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(HP1) binding, was also reported recently [22!!]; action of
Swi6 (HP1 in Schizosaccharomyce Pombe) distorts the his-
tone octamer resulting in exposure and increased dynam-
ics of buried amino acids within the nucleosome [22!!].
Here too, restricting the distortion of the histone octamer
affects the function, reducing the ability of Swi6 to
compact chromatin and form liquid droplets. These find-
ings suggest that the plasticity of nucleosomes is an extra
dimension that many of the remodelers may make use of
for repositioning nucleosomes or higher order chromatin
assembly [21,22!!].

Nucleosome positioning: linker length
variability and stochasticity
Chemical reactions on the scale of biomolecules, at
physiological conditions, are inherently stochastic
[23]. Hence, nucleosome positioning resulting from a
series of chemical reactions involving chaperones, TFs
and remodelling enzymes are bound to have fluctua-
tions [24–29,6,30]. Sequence effects and other regula-
tory factors might lead to variability in nucleosome
positioning pattern from gene to gene [11,9,7,24]; how-
ever, it is important to note that even in a given
population, nucleosome positioning is reported to vary
for the same gene, from one cell to the other (Figure 2b,
c). When single cell studies were performed in yeast,

nucleosome positioning observed at the promoter
region of a gene PHO5 showed many different arrange-
ments [6,30]. Under conditions when the gene is
expected to be repressed, very different nucleosome
arrangements are found at the promoter with non-zero
probability. Similar variability is seen under conditions
when the gene is expected to be active, with a different
probability distribution [6,30].

Several stochastic models were developed to understand
nucleosome organization, kinetics and competition with
other DNA-binding proteins like TFs [24–29,31]. Models
that account for sequence-dependent effects show that
the nucleosome positioning at the level of a single gene
will have variability due to the stochastic nature in
nucleosome assembly and remodelling activity [24]. It
is also proposed that the competition between nucleo-
somes and TFs to occupy the same site would result in
stochasticity in single cell occupancy [25,26,28]. Active
remodelling is argued to be crucial for the ordered posi-
tion of the nucleosomes (statistical positioning) seen in
the gene regions [29,24]. It is also suggested that the
dynamics of nucleosomes in the promoter regions would
influence the time-scales of exposure of certain regulatory
DNA-sequences in the genome, and could vary from one
gene to another [25].
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Double-stranded DNA (dsDNA, black curve) is folded and wrapped around histone octamers (blue cylindrical disks with tails) to form a polymer
made of nucleosomes having a width of "11 nm. This chain is further folded and arranged into many clusters (domains) of nucleosomes having
variable cluster-sizes. Several factors (linker length, histone modifications, DNA-bending proteins, etc.) might play important roles in this cluster
formation. Factors that drive this higher order organization is a subject of current research.
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Introduction
DNA is folded to chromatin not just for packaging but
also for encoding extra information. Beyond the genomic
sequence, the chromatin polymer encodes information in
multiple layers: layers of nucleosomes and non-histone
proteins, chemical modifications (e.g. histone marks) and
the three-dimensional (3D) organization of chromatin [1–
3], (Figure 1). The interplay between the information and
the structure (3D organization) regulates gene expression.
The layers are dynamic and are coupled with each other.
The state of chromatin is specified by specifying the
states of each of these layers. Understanding the chroma-
tin states and how one layer affects the other is important.

Most of the chromatin is essentially DNA wrapped around
histone octamers forming a polymer of nucleosomes that

appears like beads on a string [4]. The density and exact
positioning of nucleosomes carry information that is impor-
tant for transcriptional regulation; for example, the coding
regions are typically nucleosome-dense while active pro-
moter regions have a sparse arrangement of nucleosomes
[5–8]. In many of the active genes, near the transcription
start sites (TSS), nucleosomes have a specific arrange-
ment — a nucleosome free region (NFR) followed by a
periodic pattern known as statistical positioning [9,10,4]
(Figure 2). The stability and precise positioning of nucleo-
somes are influenced by many factors like the DNA
sequence [11] and ATP-dependent remodelling enzymes
[12,13] that assemble, disassemble and slide nucleosomes.
An additional family of enzymes lay complex histone
modification patterns along the positioned nucleosomes
encoding the next layer of information [3,14–16]. While it is
known that the information in the nucleosome layer affects
the 3D organization of chromatin, precisely how these
factors influence the higher order organization is an area
ofactive research. In this review,wewill present ourcurrent
understanding and recent developments in this field start-
ing from the nucleosome scale to the scale of 3D chromatin
organization, mediated by nucleosome positioning and
inter-nucleosome interactions.

Stability and dynamics of nucleosome
complex
Nucleosomes are thermodynamically stable structures;
the free energy gain from wrapping 147 bp DNA around
a histone octamer is estimated to be DG ! "27 kcal/mol
[17,18] (Figure 2a). Highly negative DG also implies that
nearly any natural DNA sequence would form nucleo-
somes with varying degree of stability.

Naively it was assumed that nucleosomes are rigid
objects. While earlier studies showed the possibility of
partial unwrapping of nucleosomal DNA [19,20], recent
experiments suggest that the nucleosome core too have
plasticity [21,22##]. When some remodelling enzymes
(other proteins) act (bind) on nucleosomes, the histone
octamer can get deformed — that is, the octamers
undergo structural change exposing several buried resi-
dues. NMR-based experiments showed that the chroma-
tin remodeler SNF2h, whose function is to slide nucleo-
somes on the DNA, distorts the histone octamer altering
the dynamics of certain buried amino acids [21]. When
the distortion of the octamer was chemically prevented,
the SNF2h-driven sliding did not happen but another
remodeler (RSC) could displace nucleosomes; this sug-
gests that only certain remodelers may make use of the
nucleosome shape-deformation. Another aspect of plas-
ticity in nucleosomes, during heterochromatin protein 1
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DNA : molecule that contains 
code for cellular processes

Figure credit:  Molecular Biology of the Cell (© Garland Science 2008) 



Different cell types; but same 
DNA

Cells in our skin Cells in our eye

How do they show different behaviour ?



Chromatin is “assembled” 
differently in different cell types

Cells in our skin Cells in our eye

As a result, they express different sets of genes



•Chromatin = DNA + protein


•Long polymer with 
heterogeneous interactions


•Different cell types (skin, 
brain) have different chromatin 
organization 

•Different microstate and 
macrostates
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Chromatin: Long polymer organization with  
multiple levels of information encoded

How is chromatin organised in 3D? 
How chemical marks are organised along genome



• What can we learn about the 3D organization of 
chromatin


• What can we say about copying epigenetic information 
before cell division

From the known experimental data,



Experimentally measuring 3D 
organisation of chromatin

Lengthscale here: hundreds of kilo bases to mb



Chromatin conformation 
capture experiments

• Experiments can quantify the 
number of “contacts” between 
any two regions


• Chromatin is cross linked 
(formaldehyde) at the 
locations of contact

Dekker et al, (2002)  Science  
Lieberman-Aiden et al, (2009)  Science



Measuring contact probability 
between any two segments

Cut the DNA using enzymes and separate  
cross-linked pieces; Sequence them

Data from a population of cells



Probability of contact between 
any two segments (x, y)

x y

x

DNA

y

(12, 13). Interestingly, chromosome 18, which is
small but gene-poor, does not interact frequently
with the other small chromosomes; this agrees
with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).

