∣∣∣
L2

dτ.

We now estimate each term on the right-hand side of (3.70).
Notice that, for every s ≥ t ≥ t0,

(3.71) | e−(s−t)(νAPN+βPK) w(t)|L2 ≤
≤ (‖ e−(s−t)(νAPK+βPK) ‖L(PKH) + ‖ e−(s−t)νAPNQK ‖L(PNQKH))|w(t)|L2

=
[(

max
1≤j≤K

e−(s−t)(νλj+β)
)

+
(

max
K+1≤j≤N

e−(s−t)νλj
)]
|w(t)|L2

=
(

e−(s−t)(νλ1+β) + e−(s−t)(νλK+1)
)
|w(t)|L2

≤ 2 e−(s−t)β |w(t)|L2 ,

where in the last inequality we used that νλK+1 ≥ 2β from hypothesis (3.65).
Using (2.9), we obtain that

(3.72)
∣∣∣e−(s−τ)(νAPN+βPK) PN [B(vN (τ),vN (τ))−B(p(τ),p(τ))]

∣∣∣
L2

=
1
να

∣∣∣ναAα e−(s−τ)(νAPN+βPK)A−αPN [B(vN (τ),vN (τ))−B(p(τ),p(τ))]
∣∣∣
L2

≤ cα
|Ω|α− 1

2

να
‖ναAα e−(s−τ)(νAPN+βPK) ‖L(PNH)‖vN (τ) + p(τ)‖H1 |w(τ)|L2 .

By Proposition 3.2, we have that

(3.73) ‖vN (τ) + p(τ)‖H1 ≤ 3M1, ∀τ ≥ t0, ∀N ≥ K.

It then follows from (3.72) that

(3.74)
∣∣∣e−(s−τ)(νAPN+βPK) PN [B(vN (τ),vN (τ))−B(p(τ),p(τ))]

∣∣∣
L2

≤ 3cα
|Ω|α− 1

2M1

να
‖ναAα e−(s−τ)(νAPN+βPK) ‖L(PNH)|w(τ)|L2 .

Notice that, by using hypotheses (3.64) and (3.65), we have

(3.75)
νλK+1

2
≥ β ≥ νλm,

which implies in particular that K ≥ m.
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Now, we write

(3.76) e−(s−τ)(νAPN+βPK) = e−(s−τ)(νAPm+βPm) + e−(s−τ)(νAPKQm+βPKQm)

+ e−(s−τ)νAPNQK .

Therefore,

(3.77)
∫ s

t

∣∣∣e−(s−τ)(νAPN+βPK) PN [B(vN (τ),vN (τ))−B(p(τ),p(τ))]
∣∣∣
L2

dτ

≤ 3cα
|Ω|α− 1

2M1

να

(
sup
t≤τ≤s

|w(τ)|L2

)∫ s

t

‖ναAα e−(s−τ)(νAPN+βPK) ‖L(PNH)dτ

≤ 3cα
|Ω|α− 1

2M1

να

(
sup
t≤τ≤s

|w(τ)|L2

)(∫ s

t

‖ναAα e−(ξ−t)(νAPm+βPm) ‖L(PmH)dξ+

+
∫ s

t

‖ναAα e−(ξ−t)(νAPKQm+βPKQm) ‖L(PKH)dξ

+
∫ s

t

‖ναAα e−(ξ−t)νAPNQK ‖L(PNQKH)dξ
)
,

where in the second inequality we used (3.76) and applied the change of variables
ξ = s− τ + t.

Notice that

(3.78) ‖ναAα e−(ξ−t)(νAPm+βPm) ‖L(PmH) = max
1≤j≤m

(νλj)α e−(ξ−t)(νλj+β)

≤ e−(ξ−t)β max
νλ1≤x≤νλm

xα e−(ξ−t)x

= e−(ξ−t)β ·


(νλm)α e−(ξ−t)νλm , if ξ < t+ α

νλm
,

αα

(ξ − t)α
e−α, if t+ α

νλm
≤ ξ ≤ t+ α

νλ1
,

(νλ1)α e−(ξ−t)νλ1 , if ξ > t+ α
νλ1

.

Let us decompose [t, s] as the union of the intervals

(3.79) I1 =
[
t, t+

α

νλm

]
∩ [t, s], I2 =

[
t+

α

νλm
, t+

α

νλ1

]
∩ [t, s],

I3 =
[
t+

α

νλ1
,∞
)
∩ [t, s].

