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Introduction I
It has been clear for 30 years that strong weak coupling
dualities are ubiquitious in QFT. While there is strong
circumstantial evidence for many such dualities, not one of
them has been derived in d ≥ 3. There is no real
understanding of why they are correct.
The situation with topological field theories is better. Pure
Chern Simons (CS) theory has been shown to enjoy
invariance under the intensely interesting level rank duality
that relates the U(N)k ,k and SU(k)−N Chern Simons
theories. As this duality flips the t’Hooft coupling (rank
divided by level), it is a strong weak coupling duality that is
extremely well understood.
However topological theories lack propagating degrees of
freedom, and so dualities here may (at first) seem
disconnectedy different from dualities in genuine QFTs,
which host propagating degrees of freedom. Not quite the
case.
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Introduction II

Over the last 12 years, considerable evidence has built up
in support of the following conjecture. U(N)k ,k CS theory
coupled to one fundamental multiplet mass deformed
Wilson Fisher theory of one multiplet of fundamental
bosons, is dual to SU(k)−N CS theory coupled to (an
otherwise free) fundamental multiplet of massive fermions.
In the deep IR this QFT duality reduces to the rigorously
proved duality between topological CS theories described
above.
Thus this example connects a poorly understood QFT
duality to well understood topological dualities in a limit.
Can we learn something about the QFT dualities by
starting with the topological dualities and ‘flowing
upwards’?
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Non Relativistic QM coupled to CS Theory

In order to to flow a little bit up from the deep IR, we study
a modified - but still tractable - low energy limit that retains
some propagating degrees of freedom.
We focus on configurations with a fixed collection of
particles, and zoom in to energies that are just larger than
the sum of masses of these particles. At such energies,
the particles all move slowly compared to the speed of light
and are well described by non relativistic quantum
mechanics.
In this talk I construct the non relativistic system (Hilbert
space, Schrodinger equation) on both sides of the duality,
and study the relationship between them.
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Review of Quantization of CS with fixed sources
It is useful to first recall Witten’s classic quantization of
Chern Simons theory in the presence of fixed sources.
Witten identified the Hilbert Space of CS theory interacting
with a collection of fixed sources, in representations R1,
R2 . . .Rn of the gauge group with WZW conformal blocks
with primary fields at the same location and in the same
representations.
Here we use the term‘conformal blocks’ in an ultralocal
manner. With this notion, the space of conformal blocks to
be that subspace Inv(

⊗
i Ri)q,z of the (Lie Algebra)

invariant subspace of the tensor product of the
representations Ri , Inv(

⊗
i Ri) that obeys the Gepner

Witten constraints of CFT at insertion locations z.
The Gepner Witten constraints are a function of the
insertion locations z of the primaries, and so the
embedding of the space of conformal blocks - within the
space of Lie algebra invariants - rotates as z varies.
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Berry’s connection

As Witten worked with fixed sources, he obtained a 2n
parameter set of Hilbert Spaces, parameterized by the
insertion locations z. If we would like to compare states in
the distinct Hilbert Spaces, we need a connection - a
Berry’s connection - on this collection of Hilbert Spaces.
A userul Berry’s connection is obtained from the
construction of states, as a path integral on the solid ball in
the presence of a tangle of Wilson Lines, with end points in
the given representations and at the given locations.
We define the Berry’s connection by the condition that a
state defined by a tangle with given end points - and a
second state defined by the same tangle, with
infinitesimally separated insertion locations (and framing
vector rotated by the spin connection with spin h) - are
parallel transports of each other.
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Local flatness of the Berry’s connection

A little thought will convince you that the local curvature of
this Berry’s connection lies in the U(1): infact it is the same
as the curvature of the U(1) connection. This connection is
given by As

µi
= (hi)ωµi ). It follows that, locally,

A = ABerry −As
µi

= −V−1(∂zi V ) (1)

From the path integral, it is easy to convince oneself that
the connection ABerry, hence A, has δ function curvatures
at the locations where two insertions collide. It follows that
the function V is multivalued as one point is taken around
another.
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The Berry’s connection is the KZ connection
A connection with all these properties is familar from the
study of CFT. Recall that in the study of correlators of
WZW theory, we make use the term ‘conformal blocks’ in a
stronger sense than so far. While these CFT conformal
blocks do obey all the Gepner Witten constraints, in
addition, their variation with z is determined by the KZ
equations

DµiBβ′(z) = 0,

Dz̄i = ∂z̄i , Dzi = ∂zi +AT
zi KZ , with AT

zi KZ =
1
κ

∑
j ̸=i

T a
Ri

T a
Rj

zi − zj
,

The KZ connection has been demonstrated to equal the
Berry’s connection in a particular choice of gauge. We thus
have an algebraic construction of this Berry’s connection.
Note that, by definition, Bβ′(z) are locally covariantly
constant.
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The Inner Product