We then zoomed in on individual chromo-
somes to explore whether there are chromosom-
al regions that preferentially associate with each
other. Because sequence proximity strongly in-
fluences contact probability, we defined a normal-

ized contact matrixM* by dividing each entry in
the contact matrix by the genome-wide average
contact probability for loci at that genomic dis-
tance (10). The normalized matrix shows many
large blocks of enriched and depleted interactions,
generating a plaid pattern (Fig. 3B). If two loci
(here 1-Mb regions) are nearby in space, we
reasoned that they will share neighbors and have
correlated interaction profiles. We therefore de-
fined a correlation matrix C in which cij is the

Pearson correlation between the ith row and jth
column of M*. This process dramatically sharp-
ened the plaid pattern (Fig. 3C); 71% of the result-
ing matrix entries represent statistically significant
correlations (P ≤ 0.05).

The plaid pattern suggests that each chromo-
some can be decomposed into two sets of loci
(arbitrarily labeled A and B) such that contacts
within each set are enriched and contacts between
sets are depleted.We partitioned each chromosome

Fig. 1. Overview of Hi-C. (A)
Cells are cross-linked with form-
aldehyde, resulting in covalent
links between spatially adjacent
chromatin segments (DNA frag-
ments shown in dark blue, red;
proteins, which canmediate such
interactions, are shown in light
blue and cyan). Chromatin is
digested with a restriction en-
zyme (here, HindIII; restriction
site marked by dashed line; see
inset), and the resulting sticky
ends are filled in with nucle-
otides, one of which is bio-
tinylated (purple dot). Ligation
is performed under extremely
dilute conditions to create chi-
meric molecules; the HindIII
site is lost and an NheI site is
created (inset). DNA is purified
and sheared. Biotinylated junc-
tions are isolated with strep-
tavidin beads and identified by
paired-end sequencing. (B) Hi-C
produces a genome-wide con-
tactmatrix. The submatrix shown
here corresponds to intrachro-
mosomal interactions on chromo-
some 14. (Chromosome 14 is
acrocentric; the short arm is
not shown.) Each pixel represents all interactions between a 1-Mb locus and another 1-Mb locus; intensity corresponds to the total number of reads (0 to 50). Tick
marks appear every 10 Mb. (C and D) We compared the original experiment with results from a biological repeat using the same restriction enzyme [(C), range
from 0 to 50 reads] and with results using a different restriction enzyme [(D), NcoI, range from 0 to 100 reads].

A

B C D

Fig. 2. The presence and orga-
nization of chromosome territo-
ries. (A) Probability of contact
decreases as a function of ge-
nomic distance on chromosome 1,
eventually reaching a plateau at
~90 Mb (blue). The level of in-
terchromosomal contact (black
dashes) differs for different pairs
of chromosomes; loci on chromo-
some 1 are most likely to inter-
act with loci on chromosome 10
(green dashes) and least likely
to interact with loci on chromo-
some 21 (red dashes). Interchro-
mosomal interactions are depleted
relative to intrachromosomal in-
teractions. (B) Observed/expected
number of interchromosomal con-
tacts between all pairs of chromosomes. Red indicates enrichment, and blue indicates depletion (range from 0.5 to 2). Small, gene-rich chromosomes tend to interact
more with one another, suggesting that they cluster together in the nucleus.
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A symmetric matrix representing contact probability P(x,y)=P(y,x)

Lieberman-Aiden et al, (2009)  Science

Data from a population of cells



How do we get 3D configuration of 
chromatin from a contact matrix? 
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with FISH studies showing that chromosome 18
tends to be located near the nuclear periphery (14).
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Fig. 2. The presence and orga-
nization of chromosome territo-
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decreases as a function of ge-
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?

An “inverse” problem

What is the 3D distance between two segments of my choice?

p < 0.1



Given a polymer with all interaction 
potentials, we can compute contact 

probability : “Forward problem”
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Known only the contact probability, we need to find interaction 

strengths between different segments such that the experimentally 
observed contact probability constraints are satisfied

Monte Carlo/ 
Brownian Dynamics



An Inverse Brownian Dynamics simulation 
to compute 3D organisation, given contact  

matrix
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Aim: find out 3D configurations that satisfy 
this reference contact probability from 

experiments
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Chromatin as a bead-spring chain with 
attractive interactions between specific 

beads

Attractive 
interaction  

with a cut-off 
distance; 

representing intra-
chromosomal  
interactions

Beads: Excluded volume interactions 

ϵμν : Interaction strength between beads μ and ν
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What is the optimal ϵμν such that we get back observed contact matrix?



Inverse Brownian Dynamics 
(IBD) algorithm 

• Start with random interaction 
strength values 


• Compute contact probability 
(forward simulation)


• Compare it with experimental 
value


• Tune interaction strengths until 
the contact probability is 
comparable to what is seen 
experimentally

ϵ

Optimal interaction energies that satisfy the experimentally known constraints



What is the 3D organization of 
the alpha globin gene locus?

• The gene region that codes for 
Hemoglobin subunit alpha1


• 500kb region on human 
chromosome-16 (Encode 
region ENm008).


• Chromatin conformation 
capture experiments by Bau et 
al, Nat. Struct. Mol. Biol. 
(2011)

From K562 cells 
Gene is “ON” 

(Being read; proteins 
are being made)

From GM12878 cells 
Gene is “OFF” 

(Not being read;  
proteins 

are not made)



Inverse Brownian Dynamics 
(IBD) algorithm 

• Start with random interaction 
strength values 


• Compute contact probability 
(forward simulation)


• Compare it with experimental 
value


• Tune interaction strengths until 
the contact probability is 
comparable to what is seen 
experimentally

ϵ

Optimal interaction energies that satisfy the experimentally known constraints



What is the 3D organization of 
the alpha globin gene locus?

normalize the contact count matrix with the exact ensemble
size, i.e., Ns. From this analysis, it was observed that there
are very few samples in which the bead m is not in contact
with any of the remaining beads. It supports our hypothesis
that Nmax could be considered to be the upper limit in esti-
mating the ensemble size Ns. Because the precise value of
Ns is not known in experiments, Ns is varied as a parameter
from Nmin to Nmax. To systematically vary Ns, for conve-
nience, a parameter Nf is defined,

Nf ¼
Ns " Nmin

Nmax " Nmin
; (20)

in the range of [0, 1]. Clearly, Nf ¼ 0 implies Ns ¼ Nmin,
which is the lower bound for Ns, and Nf ¼ 1 implies Ns ¼
Nmax, which is the upper bound. The contact probabilities

at various Nf-values are calculated as pmn ¼ (Cc
mn/Ns) where

Ns ¼ Nmin þ Nf(Nmax " Nmin).
For several values of Nf, the contact count matrices are

normalized, and IBD is carried out to obtain the optimal
interaction strengths between the bead pairs. Fig. 3, a
and b show the normalized contact probabilities at Nf ¼ 0
for cell lines K562 (ON state) and GM12878 (OFF state),
respectively (reference contact probabilities), when they
are coarse grained to 50 segments of length 10 kb each as
per the procedure described above, and the corresponding
recovered contact probability matrices for both the cell lines
from simulation are shown in Fig. 3, c and d. The corre-
sponding optimized interaction energies (εmn) are plotted
in Fig. 3, e and f. The values range approximately from
0 to 3kBT. Given that typical contact probability numbers
are very small, the optimized energies are just above thermal