We then have

(3.80)
∫
I1

‖ναAα e−(ξ−t)(νAPm+βPm) ‖L(PmH)dξ ≤

≤
∫ t+ α

νλm

t

(νλm)α e−(ξ−t)(νλm+β) dξ =
(νλm)α

νλm + β
(1− e−α e−

αβ
νλm )
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(3.81)
∫
I2

‖ναAα e−(ξ−t)(νAPm+βPm) ‖L(PmH)dξ ≤

≤
∫ t+ α

νλ1

t+ α
νλm

αα

(ξ − t)α
e−α e−(ξ−t)β dξ ≤ (νλm)α e−α

∫ t+ α
νλ1

t+ α
νλm

e−(ξ−t)β dξ

=
(νλm)α e−α

β
(e−

αβ
νλm − e−

αβ
νλ1 )

and

(3.82)
∫
I3

‖ναAα e−(ξ−t)(νAPm+βPm) ‖L(PmH)dξ ≤
∫ ∞
t+ α

νλ1

(νλ1)α e−(ξ−t)(νλ1+β) dξ

=
(νλ1)α

νλ1 + β
e−α e−

αβ
νλ1 .

Notice that the estimate in (3.82) is smaller than the absolute value of the negative
term in (3.81). Thus, from (3.80)–(3.82), it follows that

(3.83)
∫ s

t

‖ναAα e−(ξ−t)(νAPm+βPm) ‖L(PmH)dξ ≤

≤ (νλm)α

νλm + β
(1− e−α e−

αβ
νλm ) +

(νλm)α

β
e−α e−

αβ
νλm ≤ (νλm)α

β
.

Now, similarly as in (3.78), we have that

(3.84) ‖ναAα e−(ξ−t)(νAPKQm+βPKQm) ‖L(PKQmH) ≤

≤ e−(ξ−t)β ·


(νλK)α e−(ξ−t)νλK , if ξ < t+ α

νλK
,

αα

(ξ − t)α
e−α, if t+ α

νλK
≤ ξ ≤ t+ α

νλm+1
,

(νλm+1)α e−(ξ−t)νλm+1 , if ξ > t+ α
νλm+1

.

We decompose [t, s] as the union of the intervals

(3.85) J1 =
[
t, t+

α

νλK

]
∩ [t, s], J2 =

[
t+

α

νλK
, t+

α

νλm+1

]
∩ [t, s],

J3 =
[
t+

α

νλm+1
,∞
)
∩ [t, s].

We have

(3.86)
∫
J1

‖ναAα e−(ξ−t)(νAPKQm+βPKQm) ‖L(PKQmH)dξ ≤

≤
∫ t+ α

νλK

t

(νλK)α e−(ξ−t)νλK dξ =
1− e−α

(νλK)1−α

(3.87)
∫
J2

‖ναAα e−(ξ−t)(νAPKQm+βPKQm) ‖L(PKQmH)dξ ≤

≤
∫ t+ α

νλm+1

t+ α
νλK

αα

(ξ − t)α
e−α dξ =

α e−α

1− α

(
1

(νλm+1)1−α −
1

(νλK)1−α

)
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and

(3.88)
∫
J3

‖ναAα e−(ξ−t)(νAPKQm+βPKQm) ‖L(PKQmH)dξ ≤

≤
∫ ∞
t+ α

νλm+1

(νλm+1)α e−(ξ−t)νλm+1 dξ =
e−α

(νλm+1)1−α .

Thus, summing up (3.86)–(3.88), we obtain

(3.89)
∫ s

t

‖ναAα e−(ξ−t)(νAPKQm+βPKQm) ‖L(PKQmH)dξ ≤

≤
(

1− e−α

1− α

)
1

(νλK)1−α +
e−α

1− α
1

(νλm+1)1−α <

(
e−α

1− α

)
1

(νλm+1)1−α ,

where in the last inequality we used the fact that

(3.90) 1− e−α

1− α
< 0 ∀α > 0.

Moreover, analogously to (3.84)–(3.89), one obtains that

(3.91)
∫ s

t

‖ναAα e−(ξ−t)νAPNQK ‖L(PNQKH)dξ <
(

e−α

1− α

)
1

(νλK+1)1−α .