From the path integral viewpoint one computes ⟨ϕ|ψ⟩ as
follows. One reflects the path integral that defines |ϕ⟩
about the boundary of the ball, and complex conjugates all
representations. One then glues this path interal to the one
that defines |ψ⟩.
Topological invariance guarantees that simultaneous
variation of the end points z (for the states ⟨ϕ| and |ψ⟩) ,
leave the inner product ⟨ϕ|ψ⟩ unchanged. But we have
defined the connection to ensure that ⟨ϕ| and |ψ⟩ are
covariantly constant under such variations. Consquently,
the same must be true of the inner products.
Concretely, let Iα(z), α = 1 . . . d represent a basis of
blocks. Then the matrix

Qα∗β(z) = (Iα(z), Iβ(z))

is covariantly constant.
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Dynamical Particles: Bundle of Blocks

For dynamical particles, the Hilbert space is clearly is the
union of Inv(

⊗
i Ri)q,z over all z. In mathematical language,

this is a Hilbert Space of sectons, with base space z, and
fibre space is the space of blocks at location z. A state in
the Hilbert Space takes the form

ψα(z)Iα(z). (2)

We are free to perform a local change of basis

I ′ = WI

under which
ψ′ = ψW−1

Consequently our fibres are subject to Gl(d ,C) gauge
transformations.
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Dynamical particles: covariant derivative
The covariant derivative on our space uses a linear
combination of of the KZ and spin connections, and takes
the explicit form

Dµi = ∂µi +AT
µi
+ siωµi

where
si = sint

i + h+i

sint
i , the intrinsic spin of the i th particle, is external data we

need to specify. sint
i is zero for scalar particles, mi

2 for Dirac
particles, etc. In contrast, the ‘statistical’ spin hi is the spin
the particle picks up by virtue of its interation with the
Chern Simons gauge field. Value of stat spin clear from 2d
viewpoint. Can also be seen directly in 3d from a Noether
charge analysis on a spherical lump of charge (contribution
somewhat analogous to E⃗ × B⃗ in 4 dimensions).
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Dynamical particles: an ‘equivalence principle’
Consider a bunch a particles interacting via Chern Simons
exchange. The Chern Simons equation of motion
2πkF = − ∗ J tells us that the U(N) field strength is delta
function localized on particle world lines. It follows that
particles are locally free. They ‘see’ the Chern Simons
interaction only when they wind around each other. Simple
example: motion of a particle in 2d around a point like
solenoid at the origin.
In our dynamical problem, consequently, it must locally be
possible to move to a GL(d ,C) gauge in which motion
reduces to free motion on the space of particle positions
time unchanged motion in the space of conformal blocks.
Such a gauge does exist. It is obtained by choosing our
basis vectors Iα to be covariantly constant, i.e. to obey the
KZ equation. Equation can be solved beause A is locally
flat. A vanishes in new gauge. Gauge an only be chosen
locally because relevant Iα multivalued.
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Dynamical particles: inner product for sections

We need an inner product on sections. Our inner product
must be positive definite and gauge covariant. Moreover
our ‘equivalence principle’ tells us that it must locally
reduce to the product of the free particle inner product and
Witten’s inner product in the ‘irregular gauge’ of the
prevous slide.
The unique inner product that meets all these constraints is

⟨ψ|χ⟩ =
∫ ∏

i

√
gidz idz̄ iψ†Qχ
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Dynamical particles: Hamiltonian

The Hamiltionian of our system is constrained by gauge
invariance and the equivalence principle, to take the form

H =
∑

i

− 1
2|mi |

(
D2

i ψ +
aiR
2
ψ

)
,

We have allowed for each particle to couple to the
curvature in an arbitrary manner because free particles
have such couplings. Infact if one takes the non relativistic
limit of the Dirac, or massive spin one equation, one finds
ai = |si |. The chioice ai = |si | may, therefore have some
special properties. To be general, however, we leave the
couplings ai arbitrary.
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Hermiticity and Boundary Conditions

Using the convarint constancy of Q, it is not difficult to
demonstrate that the Hamiltonian of the previous slide is
Hermitian. However there is a subtlety. The proof works if
one can integrate by parts and ignore boundary terms.
This is potentially problematic when two particles approach
each other. We pause to study this point.
It is convenient to work in irregular gauge and then later
transform back to a regular gauge. To study the approach
of i and j to each other, we choose our basis of blocks to
diagonalize i , j fusion. Consider a basis element in which i
and j fuse to m. For this element, the monodromy (on
taking Ri arond Rj ) is given by

e2πiνm
ij , νm

ij = hi + hj − hm − [hi + hj − hm] (3)
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Boundary conditions
In the limit that r is small, it is easy to check that the most
general solution to the wave equation takes the form