FIGURE 3 Comparison of the reference normal-
ized contact probabilities (CPs) (a and b) with the
recovered CPs (c and d), obtained with the IBD
method for K562 and GM12878, respectively, at
Nf ¼ 0. The value of interaction strength parameter
εmn is shown for the (e) K562 (ON state) and (f)
GM12878 (OFF state) cell lines, respectively, at
the converged state. To see this figure in color, go
online.
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Scaling: Mean 3D distance vs 
genomic distance
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FIG. 1. Changes in distance probability distribution (p(rij)) revealing the cooperative na-
ture of chromatin folding:(a) Average 3D spatial distances between all bead-pairs as a function of
corresponding genomic distances for the chromatin domain that we simulated (red symbols), control
simulations (SAW, black symbols), compared with experimental data from Szabo et al. 6 (blue symbols).
The major axes (lower x and left y) represent genomic distance and spatial distance in simulation units
(see methods) while the other axes (upper x and right y) represent the quantities in standard units. (b)
Validation of the distance probability distribution p(rij) obtained from simulations by comparing with
the analytical expression of des Cloizeaux39 for the intermediate beads (bead x and x) of a SAW polymer.
(c) Distance probability distribution function (p(rij)) for a segment length of 25 in the OFF state of ↵-
globin gene. A sharp peak within the cuto↵ radius of SDK potential emerges with increasing interaction
strength. inset highlight the interaction driven peak(d) Comparison of distance probability distribution
function by accounting for various level of interactions. SAW (black): a self-avoiding walk polymer with
no attractive interaction; OFF:GT1 (pink): polymer accounting for all interaction strengths above 1kBT ;
OFF:GT2 (blue): polymer accounting for all interaction strengths above 2kBT ; and OFF state (red): all
interactions in the OFF state. Error bars on the simulation data points are smaller than the symbol size.
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Scaling relation between contact 
probability (Pc) and average 3D distance 

(R)

Looping probability Pc(l) ∼ l− 3
2

Average 3D distance R2 ∼ l

For an ideal chain

⇒ Pc ∼ R−3

⇒ R ∼ P− 1
3

c
What is this relation for a chromatin segment?



Average 3D distance: function of contact 
probability, contour distance between 

segments (color), and interaction strengths 

Variation around R ∼ P− 1
4

c Variation around  R ∼ P− 1
3.5

c

Kiran Kumari et al (2020) Biophys. J.



3D distance distribution between 
a specific pair of points
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Average distances may not tell 
the full story!



Other interactions collectively determine 
the distance distribution between a pair of 

beads

In biology, proximity of far away genes is crucial; enhancer and promoter



Summary-I: Computing 3D 
organization from contact maps
• Experiments measure contact probability between 

segments of chromatin


• Inverse problem: determining the interactions and 3D 
configurations such that the experimentally seen contact 
probabilities are satisfied


• Configurations of Alpha globin gene


• Average 3D distance is a function of contact probability, 
contour distance between segments, and interaction 
strengths



If you zoom in, there is organization at a different scale

Picture



that distort linker DNA. The results are shown in Fig 2d for different inter-nucleosome inter-
actions and 50% density of bound non-histone proteins. The I(k) is no more peaked at k = 2;
the peak is shifted to k = 1, indicating the destruction of the zig-zag structure. For higher inter-
nucleosome interactions (different curves), two nucleosomes come very close and the overall
structure is more tightly packed. The peak probability decreases slightly with higher interac-
tions as more and more far away neighbors get locked within the cut off distance. These results
indicate that the presence of DNA-bending non-histone proteins can be a crucial factor in
determining the chromatin structure at the length scale of a gene, and may plausibly explain
why the 30-nm higher order structure is elusive under in vivo conditions (also see S3 and S4
Figs). To test whether the precise model for linker histone would affect our results, we did a set
of simulations considering linker histone as a bead that interacts with two entry/exit linker
DNA and the corresponding nucleosomes as suggested by data in the literature [49] (see S1
Text). Results in S5 Fig show that this does not change our findings. We also did BD

Fig 2. (a–b): Snapshots of chromatin from BD simulations showing DNA (yellow) and nucleosomes (blue and green) [55]. (a) In the absence of non-
histone proteins; a zig-zag structure is seen. (b) In the presence of non-histone proteins that bend linker DNA (density ρ = 0.5). DNA-bending brings
neighbouring nucleosomes closer to each other mixing the blue and green. This destroys the zig-zag nature where, typically, next neighbors (same-color

nucleosomes) are closer than the neighbors (different colors). Both have inter-nucleosome interaction with ~kh à 50. (c–d): I(k) from BD simulations. (c)

Without (~kh à 0) and with inter-nucleosome interactions (~kh à 10; 30; 50) and in the absence of any non-histone protein. Here I(k) peaks at k = 2 indicating

the formation of zig-zag structure for each ~kh. (d) Without (~kh à 0) and with inter-nucleosome interactions (~kh à 10; 30; 50) in the presence of non-histone
proteins(ρ = 0.5). Here the peaks at I(1) imply that neighboring nucleosomes are geometrically close to each other, and the zig-zag structure is dismantled
in the presence of non-histone proteins.

doi:10.1371/journal.pcbi.1005365.g002

Irregular chromatin

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005365 January 30, 2017 7 / 19

Without any DNA-bending  
non-histone protein

With DNA-bending  
Non-histone protein

(Fig 4b, ρ = 0.24, θp = 120˚ with random orientations). This simple numerical study supports
the hypothesis that the role of non-histone proteins is crucial in deciding the higher order
structure of chromatin.

Large-scale chromatin organization

So far we did simulations with a small number of nucleosomes (M⇡ 20, approximate length
scale of a single gene). However, what will be the chromatin organisation in the longer length-
scale (length scale of many genes) accounting for a large number of nucleosomes is an impor-
tant question. Since performing BD for large systems is computationally expensive, and since
both BD and FRC simulations give similar results, we implemented the 3D FRC model to
probe large-scale organization of chromatin. Using the FRC model, we generated a large num-
ber of (⇡ 107) equilibrium configurations of chromatin, each having 2000 nucleosomes, both
with and without non-histone proteins. Systematically varying protein density (ρ), we investi-
gated the amount of non-histone proteins required for the appearance of an irregular struc-
ture. To compare the 3D FRC model with and without proteins and to quantify the resulting
nucleosome organization in space, here too we computed I(k) (Fig 5a). In the absence of non-
histone proteins (Fig 5a, blue), the peak is at k = 2 implying a zig-zag structure. As protein
density (ρ) increases, the k = 2 becomes less probable, and the probability of finding k 6à 2
increases. Here the bending angle of non-histone protein is chosen as θp = 90˚ representing
proteins like HMG-B or nhp6 [52, 53].

Results presented in Fig 5a suggest that, as a function of one parameter—non-histone pro-
tein density—there exists a transition from a zig-zag structure (dominant peak is at k = 2) to
an irregular structure (dominant peak at k 6à 2). The plot of peak position (the value of k at
which I(k) peaks) as a function of protein density (Fig 5a, inset) captures this transition and
shows that the transition happens when the protein density is⇡0.48. This is also the parameter
regime where I(1) is comparable to I(2)—this is important since recent experiments have indi-
cated that chromatin has an irregular structure, and at the same time there exist both i/i + 1

Fig 4. Snapshots of chromatin simulated using the FRC model in 2D showing linker DNA (red) and nucleosomes (blue). The linker length is⇡ 42
bp. (a)In the absence of any non-histone protein, we get a nice zig-zag-like structure. (b)In the presence of non-histone proteins where each linker region
has a probability of 0.24 for non-histone protein to bind. The presence of non-histone proteins is modeled as a bend in the linker region. The non-histone
proteins (not marked separately) are visible as sharp angles between two neighboring blue dots.

doi:10.1371/journal.pcbi.1005365.g004

Irregular chromatin

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005365 January 30, 2017 9 / 19

Our earlier work: plausible explanation for 
absence of regular 30nm chromatin 

structure

Bajpai, Jain, Inamdar, Das and Padinhateeri (2017) PLOS Comp. Bio. 
Bajpai and Ranjith Padinhateeri (2020) Biophys. J



Part II: What can we say about 
copying chromatin information 

before cell division



When cells divide, DNA 
(genetic code) is copied. 