Now, let us estimate the third term on the right-hand side of (3.70).
Notice that

(3.92)
∫ s

t

∣∣∣e−(s−τ)(νAPN+βPK) PNG(τ)
∣∣∣
L2

dτ =

=
1
ν

∫ s

t

∣∣∣νA e−(s−τ)(νAPN+βPK)A−1PNG(τ)
∣∣∣
L2

dτ ≤

≤ 1
ν

∫ s

t

‖νA e−(s−τ)(νAPN+βPK) ‖L(PNH)|A−1PNG(τ)|L2dτ.

By Proposition 3.4 and (2.13), it follows that

(3.93) |A−1PNG|L2 ≤ cM1LN‖q‖V ′+cLN |q|2L2 ≤ cM1LN
|q|L2

λ
1/2
N+1

+cLN |q|2L2 ≤ cCN ,

where

(3.94) CN = C0
L2
N

λ
3/2
N+1

(
M1 + C0

LN

λ
1/2
N+1

)
,

with C0 as defined in (2.16).
Now, similarly as in (3.78)–(3.83), one obtains that

(3.95)
∫ s

t

‖νA e−(s−τ)(νAPN+βPK) ‖L(PNH)dτ

=
∫ s

t

‖νA e−(ξ−t)(νAPN+βPK) ‖L(PNH)dξ

≤ νλN
νλN + β

(1− e−1 e−
β

νλN ) + log
(
λN
λ1

)
e−1 e−

β
νλN +

νλ1

νλ1 + β
e−1 e−

β
νλ1

≤ 1 + log
(
λN
λ1

)
= L2

N .
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Hence, from (3.92), (3.93), and (3.95), we have

(3.96)
∫ s

t

∣∣∣e−(s−τ)(νAPN+βPK) PNG(τ)
∣∣∣
L2

dτ ≤ cCNL
2
N

ν
,

with CN as defined in (3.94).
Now, plugging estimates (3.71), (3.77), (3.83), (3.89), (3.91), and (3.96) into

(3.70), we obtain that, for all s ≥ t ≥ t0,

(3.97) |w(s)|L2 ≤ 2 e−(s−t)β |w(t)|L2+

+ 3cα
|Ω|α− 1

2M1

να

(
sup
t≤τ≤s

|w(τ)|L2

)[
(νλm)α

β
+

e−α

1− α
1

(νλm+1)1−α+

+
e−α

1− α
1

(νλK+1)1−α

]
+ c

CNL
2
N

ν
.

Since K ≥ m (cf. (3.75)), we have that

(3.98)
(νλm)α

β
+

e−α

1− α
1

(νλm+1)1−α +
e−α

1− α
1

(νλK+1)1−α ≤(
1 + 2

e−α

1− α

)
1

(νλm)1−α .

Hence, from (3.97), we obtain that

(3.99) |w(s)|L2 ≤ 2 e−(s−t)β |w(t)|L2+

+ ccα

(
1 +

e−α

1− α

)
|Ω|α− 1

2M1

νλ1−α
m

sup
t≤τ≤s

|w(τ)|L2 + c
CNL

2
N

ν
.

Let

(3.100) γ = ccα

(
1 +

e−α

1− α

)
|Ω|α− 1

2M1

νλ1−α
m

and

θ = 2
(

e−
β
νλ1 +

γ

1− γ

)
.

Using hypothesis (3.63) with a suitable absolute constant c and also hypothesis
(3.64), we obtain that γ < 1 and θ < 1. Therefore, (3.66) follows from (3.99) and
Lemma 3.3 with y=|w(·)|L2 , a=2, b=β, γ given in (3.100), and ε=cCNL2

N/ν.

Remark 3.6. We notice that, by using an explicit form of the constant cα from
(2.9) (see, e.g., [7, 40, 46]), one could obtain an optimal choice of α by minimizing the
coefficient of supt≤τ≤s |w(τ)|L2 in (3.99) with respect to α. Thus, in this case, the
values of γ, θ, and the condition (3.63) on λm would be given explicitly in terms of this
optimal value of α. However, we chose not to deal with these technical details here.

With the result of Theorem 3.5, we can obtain an estimate for the error committed
when applying the standard Galerkin method to (1.2) in order to obtain an approx-
imation of the reference solution u of (1.1). The proof follows as in (3.16)–(3.17).
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Corollary 3.7. Assume the hypotheses from Theorem 3.5. Then there exists
T = T (ν, λ1, |g|L2 , N) ≥ t0 such that, for every N ≥ K,

(3.101) sup
t≥T
|vN (t)− u(t)|L2 ≤ C LN

λN+1

and

(3.102) sup
t≥T
‖vN (t)− u(t)‖H1 ≤ C LN

λ
1/2
N+1

,

where C is a constant depending on ν, λ1 and |g|L2 but independent of N .