ψ =
∑

n

ψn(r)ei(n+ν)θ, ψn(r) = anrn+ν +
bn

rn+ν
(4)

For n > 1 the condition of square integrability (well
definedness of the norm) sets bn = 0. b0 is allowed to be
zero. However it turns out that our proof of Hermiticity of
the Hamiltonian goes through if and only if the ratio b0

a0
is

the same for all wave functions. This ratio - for every
choice of i , j ,m - thus has to be specified once and for all,
and is part of the definition of our Hilbert Space.
Physically, this ratio contains information about non Chern
Simons ‘contact type’ interactions between particles. Note
this ratio has dimension mass−2ν . When our QM is
obtained as the low energy limit of a UV QFT, we expect
that this ratio vanishes generically. ‘RG flow Univerality’.
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Level Rank Duality

Our construction of our multi particle quantum mechanics
is now complete. We can construct a quantum mechanics
with particles in representations Ri in the U(N)k ,k theory.
We can separately construct the quantum mechanics of
particles in representations R̃i (level rank dual reps) in the
SU(k)−N theory. Is there a relationship between these
distinct quantum systems?
In order to address this question, we review a standard
construction in the study of level rank duality for topological
CS theories. Consider a 2d theory of Nk complex chiral
fermions. This theory enjoys invariance under U(Nk)1.
The U(Nk)1 primaries of this theory are product of (at most
Nk ) ψ or the product of at most Nk ψ̄.
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Level Rank Branching Rules
Now U(Nk)1 has a SU(N)k × SU(k)N × U(1)Nk subgroup.
This subgroup is complete, in the sense that the sum of the
Sugawra central charges of the subgroup equals the
Sugawara central charge of U(Nk)1

Any primary of U(Nk)1 can be decomposed into a finite
sum over SU(N)k × SU(k)N × U(1)Nk representations. In
some cases the SU(N)k × SU(k)N × U(1)Nk primaries are
also U(Nk)1 primaries. In other cases, the
SU(N)k × SU(k)N × U(1)Nk are descendents at level ni .
Note that Hi + ni = hi + ĥi

For this reason the U(Nk)1 blocks - simply free fermion
correlators - can be decomposed into sums of products of
SU(N)k × SU(k)N × U(1)Nk blocks. In equations

Pi
(
Ψp⃗(z)

)
= Φp⃗(z)

∑
α,β

Cαβ̂BRi
α (z)B̂R̃i

β̂
(z). (5)

Here Cαβ are constants.
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The covariantly constant section C i ĵ

The equation on the previous slide may be rewritten as
follows. First, the U(1)Nk block Φ be absorbed into the
SU(N)k block, turning it into a U(N)k ,k block. Second, we
insert Bα = Bi

αIi (and a similar equation for the dual
blocks) into this equaton to obtain

Pi (Ψ(z)) =
∑
i ,̂j

C i ĵ(z)Ii Î̂j

C i ĵ(z) = Cαβ̂Bi
α(z)B̂

ĵ
Y T β̂

(z)

C i ĵ , defined above, is a section in the product of original
and level rank dual bundles. It is also covariantly constant.
When we work in irregular gauge in each of the two
bundles, the covariantly constant section C i ĵ reduces to the
constant matrix Cαβ̂
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Map between Sections

The formula
ϕα

∗
= C∗α∗β̂∗

Q̂β̂∗γ̂ϕ̂
γ̂ (6)

maps dual sections to (the conjugates of) usual sections.
As Q and C are both covariantly constant, it follows
immediately that if ϕ̂γ̂ obeys the dual Schrodinger
equation, the complex conjugate of ϕα

∗
obeys the regular

Schrodinger equation.
The spin of the RHS of this map is ŝint

i + ĥi . The spin of the
LHS equals −ŝint

i − hi (recall complex conjugation
interchanges z and z̄ and so flips spin). Consequently this
map only works if sint

i + ŝint
i = −(hi + ĥi) = −Hi − ni .
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Invertibility of the map
In matrix notation, the map above is

ϕ∗ = C∗Q̂ϕ̂ (7)

Upon complex conjugating

ϕ = CQ̂∗ϕ̂∗ (8)

Since original and level rank dual sections are on equal
footing, we have a similar map from regular sections to the
complex conjugate of dual sections.