What happens to the 
epigenetic information?



Copying DNA before cell 
division (DNA replication)

Chromatin is disassembled! How do you assemble it back?



How do you assemble nucleosomes 
 back at the right location?

Re-assembling chromatin after replication

Published online 21 March 2018 Nucleic Acids Research, 2018, Vol. 46, No. 10 4991–5000
doi: 10.1093/nar/gky207

Coupling of replisome movement with nucleosome
dynamics can contribute to the parent–daughter
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ABSTRACT

Positioning of nucleosomes along the genomic DNA
is crucial for many cellular processes that include
gene regulation and higher order packaging of chro-
matin. The question of how nucleosome-positioning
information from a parent chromatin gets transferred
to the daughter chromatin is highly intriguing. Ac-
counting for experimentally known coupling between
replisome movement and nucleosome dynamics, we
propose a model that can obtain de novo nucleo-
some assembly similar to what is observed in recent
experiments. Simulating nucleosome dynamics dur-
ing replication, we argue that short pausing of the
replication fork, associated with nucleosome disas-
sembly, can be a event crucial for communicating
nucleosome positioning information from parent to
daughter. We show that the interplay of timescales
between nucleosome disassembly (! p) at the repli-
cation fork and nucleosome sliding behind the fork
(! s) can give rise to a rich ‘phase diagram’ having
different inherited patterns of nucleosome organiza-
tion. Our model predicts that only when ! p ≥ ! s the
daughter chromatin can inherit nucleosome position-
ing of the parent.

INTRODUCTION

The fate of a cell is controlled not just by the DNA sequence
alone but also by the organization and the kinetics of pro-
teins along the DNA. In most eukaryotes, a huge fraction of
the genomic DNA (e.g. >80% in yeast gene regions) is cov-
ered by histone proteins leading to formation of a chromatin
that appears like a ‘string of beads’ (1,2). Advances made
in the last many years have con!rmed that nucleosomes and
their organization play an important role in nearly all cellu-
lar processes. For example, nucleosomes are known to cover

transcription factor binding sites and restrict proteins from
accessing those crucial sites along the genome and, hence,
regulate gene expression (3–7). There are very different nu-
cleosome organizations in coding regions and promoter re-
gions of genes, indicating the importance of the high di-
versity in nucleosome organization (3,8–10). Precise nucleo-
some organization is also crucial for higher order packaging
of DNA as the polymorphic chromatin structure depends
on linker length distribution (11,12).

Since the precise positioning of nucleosomes is impor-
tant, the natural question is, how do cells transfer this in-
formation about nucleosome positioning from one gener-
ation to another? How do daughter cells know about the
nature of nucleosome positioning in the parent cells? This is
an intriguing question for which we do not know the precise
answer. One hypothesis argues that the DNA sequence de-
termines the nucleosome positioning along the genome, and
hence, the information is transferred with the DNA (8,13).
However, various experiments have indicated that the DNA
sequence alone would not determine the nucleosome posi-
tioning in the genome (9,14)––ATP-dependent chromatin
remodelling, statistical positioning and other factors play
equally important role (15–19). Moreover, different cell
types (neuronal, muscle, epithelial cells etc) have exactly the
same DNA, but they have very different organization of the
chromatin, gene expression pattern and function (2). An-
other major drawback of the sequence-dictated model of
self-organization of nucleosomes is that attaining an ‘equi-
librium’ (steady state) nucleosome organization may take
long time (20), and hence, regulation of genes prior to at-
taining a desired nucleosome distribution may fail. An alter-
native hypothesis is that nucleosome positioning needs to be
inherited, somehow, during replication so that the daugh-
ter cells can appropriately regulate their gene expression in
an independent manner (21). This hypothesis is partially
strengthened by recent experiments (22) which show that
nucleosome positions are conserved at inactive sites behind
the replication fork.
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FIG. 1: Schematic description of the problem (a) Row 1 from top: chromatin as a string of nucleosomes with and
without the histone modification(star) of our interest. This can be mapped to a string of binary numbers indicating

the presence (1) or absence (0) of the modification (row 2), giving us M. Row 3: one typical realization of a
daughter chromatin (D) produced from M above, via a process mimicking DNA replication, where only a fraction of
the modifications (1s) will end up in the daughter chromatin, stochastically; the rest do not have the modification of

interest (0) [24]. Soon after replication, certain enzymes will insert modifications correcting D to a mother-like
sequence M̂

¯
(row 4). Since these are stochastic processes, we expect some errors. (b) The mother sequence (M) is

modeled as a first order Markov chain having sequence of 0s and 1s. ↵ and � are probabilities of finding a 1 followed
by a 1, and a 0 followed by a 0, respectively. 1� ↵ and 1� � are probabilities of finding a 1 followed by a 0 (note

arrowheads), and a 0 followed by a 1, respectively. (c) From an Information theory perspective, the daughter
sequence (D ) is obtained by a mother sequence M getting logically ANDed with an independent and identically
distributed (IID) binary sequence Z (noise). A mother-like sequence M̂ is reconstructed by passing D through a

decoder. The plausible ways by which enzymes could act as decoders is the subject of this study.

This deviation metric is e↵ectively the bit error rate (BER) when N becomes large [43]. Thus the chosen M̂ should
minimize the BER with respect to the actual sequence M, while obeying the transition law in Eq. (1). This is similar
to data communication through an erroneous channel. It is well known that Bayesian estimation schemes minimize
the average detection error probability at the receiver. In particular, a decoder choosing the input sequence having the
Maximum Àposteriori Probability (MAP) is optimal in minimizing the message error probability in communication [42,
43]. We call this the Sequence MAP (SMAP) decoder, which identifies the most probable sequence M̂ = (m̂1, · · · , m̂N )
based on the observations dN1 as

(m̂1, · · · , m̂N ) = argmax
m1,··· ,mN

P(mN
1 |dN1 ). (4)

SMAP decoding is known to have near optimal BER performance, and good analytical tractability in many con-
texts [43]. While the optimal BER performance can be achieved by Bitwise MAP (BMAP) decoding for each mod-

The sequence of of this modification (the pattern) 
encodes information on how to fold chromatin; 
e.g., it decides the local “interaction strength”

Each nucleosome has chemical modifications 
like a “flag” (acetylation/methylation)  



replication of the locus at the time of EdU labeling (Figures 1C
and 1D; Figure S1F). Our synchronization approach to ChOR-
seq captured approximately 70% and 77% of the parental
H3K4me3- and H3K27me3-enriched regions, respectively (Fig-
ure 1E). Importantly, 94% of H3K27me3 and 92% of H3K4me3
loci in replicated regions were also identified by ChOR-seq (Fig-
ure 1E). This was also true when newly replicated DNA was
labeled directly by biotin-dUTP instead of EdU coupled with
Click-IT chemistry, and the spiked-in Drosophila chromatin
was omitted (Figures S1G and S1H). We were therefore confi-
dent that ChOR-seq was a robust and sensitive method that
could directly assess histone PTM occupancy on replicated
DNA genome-wide.