Finally, we now state the result about the error associated with the PPGM applied
to (3.18) relative to the reference solution u. Compared to the result from Corollary
3.7, the estimates show that the PPGM has a better convergence rate than the stan-
dard Galerkin method. The proof follows immediately from the result of Theorem 3.5
and (3.4)–(3.6).

Theorem 3.8. Assume the hypotheses from Theorem 3.5, with u satisfying, in
addition, (2.18) and (2.19) for every t ≥ t0. Then there exists T = T (ν, λ1, |g|L2 , N)
≥ t0 such that, for every N ≥ K,

(3.103) sup
t≥T
|[vN (t) + Φ1(vN (t))]− u(t)|L2 ≤ C L4

N

λ
3/2
N+1

and

(3.104) sup
t≥T
‖[vN (t) + Φ1(vN (t))]− u(t)‖H1 ≤ C L4

N

λN+1
,

where C is a constant depending on ν, λ1 and |g|L2 but independent of N .

3.2. A general class of interpolant operators. We now consider the class of
linear interpolant operators Ih : L2(Ω)2 → L2(Ω)2 satisfying the following properties:

P1. There exists a positive constant c0 such that

(3.105) |ϕ− Ih(ϕ)|L2 ≤ c0h‖ϕ‖H1 ∀ϕ ∈ H1(Ω)2.

P2. There exists a positive constant c−1 such that

(3.106) ‖ϕ− Ih(ϕ)‖H−1 ≤ c−1h|ϕ|L2 ∀ϕ ∈ L2(Ω)2.

P3. There exists a positive constant c̃0 such that

(3.107) |Ih(q)|L2 ≤ c̃0
|Ω|3/4

h2λ
1/4
N+1

|q|L2 ∀q ∈ QNH.

As one easily verifies, the example of interpolant operator given by the low Fourier
modes projector PK , N ≥ K, considered in subsection 3.1, satisfies properties (P1)–
(P3). In particular, property (P3) is immediately verified since Ih(q) = PKq = 0.
Indeed, the only reason for assuming property (P3) is that, as will be clearer in the
proof of Theorem 3.10, we do not assume PσIh to commute with A, a property that
PK satisfies. This is the key difference between the proofs of Theorems 3.5 and 3.10.



POSTPROCESSING GALERKIN APPLIED TO A DA ALGORITHM 101

A more physically interesting example of operator Ih satisfying properties (P1)–
(P3) is given by local averages over finite volume elements. For illustrational purposes,
this is proved in the Appendix.

The next results follow a similar outline from the ones in subsection 3.1. We again
assume either periodic or no-slip Dirichlet boundary conditions. As before, we start
by obtaining a uniform estimate of the V norm of vN − p.

Proposition 3.9. Let u be a solution of (1.1) satisfying (2.12)–(2.14) for every
t ≥ t0. Let v0 ∈ BV (M1), with M1 as in (2.12). For every N ∈ N, let vN be the
unique solution of (3.19) satisfying vN (t0) = PNv0. Consider m ∈ N large enough
such that

(3.108) λm ≥ max

{
λ1 e

2
, c
C1

ν
L2
m, c

(
C2

1

νM1

)2/3

L2
m, c

(
C1

M1

)2

L2
m

}
.

If β > 0 is large enough such that

(3.109) β ≥ max

{
νλm, c

M2
1

ν

[
1 + log

(
M1

νλ
1/2
1

)]}

and if h is small enough such that

(3.110) h ≤ 1
c0

(
ν

β

)1/2

,

where c0 is the constant from (3.105), then, for every N ≥ m, we have

(3.111) sup
t≥t0
‖vN (t)− p(t)‖H1 ≤ 2M1.

Proof. Denote w = vN − p. Subtracting (3.24) from (1.4) and using (3.26), we
obtain that

(3.112)
dw
dt

+ νAw = −βw − βPNPσ[Ih(w)−w] + βPNPσ[Ih(q)− q]

− PN [B(w,p) +B(p,w) +B(w,w)−B(p,q)−B(q,p)−B(q,q)].