ϕ̂∗ = C†Qϕ (9)

It is natural to expect (9) to be the complex conjugate of
(8). This is the case provided

CQ̂∗C†Q = I (10)
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Invertibility and the inner product
One can also view (10) in the following terms. Assuming
this equation is true we can use it to solve for Q̂ in terms of
C, C† and Q. The RHS of this equation is clearly a
covariantly constant matrix, in the product of dual sections
and their complex conjugates. We independently konw that
Q̂ also has this property. A proof that sections with this
property are unique would amount to a proof of (10)
While we suspect that a proof of (10) exists somewhere in
the literature, we have not been able to find it. For now we
proceed conjecturing (10) holds, As some evidence for this
conjecture, we have proved covariantly constant sections
Q̂ are indeed unique in the SU(2)k WZW theory, as well as
for the special case of two fundamental and two
antifundamental insertions in the general SU(N)k theory.
Using (10), it is a simple matter to show that our map
between Hilbert Spaces preserves the inner product, and
therefore matrix elements of the Hamiltonian.
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Interplay with exchange statistics
Recall that any level rank pair of representations, Ri and
R̂i , descends from the branching rule of some primary
operator of U(Nk)1 theory. Every such primary is a product
of fermion fields. If the U(N)k primary is made up of an
odd number of fermions, correlators of this primary are odd
under interchange of two identical insertions. On the other
hand, if the primary is built out of an even number of
fermions, correlators of this primary are even under
interchange of identical insertions.
This can be used to show that our map between sections
preserves statistics it the representations descend from an
even number of fermions, but interchanges symmetry with
antisymmetry if the representations descend from
primaries with an odd number of Fermions. Restated, our
map between Hilbert spaces is either of the Bose-Bose,
Fermi-Fermi sort, or of the Bose-Fermi, Fermi-Bose sort,
depending on gauge reps.
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Parity
One irritation in the construction above, is that our map
takes sections to complex conjugate sections. Conjugate
sections carry the opposite fluxes as compared to ordinary
sections (can be seen from the KZ connection). This can
be undone by performing a parity transformation, which
flips the sign of the KZ connection. This parity
tranfromation flips all spins. After performing this flip, the
map between spins becomes

sint
i = ŝint

i − Hi − ni (11)

where the hatted side is assumed to have negative level.
In summary, duality works when the participating particles
have equal masses, transoform in level rank dual
representations, and when
1) The intrinsic spins of the particles are related as above
2) The duality flips Bose/Fermi statistics if and only if Hi is
a half (as opposed to full integer).

Shiraz Minwalla



Comparison with UV dualities
Consider SU(N) theory coupled to fundamental
Bosons/Fermions. These conjectured dualities have two
massive phases. In the first, the level of the fermionic side
has the same sign as its mass. In this phase the intrinsic
spin of the bosons is zero, and the intrinsic spin of the
fermions −mF

2 .
The second phase occurs when the level of the fermions
has the opposite sign as its mass. In this phase the Higgs
mechansm turns the Bosons into vectors with spin
−sgn(kB) = sgn(kF). The fermion continues to have spin
equal to −mF

2 .
In this exaple Hi =

1
2 and ni = 0. Easy to check that the

relations beween spins does obey (11) in both phases.
Also, of course, the relation between statistics. Similar
agreement in the case of every conjectured matter Chern
Simons duality. Our analysis can be thought of as first flow
upwards to these UV dualities.

Shiraz Minwalla



No UV dualities with large representations

When going through the list of conjectured UV dualities
involving matter CS theories, one is struck by the following
fact.
Each of these dualities have matter in small
representations of the gauge group. One finds the
fundamental, adjoint, two box symmetric .... . However
there are no conjectured dualities invovling matter in, e.g.
n boxes the first row of the Young Tableuax, with n > 4.
One might wonder why this is the case
(11) offers an explanation. If Hi + ni > 2 then atleast one of
sint

i and ŝint
i would have to have a spin of modulus greater

than one. Field theories of this sort do not exist (or atleast
have not yet been understood). This gives an explanation
for this observation.
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Summary and Future directions
Modulo establishing (10) in generality, we have presented
a complete proof of duality between level rank dual pairs of
Q Mech. Perhaps first step in flowing ‘upwards’ from the
well understood level rank duality of topological theories to
a proper understanding of dualities of UV QFTs
To complete our work, it would be nice to find a clear proof
of (10). Its possible that such a proof exists in the literature
and just needs to be located.
Would be interesting to try to solve our Schrodinger
equations in simple contexts (two particles, four particles
etc). Strong weak coupling duality described above may
prove useful here, as it relates naively strongly coupled
quantum mechanics to a nearly free theory.
It would be interesting to rederive the duality of quantum
mechanics using a path integral approach. Peraps such a
derivation could generalize to field theory, for instance, in
world line formalism?
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