The Histone Modification Landscape Is Accurately
Reproduced on Newly Synthesized DNA
To address how accurately histone PTM profiles are copied
during replication, we compared occupancy patterns of
four modifications—H3K27me3, H3K4me3, H3K36me3, and
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Figure 1. Tracking Histone PTM Occupancy
after DNA Replication with ChOR-Seq
(A) Overview of the ChOR-seq protocol.

(B) Experimental setup. HeLa S3 cells were

released into S phase from a thymidine block.

Parental and nascent chromatin were collected 1 hr

before or immediately after EdU labeling, respec-

tively. The EdU label was then chased and mature

chromatin harvested at selected time points along

the cell cycle.

(C and D) Parental ChIP-seq and nascent ChOR-

seq profiles of pan-H3 and H3K27me3 (C) and

H3K4me3 (D). Replicated DNA profiles are shown in

blue. Signal is scaled as percentage of maximum at

the locus depicted.

(E) Bar plots showing the synchronization

coverage (left) and ChOR-seq coverage (right) in

the H3K4me3 and H3K27me3 datasets. Percent-

age is calculated from peaks subsetted into 500 bp

non-overlapping windows.

See also Figure S1.

H3K79me3—in pre-replicative and
nascent chromatin by parental ChIP-seq
and ChOR-seq, respectively. Locally, we
observed that histone modification pat-
terns were preserved during replication
(Figure 2A; Figure S2A). Plotting averaged
signal over sites of expected enrichment
for each mark confirmed that this posi-
tion preservation occurred genome-wide
(Figure 2B; Figure S2B). Heatmaps of
signal over expected sites of enrichment
revealed that this held true for all levels
of PTM enrichment (Figure 2C). Parsing
H3K4me3 regions by expression level
also showed that the accuracy of parental
histone deposition was unaffected by
parental PTM levels (Figure S2C). Blurring
of PTM occupancy at sites of expected

enrichment would have indicated dispersal of parental histones
during DNA replication. The average profiles of parental and
nascent PTM signals did not show any indication of blurring or
replication-dependent dispersal of histone PTMs. We further
determined the mean difference in localization between nascent
and parental H3K4me3 peaks at individual loci to be approxi-
mately 170 bp (Figure S2D). This is below the resolution of our
ChOR-seq analysis given by an average DNA fragment size of
250 bp (Figure S2E). We thus conclude that parental histones
decorated with PTMs are re-incorporated into replicated DNA
within 250 bp of their pre-replication position.

H3K4me3 Is Restored within 6 hr Post Replication
ChOR-seq analysis of nascent chromatin showed that histone
H3K4me3 occupancy patterns were accurately reproduced
on newly replicated DNA, but it remained unclear whether
the H3K4me3 landscape was, in fact, fully restored or
chromatin maturation would be required for modification of
new histones. This was particularly important to address as
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histone modifications after DNA

replication and find that the genomic

localization of modified parental histones

is preserved on daughter strands while

new histone modification to restore pre-

replication levels follows mark- and

locus-specific kinetics.
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FIG. 1: Schematic description of the problem (a) Row 1 from top: chromatin as a string of nucleosomes with and
without the histone modification(star) of our interest. This can be mapped to a string of binary numbers indicating

the presence (1) or absence (0) of the modification (row 2), giving us M. Row 3: one typical realization of a
daughter chromatin (D) produced from M above, via a process mimicking DNA replication, where only a fraction of
the modifications (1s) will end up in the daughter chromatin, stochastically; the rest do not have the modification of

interest (0) [24]. Soon after replication, certain enzymes will insert modifications correcting D to a mother-like
sequence M̂

¯
(row 4). Since these are stochastic processes, we expect some errors. (b) The mother sequence (M) is

modeled as a first order Markov chain having sequence of 0s and 1s. ↵ and � are probabilities of finding a 1 followed
by a 1, and a 0 followed by a 0, respectively. 1� ↵ and 1� � are probabilities of finding a 1 followed by a 0 (note

arrowheads), and a 0 followed by a 1, respectively. (c) From an Information theory perspective, the daughter
sequence (D ) is obtained by a mother sequence M getting logically ANDed with an independent and identically
distributed (IID) binary sequence Z (noise). A mother-like sequence M̂ is reconstructed by passing D through a

decoder. The plausible ways by which enzymes could act as decoders is the subject of this study.

This deviation metric is e↵ectively the bit error rate (BER) when N becomes large [43]. Thus the chosen M̂ should
minimize the BER with respect to the actual sequence M, while obeying the transition law in Eq. (1). This is similar
to data communication through an erroneous channel. It is well known that Bayesian estimation schemes minimize
the average detection error probability at the receiver. In particular, a decoder choosing the input sequence having the
Maximum Àposteriori Probability (MAP) is optimal in minimizing the message error probability in communication [42,
43]. We call this the Sequence MAP (SMAP) decoder, which identifies the most probable sequence M̂ = (m̂1, · · · , m̂N )
based on the observations dN1 as

(m̂1, · · · , m̂N ) = argmax
m1,··· ,mN

P(mN
1 |dN1 ). (4)

SMAP decoding is known to have near optimal BER performance, and good analytical tractability in many con-
texts [43]. While the optimal BER performance can be achieved by Bitwise MAP (BMAP) decoding for each mod-



When cells divide, DNA 
(genetic code) is copied. 

What happens to the 
epigenetic information?



• Certain modifications (many 
repressive marks) are “inherited” 
during cell division  


• Certain other marks are not inherited 
but re-established (somehow) after 
replication

replication of the locus at the time of EdU labeling (Figures 1C
and 1D; Figure S1F). Our synchronization approach to ChOR-
seq captured approximately 70% and 77% of the parental
H3K4me3- and H3K27me3-enriched regions, respectively (Fig-
ure 1E). Importantly, 94% of H3K27me3 and 92% of H3K4me3
loci in replicated regions were also identified by ChOR-seq (Fig-
ure 1E). This was also true when newly replicated DNA was
labeled directly by biotin-dUTP instead of EdU coupled with
Click-IT chemistry, and the spiked-in Drosophila chromatin
was omitted (Figures S1G and S1H). We were therefore confi-
dent that ChOR-seq was a robust and sensitive method that
could directly assess histone PTM occupancy on replicated
DNA genome-wide.

The Histone Modification Landscape Is Accurately
Reproduced on Newly Synthesized DNA
To address how accurately histone PTM profiles are copied
during replication, we compared occupancy patterns of
four modifications—H3K27me3, H3K4me3, H3K36me3, and
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Figure 1. Tracking Histone PTM Occupancy
after DNA Replication with ChOR-Seq
(A) Overview of the ChOR-seq protocol.

(B) Experimental setup. HeLa S3 cells were

released into S phase from a thymidine block.

Parental and nascent chromatin were collected 1 hr

before or immediately after EdU labeling, respec-

tively. The EdU label was then chased and mature

chromatin harvested at selected time points along

the cell cycle.

(C and D) Parental ChIP-seq and nascent ChOR-

seq profiles of pan-H3 and H3K27me3 (C) and

H3K4me3 (D). Replicated DNA profiles are shown in

blue. Signal is scaled as percentage of maximum at

the locus depicted.

(E) Bar plots showing the synchronization

coverage (left) and ChOR-seq coverage (right) in

the H3K4me3 and H3K27me3 datasets. Percent-

age is calculated from peaks subsetted into 500 bp

non-overlapping windows.

See also Figure S1.