Taking the inner product in L2 of (3.112) with Aw yields

(3.113)
1
2

d
dt
‖w‖2H1 + ν|Aw|2L2 = −(B(w,p), Aw)L2 − (B(p,w), Aw)L2

− (B(w,w), Aw)L2 + (B(p,q), Aw)L2 + (B(q,p), Aw)L2 + (B(q,q), Aw)L2

− β‖w‖2H1 + β(w − Ih(w), Aw)L2 − β(q− Ih(q), Aw)L2 .

Using property (P1) of Ih, we have

(3.114) |β(w − Ihw, Aw)L2 | ≤ c0βh‖w‖H1 |Aw|L2

≤ β

2
‖w‖2H1 +

c20βh
2

2
|Aw|2L2 ≤

β

2
‖w‖2H1 +

ν

2
|Aw|2L2 ,

where in the last inequality we used hypothesis (3.110).
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Now, using property (P1) of Ih and (2.14), we have

(3.115) |β(q− Ih(q), Aw)L2 | ≤ c0βh‖q‖H1 |Aw|L2

≤ β‖q‖2H1 +
c20βh

2

4
|Aw|2L2 ≤ βC2

1
L2
N

λN+1
+
ν

4
|Aw|2L2 .

The remaining of the proof follows analogously as in the proof of Proposition 3.2,
but now using estimates (3.114) and (3.115).

Using the results of Proposition 3.9, Lemma 3.3, and Proposition 3.4, we can now
obtain a uniform in time estimate of |vN − p|L2 .

Theorem 3.10. Let u be a solution of (1.1) satisfying (2.12)–(2.14) for every
t ≥ t0. Let v0 ∈ BV (M1), with M1 as in (2.12). For every N ∈ N, let vN be the
unique solution of (3.19) satisfying vN (t0) = PNv0. Fix α ∈ (1/2, 1), and consider
m ∈ N large enough such that

(3.116) λm ≥ max

{
λ1 e

2
, c
C1

ν
L2
m, c

(
C2

1

νM1

)2/3

L2
m, c

(
C1

M1

)2

L2
m,[

ccα

(
1 +

e−α

1− α

)
|Ω|α− 1

2M1

ν

] 1
1−α
 ,

where cα is the constant from (2.9).
If β > 0 is large enough such that

(3.117) β ≥ max

{
νλm, c

M2
1

ν

[
1 + log

(
M1

νλ
1/2
1

)]}

and if h ≥ 0 is small enough such that

(3.118) h ≤ cmin

{(
ν

β

)1/2

,
νλ

1/2
m

β

}
,

then there exists θ = θ(β) ∈ [0, 1) and a constant C = C(ν, λ1, |g|L2 , 1/h2) such that,
for every N ≥ m, we have

(3.119) |vN (t)− p(t)|L2 ≤ cθ(t−t0)νλ1−1|vN (t0)− p(t0)|L2 + C
LN

λ
5/4
N+1

.

Proof. We recall equation (3.9) satisfied by w = vN − p:

(3.120)
dw
dt

+ [νAPN + βPN ]w = −PN [B(vN ,vN )−B(p,p)] + PNG

− βPNPσ[Ih(w)−w] + βPNPσIh(q),

where

(3.121) G(t) = B(u(t),u(t))−B(p(t),p(t)) ∀t ≥ t0.
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Using Duhamel’s formula, it follows that

(3.122) |w(t)|L2 ≤ | e−(t−t0)(νAPN+βPN ) w(t0)|L2

+
∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PN [B(vN (τ),vN (τ))−B(p(τ),p(τ))]
∣∣∣
L2

dτ

+
∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PNG(τ)
∣∣∣
L2

dτ

+ β

∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PNPσ[Ih(w(τ))−w(τ)]
∣∣∣
L2

dτ

+ β

∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PNPσIh(q(τ))
∣∣∣
L2

dτ.