H3K79me3—in pre-replicative and
nascent chromatin by parental ChIP-seq
and ChOR-seq, respectively. Locally, we
observed that histone modification pat-
terns were preserved during replication
(Figure 2A; Figure S2A). Plotting averaged
signal over sites of expected enrichment
for each mark confirmed that this posi-
tion preservation occurred genome-wide
(Figure 2B; Figure S2B). Heatmaps of
signal over expected sites of enrichment
revealed that this held true for all levels
of PTM enrichment (Figure 2C). Parsing
H3K4me3 regions by expression level
also showed that the accuracy of parental
histone deposition was unaffected by
parental PTM levels (Figure S2C). Blurring
of PTM occupancy at sites of expected

enrichment would have indicated dispersal of parental histones
during DNA replication. The average profiles of parental and
nascent PTM signals did not show any indication of blurring or
replication-dependent dispersal of histone PTMs. We further
determined the mean difference in localization between nascent
and parental H3K4me3 peaks at individual loci to be approxi-
mately 170 bp (Figure S2D). This is below the resolution of our
ChOR-seq analysis given by an average DNA fragment size of
250 bp (Figure S2E). We thus conclude that parental histones
decorated with PTMs are re-incorporated into replicated DNA
within 250 bp of their pre-replication position.

H3K4me3 Is Restored within 6 hr Post Replication
ChOR-seq analysis of nascent chromatin showed that histone
H3K4me3 occupancy patterns were accurately reproduced
on newly replicated DNA, but it remained unclear whether
the H3K4me3 landscape was, in fact, fully restored or
chromatin maturation would be required for modification of
new histones. This was particularly important to address as

Molecular Cell 72, 239–249, October 18, 2018 241
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What happens to histone 
modifications during replication?

• During replication, each 
nucleosome from mother 
chromatin is randomly placed 
on one of the two daughter 
chromatin strand (probability 
0.5).


• Half the nucleosomes are 
newly assembled
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What happens to histone 
modifications during replication?

• During replication, each 
nucleosome from mother 
chromatin is randomly placed 
on one of the two daughter 
chromatin strand (probability 
0.5).


• Half the nucleosomes are newly 
assembled


• Old nucleosome will carry 
modification (1) if it has any.


• New nucleosome will NOT have 
any modification (0).
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Fig. 3. Figure illustrating how the daughter chromatin with the nucleosomes is
modeled as the three-state Markov process. The state a represents a 1 in the mother
which has become 0 in the daughter while the state b represents a 1 in the mother
remaining as a 1 in the daughter
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Fig. 4. Schematic figure illustrating how a mother sequence M gets inherited into
one of the daughter strands (D) with 50 percent loss of 1’s. The corrected sequence
M̂
¯

fills the intermediate 0’s to 1’s under a threshold

the sequence is given by the steady state probability in state99

1. This can be derived from the balance equations of the state100

diagrams 2 and 3 . For the mother chromatin, this is given101

by (1≠—)
(2≠–≠—) while for the daughter chromatin, it is given by102

(1≠—)
(4≠2–≠2—) . The derivations are provided in the supplementary103

material .104

Given a sequence M on a mother chromatin, our model105

creates a daughter chromatin having histone modification se-106

quence D = {d1, d2, d3, ..., dN } as follows. During replication,107

with probability p = 1
2 , each nucleosome on a daughter chro-108

matin is either directly inherited from its parental counterpart109

(di = mi) or newly deposited (di = 0) from a fresh pool of110

histone assembled de novo. In information theory, the modi-111

fication redistribution process during replication, to produce112

a daughter sequence D, is equivalent of doing a logical AND113

operation of the mother sequence M with an independent and114

identically distributed (IID) binary sequence Z (noise):115

D = M · Z [4]116

We define the deviation between the mother and daughter as117

“error” in the inherited histone modification defined as118

�(M, D) = 1
N

Ûÿ

i

(mi ≠ di)2. [5]119

This is equivalent of doing logical XOR operation �(M, D) =120

M ü D.121

Error Minimization Criterion 122

SIBI: We have shown that it is su�cient to reconstruct the pat- 123

tern segment by segment, where each segment is a set of zeroes 124

flanked by ones at either end. Thus, without loss of generality, 125

we can limit the segment D to be of the form (1, 0, · · · , 0, 1), 126

and the objective is to estimate the corresponding segment M 127

of the mother sequence from the pattern D. 128

Let us first consider the sequence MAP metric given in
Eq. (3). Notice that for a mother sequence M = m1, · · · , mN ,
we have

Pr (M) =
NŸ

i=1

Pr (mi|mi≠1), [6]

by the Markov chain assumption. Furthermore, each non-zero
input is independently flipped with probability half while being
copied to the daughter sequence. Thus, given the bit value at
position i of the mother, the value di is further determined
by an independent coin flip. This corresponds to a discrete
memoryless system, yielding

Pr (D|M) =
NŸ

i=1

Pr (di|mi). [7]

The sequence MAP metric can now be written as

Pr (M̂|D) = Pr (M̂, D)
Pr (D) [8]

= 1
P (D)Pr (M̂)Pr (D|M̂) [9]

= 1
P (D)

NŸ

i=1

Pr (m̂i|m̂i≠1)Pr (di|m̂i), [10]

where m̂0 was taken as ÿ. 129

Since Pr (D) is constant for a given D, it does not a�ect our
maximization procedure anymore, and can be safely ignored.
Thus, the e�ective sequence MAP metric becomes

P r(M̂, D) =
NŸ

i=1

P r(m̂i|m̂i≠1)P r(di|m̂i). [11]

Trellis Decoding 130

Maximizing the MAP metric over a finite state machine is a 131

well studied topic in information theory, where decoding can 132

be e�ectively done using a dynamic programming procedure 133

known as the Viterbi Algorithm (VA). The VA was first pro- 134

posed for maximum likelihood decoding of convolutional codes, 135

but has been successfully adapted to various other contexts, 136

including MAP decoding. In a nutshell, each input sequence is 137

considered as a path through a trellis diagram of states. Then 138

a branch metric based on the observations is assigned to each 139

state transition in the trellis, and a sequence corresponding to 140

a path with maximal path metric is declared as the decoded 141

output. The path-metric is obtained as the product of the 142

branch-metrics in that path, e�ectively computing Eq. (11) 143

in an iterative manner. In the inheritance problem, since we 144

assumed a first order Markov chain, the trellis will have two 145

states at each stage, identifying whether the preceding bit 146

was a 0 or 1. The example trellis diagram in Fig. 6 has the 147

respective branch metrics marked on each transition. 148
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FIG. 1: Schematic description of the problem (a) Row 1 from top: chromatin as a string of nucleosomes with and
without the histone modification(star) of our interest. This can be mapped to a string of binary numbers indicating

the presence (1) or absence (0) of the modification (row 2), giving us M. Row 3: one typical realization of a
daughter chromatin (D) produced from M above, via a process mimicking DNA replication, where only a fraction of
the modifications (1s) will end up in the daughter chromatin, stochastically; the rest do not have the modification of

interest (0) [24]. Soon after replication, certain enzymes will insert modifications correcting D to a mother-like
sequence M̂

¯
(row 4). Since these are stochastic processes, we expect some errors. (b) The mother sequence (M) is

modeled as a first order Markov chain having sequence of 0s and 1s. ↵ and � are probabilities of finding a 1 followed
by a 1, and a 0 followed by a 0, respectively. 1� ↵ and 1� � are probabilities of finding a 1 followed by a 0 (note

arrowheads), and a 0 followed by a 1, respectively. (c) From an Information theory perspective, the daughter
sequence (D ) is obtained by a mother sequence M getting logically ANDed with an independent and identically
distributed (IID) binary sequence Z (noise). A mother-like sequence M̂ is reconstructed by passing D through a

decoder. The plausible ways by which enzymes could act as decoders is the subject of this study.

This deviation metric is e↵ectively the bit error rate (BER) when N becomes large [43]. Thus the chosen M̂ should
minimize the BER with respect to the actual sequence M, while obeying the transition law in Eq. (1). This is similar
to data communication through an erroneous channel. It is well known that Bayesian estimation schemes minimize
the average detection error probability at the receiver. In particular, a decoder choosing the input sequence having the
Maximum Àposteriori Probability (MAP) is optimal in minimizing the message error probability in communication [42,
43]. We call this the Sequence MAP (SMAP) decoder, which identifies the most probable sequence M̂ = (m̂1, · · · , m̂N )
based on the observations dN1 as

(m̂1, · · · , m̂N ) = argmax
m1,··· ,mN

P(mN
1 |dN1 ). (4)

SMAP decoding is known to have near optimal BER performance, and good analytical tractability in many con-
texts [43]. While the optimal BER performance can be achieved by Bitwise MAP (BMAP) decoding for each mod-



Given a daughter-chromatin 
histone modification sequence D, 

how can a cell reconstruct  
mother-like modification pattern ?
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FIG. 1: Schematic description of the problem (a) Row 1 from top: chromatin as a string of nucleosomes with and
without the histone modification(star) of our interest. This can be mapped to a string of binary numbers indicating

the presence (1) or absence (0) of the modification (row 2), giving us M. Row 3: one typical realization of a
daughter chromatin (D) produced from M above, via a process mimicking DNA replication, where only a fraction of
the modifications (1s) will end up in the daughter chromatin, stochastically; the rest do not have the modification of

interest (0) [24]. Soon after replication, certain enzymes will insert modifications correcting D to a mother-like
sequence M̂

¯
(row 4). Since these are stochastic processes, we expect some errors. (b) The mother sequence (M) is

modeled as a first order Markov chain having sequence of 0s and 1s. ↵ and � are probabilities of finding a 1 followed
by a 1, and a 0 followed by a 0, respectively. 1� ↵ and 1� � are probabilities of finding a 1 followed by a 0 (note

arrowheads), and a 0 followed by a 1, respectively. (c) From an Information theory perspective, the daughter
sequence (D ) is obtained by a mother sequence M getting logically ANDed with an independent and identically
distributed (IID) binary sequence Z (noise). A mother-like sequence M̂ is reconstructed by passing D through a

decoder. The plausible ways by which enzymes could act as decoders is the subject of this study.

This deviation metric is e↵ectively the bit error rate (BER) when N becomes large [43]. Thus the chosen M̂ should
minimize the BER with respect to the actual sequence M, while obeying the transition law in Eq. (1). This is similar
to data communication through an erroneous channel. It is well known that Bayesian estimation schemes minimize
the average detection error probability at the receiver. In particular, a decoder choosing the input sequence having the
Maximum Àposteriori Probability (MAP) is optimal in minimizing the message error probability in communication [42,
43]. We call this the Sequence MAP (SMAP) decoder, which identifies the most probable sequence M̂ = (m̂1, · · · , m̂N )
based on the observations dN1 as

(m̂1, · · · , m̂N ) = argmax
m1,··· ,mN

P(mN
1 |dN1 ). (4)

SMAP decoding is known to have near optimal BER performance, and good analytical tractability in many con-
texts [43]. While the optimal BER performance can be achieved by Bitwise MAP (BMAP) decoding for each mod-
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Known some statistical 
information about the mother-

chromatin, what is the best any 
known algorithm can do?
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FIG. 1: Schematic description of the problem (a) Row 1 from top: chromatin as a string of nucleosomes with and
without the histone modification(star) of our interest. This can be mapped to a string of binary numbers indicating

the presence (1) or absence (0) of the modification (row 2), giving us M. Row 3: one typical realization of a
daughter chromatin (D) produced from M above, via a process mimicking DNA replication, where only a fraction of
the modifications (1s) will end up in the daughter chromatin, stochastically; the rest do not have the modification of

interest (0) [24]. Soon after replication, certain enzymes will insert modifications correcting D to a mother-like
sequence M̂

¯
(row 4). Since these are stochastic processes, we expect some errors. (b) The mother sequence (M) is

modeled as a first order Markov chain having sequence of 0s and 1s. ↵ and � are probabilities of finding a 1 followed
by a 1, and a 0 followed by a 0, respectively. 1� ↵ and 1� � are probabilities of finding a 1 followed by a 0 (note

arrowheads), and a 0 followed by a 1, respectively. (c) From an Information theory perspective, the daughter
sequence (D ) is obtained by a mother sequence M getting logically ANDed with an independent and identically
distributed (IID) binary sequence Z (noise). A mother-like sequence M̂ is reconstructed by passing D through a

decoder. The plausible ways by which enzymes could act as decoders is the subject of this study.

This deviation metric is e↵ectively the bit error rate (BER) when N becomes large [43]. Thus the chosen M̂ should
minimize the BER with respect to the actual sequence M, while obeying the transition law in Eq. (1). This is similar
to data communication through an erroneous channel. It is well known that Bayesian estimation schemes minimize
the average detection error probability at the receiver. In particular, a decoder choosing the input sequence having the
Maximum Àposteriori Probability (MAP) is optimal in minimizing the message error probability in communication [42,
43]. We call this the Sequence MAP (SMAP) decoder, which identifies the most probable sequence M̂ = (m̂1, · · · , m̂N )
based on the observations dN1 as

(m̂1, · · · , m̂N ) = argmax
m1,··· ,mN

P(mN
1 |dN1 ). (4)

SMAP decoding is known to have near optimal BER performance, and good analytical tractability in many con-
texts [43]. While the optimal BER performance can be achieved by Bitwise MAP (BMAP) decoding for each mod-
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Maintaining specific spatial pattern of histone modifications along

the one-dimensional DNA contour is crucial for cellular identity and

survival of the cells. However, during DNA replication, each daugh-

ter chromatin gets only half the parental nucleosomes. How does a

daughter chromatin reconstruct full modification pattern given only

half the information? We address this question by applying ideas

from statistical physics and information theory to the known biology

of epigenetic inheritance. Modelling histone modification pattern in

a mother chromatin as a Markov chain of first order, we discuss vari-

ous plausible correcting strategies to recover information and obtain

an optimal strategy that would minimize the error between mother

and daughter chromatin. We argue that a typical enzyme may imple-

ment a k-threshold algorithm which is related to the MAP decoding

algorithm in information theory. Comparing our simulations with re-

cent experimental data, we obtain optimal parameters and discuss

how enzymes may be tuned evolutionarily to implement such a cor-

recting mechanism.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

PTM inheritance| 2 Information Theory | Probabilistic Model | ...