The estimates for the first three terms in the right-hand side of (3.122) now follow
by writing

(3.123) e−(t−τ)(νAPN+βPN ) = e−(t−τ)(νAPm+βPm) + e−(t−τ)(νAPNQm+βPNQm)

and proceeding analogously as in the proof of Theorem 3.5.
In order to estimate the fourth term on the right-hand side of (3.122), we use

property (P2) of Ih and obtain that

(3.124) β

∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PNPσ[Ih(w(τ))−w(τ)]
∣∣∣
L2

dτ

≤ β

ν1/2

∫ t

t0

‖ν1/2A1/2 e−(t−τ)(νAPN+βPN ) ‖L(PNH)|A−1/2Pσ[Ih(w)−w]|L2dτ

≤ c−1
βh

ν1/2 sup
τ≥t0
|w(τ)|L2

∫ t

t0

‖ν1/2A1/2 e−(s−t0)(νAPN+βPN ) ‖L(PNH)ds

≤ c−1
βh

ν1/2

(
(νλm)

1
2

β
+ 2

e−
1
2

(νλm+1)
1
2

)
sup
τ≥t0
|w(τ)|L2 ,

where in the last inequality we used again (3.123) and similar calculations from
(3.78)–(3.83).

Finally, for the last term in the right-hand side of (3.122), we use property (P3)
of Ih and (2.13) to obtain that

(3.125) β

∫ t

t0

∣∣∣e−(t−τ)(νAPN+βPN ) PNPσIh(q(τ))
∣∣∣
L2

dτ ≤

≤ c̃0
|Ω|3/4

h2λ
1/4
N+1

β

∫ t

t0

‖ e−(t−τ)(νAPN+βPN ) ‖L(PNH)|q(τ)|L2dτ

≤ c̃0
C0|Ω|3/4β

h2

LN

λ
5/4
N+1

∫ t

t0

‖ e−(t−τ)(νAPN+βPN ) ‖L(PNH)dτ

= c̃0
C0|Ω|3/4β

h2

LN

λ
5/4
N+1

∫ t

t0

max
1≤j≤N

e−(t−τ)(νλj+β) dτ ≤ c̃0
C0|Ω|3/4

h2

LN

λ
5/4
N+1

.

The remainder of the proof follows analogously as in the proof of Theorem 3.5.
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The result of Theorem 3.10 now yields, as in (3.16)–(3.17), an estimate of the error
associated to the Galerkin approximation of (1.2) relative to the reference solution u
of (1.1), in the general case of an interpolant operator satisfying properties (P1)–(P3).

Corollary 3.11. Assume the hypotheses from Theorem 3.10. Then there exists
T = T (ν, λ1, |g|L2 , N) ≥ t0 such that, for every N ≥ m,

(3.126) sup
t≥T
|vN (t)− u(t)|L2 ≤ C LN

λN+1

and

(3.127) sup
t≥T
‖vN (t)− u(t)‖H1 ≤ C LN

λ
1/2
N+1

,

where C is a constant depending on ν, λ1, |g|L2 and 1/h2 but independent of N .

Finally, we now obtain an estimate of the error committed when applying the
PPGM to system (1.2), in order to obtain an approximation of the reference solution
u of (1.1), in the case of an interpolant operator satisfying properties (P1)–(P3). The
result shows that the convergence rate of the PPGM in this case, although not as
good as the one obtained in Theorem 3.8, is still better than the convergence rate
of the standard Galerkin method. The proof follows immediately from the result of
Theorem 3.10 and (3.4)–(3.6).

Theorem 3.12. Assume the hypotheses from Theorem 3.10, with u satisfying, in
addition, (2.18) and (2.19), for every t ≥ t0. Then there exists T = T (ν, λ1, |g|L2 , N)
≥ t0 such that, for every N ≥ m,

(3.128) sup
t≥T
|[vN (t) + Φ1(vN (t))]− u(t)|L2 ≤ C LN

λ
5/4
N+1

and

(3.129) sup
t≥T
‖[vN (t) + Φ1(vN (t))]− u(t)‖H1 ≤ C LN

λ
3/4
N+1

,

where C is a constant depending on ν, λ1, |g|L2 and 1/h2 but independent of N .

Remark 3.13. We emphasize that the main purpose of the postprocessing step
applied to the Galerkin method is to improve the accuracy of the numerical approx-
imation of v, solution of (1.2), and thus u, solution of (1.1). The fact that the
numerical approximation of v given by the PPGM yields a uniform-in-time error es-
timate is actually due to the fact that the Galerkin approximation vN of v yields a
uniform-in-time error estimate. Indeed, the latter is valid for an even more general
class of interpolant operators than the one considered in subsection 3.2, namely, the
family of operators Ih : H1(Ω)2 → L2(Ω)2, which are only required to satisfy property
(P1), and also the family of operators Ih : H2(Ω)2 → L2(Ω)2 satisfying (see [5])

‖ϕ− Ih(ϕ)‖H2 ≤ c1h‖ϕ‖H1 + c2h
2‖ϕ‖H2 ∀ϕ ∈ H2(Ω)2,

where c1 and c2 are positive constants and ‖ · ‖H2 denotes the usual Sobolev norm
of the space H2(Ω)2. A physically relevant example of interpolant operator of this
latter type is given by measurements at a finite set of nodal points in Ω.
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It is not difficult to show that (using, in particular, similar ideas from the proof
of Proposition 3.9), under the appropriate conditions on the parameters β and h and
for both types of interpolant operators, there exists T = T (ν, λ1, |g|L2 , N) ≥ t0 large
enough such that

sup
t≥T
‖vN (t)− u(t)‖H1 ≤ C L2

N

λ
1/2
N+1

,

where C is a constant depending on ν, λ1 and |g|L2 but independent of N . Moreover,
for the former class of interpolant operators, one can also show that

sup
t≥T
|vN (t)− u(t)|L2 ≤ C LN

λN+1
,

where, again, T = T (ν, λ1, |g|L2 , N) ≥ t0 and C = C(ν, λ1, |g|L2).

Appendix A.
The aim of this section is to show that the example of interpolant operator given

by local averages over finite volume elements (see, e.g., [26, 37, 38]), assuming periodic
boundary conditions, satisfies properties (P1)–(P3) considered in subsection 3.2.

Let Ω = (0, L) × (0, L) ⊂ R2 be a basic domain of periodicity, and consider a
partition of Ω into K squares with sides of length h = L/

√
K. Let

Λ = {(j, l) ∈ N2 : 1 ≤ j, l ≤
√
K},

and, for every α = (j, l) ∈ Λ, let Qα be the volume element given by the square

Qα = [(j − 1)h, jh)× [(l − 1)h, lh).

Consider the interpolant operator Ih : L2(Ω)2 → L2(Ω)2 given by

(A.1) Ih(ϕ) =
∑
α∈Λ

ϕαχQα ∀ϕ ∈ L2(Ω)2,

where ϕα is the local average of ϕ over the volume element Qα, i.e.,

(A.2) ϕα =
1
|Qα|

∫
Qα

ϕ(y)dy.

The fact that Ih defined in (A.1) satisfies property (P1) follows from the calcu-
lations in [37, Appendix]. Thus, it only remains to verify properties (P2) and (P3).
In fact, we show that this particular example of Ih sastisfies a stronger property than
(P3) with respect to the (L∞(Ω))2-norm.

Notice that, in the present case, |Ω| = L2.

Proposition A.1. Let Ih : L2(Ω)2 → L2(Ω)2 be the operator defined by (A.1).
Then the following holds:

(i) There exists a positive constant c−1 such that

(A.3) ‖ϕ− Ih(ϕ)‖H−1 ≤ c−1h|ϕ|L2 ∀ϕ ∈ L2(Ω)2.

(ii) There exists a positive constant c̃0 such that

(A.4) ‖Ih(q)‖L∞ ≤ c
L1/2

h2λ
1/4
N+1

|q|L2 ∀q ∈ QNH.
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Consequently,

(A.5) |Ih(q)|L2 ≤ c̃0
L3/2

h2λ
1/4
N+1

|q|L2 ∀q ∈ QNH.

Proof. From its definition, it follows immediately that Ih is a symmetric operator,
i.e.,

(A.6) (Ih(ϕ), ψ) = (ϕ, Ih(ψ)) ∀ψ ∈ L2(Ω)2.

Thus, using (A.6) and property (P1), we obtain that

(A.7) ‖ϕ− Ih(ϕ)‖H−1 = sup
ψ∈H1

0(Ω)2

‖ψ‖H1=1

|(ϕ− Ih(ϕ), ψ)| = sup
ψ∈H1

0(Ω)2

‖ψ‖H1=1

|(ϕ,ψ − Ih(ψ))|

≤ sup
ψ∈H1

0(Ω)2

‖ψ‖H1=1

c0h|ϕ|L2‖ψ‖H1 = c0h|ϕ|L2 ,

which proves that (i) is satisfied with c−1 = c0.
Now let us prove (ii). Let q ∈ QNH, and consider its Fourier expansion, given by

(A.8) q(y) =
∑
|k|≥κN

ûk e2πi kL ·y ∀y ∈ Ω,

where

(A.9) κN =
L

2π
λ

1/2
N+1.

From (A.8) and the definition of Ih in (A.1), we have that

Ih(q)(x) =
∑
α∈Λ

∑
|k|≥κN

1
|Qα|

ûk

(∫
Qα

e2πi kL ·y dy
)
χQα(x).

Thus,

(A.10) |Ih(q)(x)| ≤
∑
α∈Λ

∑
|k|≥κN

1
|Qα|

|ûk|
∣∣∣∣∫
Qα

e2πi kL ·y dy
∣∣∣∣χQα(x) = (S1+S2+S3)(x),

where

S1(x) =
∑
α∈Λ

∑
|k|≥κN
k1=0

1
|Qα|

|ûk|
∣∣∣∣∫
Qα

e2πi kL ·y dy
∣∣∣∣χQα(x),

S2(x) =
∑
α∈Λ

∑
|k|≥κN
k2=0

1
|Qα|

|ûk|
∣∣∣∣∫
Qα

e2πi kL ·y dy
∣∣∣∣χQα(x),

S3(x) =
∑
α∈Λ

∑
|k|≥κN

k1 6=0,k2 6=0

1
|Qα|

|ûk|
∣∣∣∣∫
Qα

e2πi kL ·y dy
∣∣∣∣χQα(x).
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Notice that

(A.11) S1(x) =
∑
α∈Λ

∑
|k|≥κN
k1=0

1
|Qα|

|ûk|

∣∣∣∣∣
∫ lh

(l−1)h

∫ jh

(j−1)h
e2πi k2

L y2 dy1dy2

∣∣∣∣∣χQα(x)

=
∑
α∈Λ

∑
|k|≥κN
k1=0

1
h2 |ûk|h

∣∣∣∣ L

2πik2
e2πi k2

L lh(1− e−2πi k2
L h)

∣∣∣∣χQα(x)

≤ L

πh

∑
|k|≥κN
k1=0

|ûk|
1
|k2|

(∑
α∈Λ

χQα(x)

)
=

L

πh

∑
|k|≥κN
k1=0

|ûk|
1
|k2|

≤ L

πh

 ∑
|k|≥κN
k1=0

|ûk|2


1/2 ∑

|k|≥κN
k1=0

1
|k2|2


1/2

≤ L

πh

|q|L2

|Ω|1/2

 ∑
|k|≥κN
k1=0

1
|k2|2


1/2

=
1
πh
|q|L2

 ∑
|k|≥κN
k1=0

1
|k2|2


1/2

≤ c

h
|q|L2

1

κ
1/2
N

≤ c

hL1/2 |q|L2
1

λ
1/4
N+1

.

Analogously,

(A.12) S2(x) ≤ c

hL1/2 |q|L2
1

λ
1/4
N+1

.

Moreover,

(A.13) S3(x) =
∑
α∈Λ

∑
|k|≥κN
k1=0

1
|Qα|

|ûk|

∣∣∣∣∣
∫ lh

(l−1)h

∫ jh

(j−1)h
e2πi k1

L y1 e2πi k2
L y2 dy1dy2

∣∣∣∣∣χQα(x)

≤ L2

π2h2

∑
|k|≥κN

k1 6=0,k2 6=0

|ûk|
1

|k1||k2|
≤ L2

π2h2

|q|L2

|Ω|1/2

 ∑
|k|≥κN

k1 6=0,k2 6=0

1
k2

1k
2
2


1/2

≤ L

π2h2 |q|L2

 ∑
|k1|≥

κN
2 ,|k2|≥1

1
k2

1k
2
2

+
∑

|k2|≥
κN
2 ,|k1|≥1

1
k2

1k
2
2

1/2

≤ L

π2h2 |q|L2

 ∑
|k1|≥

κN
2

1
k2

1

 ∑
|k2|≥1

1
k2

2

+

 ∑
|k2|≥

κN
2

1
k2

2

 ∑
|k1|≥1

1
k2

1

1/2

≤ c L
h2 |q|L2

1

κ
1/2
N

≤ cL
1/2

h2 |q|L2
1

λ
1/4
N+1

.

From (A.10)–(A.13), we obtain that

(A.14) |Ih(q)(x)| ≤ cL
1/2

h2 |q|L2
1

λ
1/4
N+1

, ∀x ∈ Ω,

which proves (A.4).
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