Information in our cells is stored in the form of chromatin —1

DNA covered with many proteins, organized in a non-random2

way. Most of the DNA is wrapped around octamers of hi-3

stone proteins making chromatin essentially like a string of4

nucleosomes (histones + DNA). There are multiple layers of5

information encoded in chromatin. The first layer is the ge-6

netic code encoded in the sequence of nucleotides. The second7

layer is the information encoded in the organization of proteins8

along the DNA.9

First para about chromatin in general10

11

Second para about histone code, importance of known12

modifications, relevance of having modifications13

14

Third para: Will modifications be inherited? What15

happens during replication? The known details about16

inheritance. Growth experimental results etc17

18

Fourth para: The inheritance puzzle, Posing as an19

information theory problem20

21

Fifth para: Importance of theoretical modeling. Existing22

models and their limitations. What we plan to do in this23

paper24

Model and Methods25

Consider a region on a mother chromatin having N nucleo-26

somes. We are interested to study the inheritance of one modifi-27

cation at a time. Since many of the repressive marks are known28

to be inherited immediately after replication, we will consider29

one such repressive mark, say H3K9me3, and its pattern along30

Fig. 1. Schematic figure illustrating how a mother sequence M gets inherited into one
of the daughter strands (D) with 50 percent loss of 1’s. The corrected sequence M’
fills the intermediate 0’s to 1’s under a threshold

the chromatin. Let a vector M = {m1, m2, m3, ..., mN } repre- 31

sent the pattern on a given mother chromatin, where mi can 32

have values 1 or 0 indicating the presence or absence of the 33

mofication on the ith nucleosome (see Fig. 1). For simplicity, 34

we assume that M can be constructed as a Markov chain 35

of order one. According this model, if modification on ith
36

nucleosome mi = 1, let – and (1 ≠ –) be the probabilities 37

for having mi+1 = 1 and mi+1 = 0, respectively. Similarly, 38

if mi = 0, let — and 1 ≠ — be the probabilities for having 39

mi+1 = 0 and mi+1 = 1 respectively. Known values of – and 40

— one could construct M. When – is large and — is relatively 41

small, the pattern would be predominantly long islands of 1s, 42

interspersed with occasional 0s indicating a region dominated 43

with modification of our interest. We need to discuss some 44

sensible values of alpha and beta such that 75% or more are 45

1? In other words, what is the relation between total fraction 46

of 1s and alpha and beta? 47

Given a sequence M on a mother chromatin, our model 48

creates a daughter chromatin having histone modification se- 49

quence D = {d1, d2, d3, ..., dN } as follows. During replication, 50

with probability p = 1
2 , each nucleosome on a daughter chro- 51

matin is either directly inherited from its parental counterpart 52

(di = mi) or newly deposited (di = 0) from a fresh pool of 53

histone assembled de novo. In information theory, the modi- 54

fication redistribution process during replication, to produce 55

a daughter sequence D, is equivalent of doing a logical AND 56

operation of the mother sequence M with an independent and 57

identically distributed (IID) binary sequence Z (noise): 58

D = M · Z [1] 59

We define the deviation between the mother and daughter as 60
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αLet be the probability of having a 1 followed by a 1 
be the probability of having a 0 followed by a 0 β
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FIG. 1: Schematic description of the problem (a) Row 1 from top: chromatin as a string of nucleosomes with and
without the histone modification(star) of our interest. This can be mapped to a string of binary numbers indicating

the presence (1) or absence (0) of the modification (row 2), giving us M. Row 3: one typical realization of a
daughter chromatin (D) produced from M above, via a process mimicking DNA replication, where only a fraction of
the modifications (1s) will end up in the daughter chromatin, stochastically; the rest do not have the modification of

interest (0) [24]. Soon after replication, certain enzymes will insert modifications correcting D to a mother-like
sequence M̂

¯
(row 4). Since these are stochastic processes, we expect some errors. (b) The mother sequence (M) is

modeled as a first order Markov chain having sequence of 0s and 1s. ↵ and � are probabilities of finding a 1 followed
by a 1, and a 0 followed by a 0, respectively. 1� ↵ and 1� � are probabilities of finding a 1 followed by a 0 (note

arrowheads), and a 0 followed by a 1, respectively. (c) From an Information theory perspective, the daughter
sequence (D ) is obtained by a mother sequence M getting logically ANDed with an independent and identically
distributed (IID) binary sequence Z (noise). A mother-like sequence M̂ is reconstructed by passing D through a

decoder. The plausible ways by which enzymes could act as decoders is the subject of this study.

This deviation metric is e↵ectively the bit error rate (BER) when N becomes large [43]. Thus the chosen M̂ should
minimize the BER with respect to the actual sequence M, while obeying the transition law in Eq. (1). This is similar
to data communication through an erroneous channel. It is well known that Bayesian estimation schemes minimize
the average detection error probability at the receiver. In particular, a decoder choosing the input sequence having the
Maximum Àposteriori Probability (MAP) is optimal in minimizing the message error probability in communication [42,
43]. We call this the Sequence MAP (SMAP) decoder, which identifies the most probable sequence M̂ = (m̂1, · · · , m̂N )
based on the observations dN1 as

(m̂1, · · · , m̂N ) = argmax
m1,··· ,mN

P(mN
1 |dN1 ). (4)

SMAP decoding is known to have near optimal BER performance, and good analytical tractability in many con-
texts [43]. While the optimal BER performance can be achieved by Bitwise MAP (BMAP) decoding for each mod-
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chromatin is very similar to data loss and error correction in telecommunication. In such systems, a transmitted
signal gets exposed to noise and becomes consequently, error-prone at the receiving end. The decoder at the receiver
detects and corrects these errors using techniques from information and coding theory [40, 41]. This viewpoint
immediately poses the following questions: Can we use known decoding algorithms from communication theory to
analyze chromatin modification loss and retrieval? How well can the best known algorithms correct the missing
modifications and re-establish the modification patterns? What is the best possible correction strategy enzymes could
use if they were ideal computing machines? Are the algorithms compatible with biological processes that realistic
cellular enzymes can conceivably do? In this paper, we address these questions using ideas from Information theory.
We consider one of the daughter chromatins to be a noise-corrupted signal created at the replication fork, while the
enzymes and other molecular agents help to correct this error using mathematical techniques. In this model, the
inheritance of the mother’s pattern is approached using Bayesian decoding techniques. Predictions from our model
are verified using publicly available experimental data, indicating the relevance of our work in studying real biological
datasets [26].

MODEL AND METHODS

Consider a region on a mother chromatin having N nucleosomes. We are interested in studying the inheritance
of one histone modification at a time. Since many of the repressive marks are known to be inherited immediately
after replication, we will consider one such repressive mark (e.g., H3K27me3) and its pattern along a chromatin. This
pattern can be represented by a vector M = {m1,m2, · · · ,mN}, where mi can have values 1 or 0 indicating the
presence or absence of the modification on the ith nucleosome (see Fig. 1(a)). We also need the following notations:

• mj
i represents the vector (mi,mi+1, · · · ,mj) with j > i; the subscript and superscript respectively indicate the

first and last indices. Thus, M = mN
1 is a realization of the entire mother chromatin modification sequence.

• a row vector of k consecutive ones (zeros) will be denoted as 1k (0k). Extending this, the vector (1, 0, · · · , 0, 1)
representing an island of k consecutive zeros between two ones will be denoted as (1, 0k, 1).

Since modification on a nucleosome is very likely related to its immediate neighbors, we model the pattern M along
the mother chromatin as a binary valued random walk, having neighbourhood interactions corresponding to a first
order homogeneous Markov chain. More specifically, given the modifications mi�1 and mi+1, the modification mi is
assumed to be independent of all other modification values. Equivalently, the conditional probability law is

P(mi|m1, · · · ,mi�1) = P(mi|mi�1) , i � 2, (1)

where m1 is the modification on the first nucleosome of the region of our interest. The state-space evolution of the
Markov chain M is as follows: given mi = 1, let ↵ and 1�↵ be the probabilities for obtaining mi+1 = 1 and mi+1 = 0
respectively. Similarly, if mi = 0, let � and 1� � be the probabilities for having mi+1 = 0 and mi+1 = 1 respectively.
The sequence M can be seen as a random walk on the state space shown in Fig. 1(b). For example, when ↵ and
� are close to 1, the pattern would often contain long runs of either 1s (presence of modification) or 0s (absence of
modification).

From the mother chromatin M, the generation of a daughter chromatin having histone modification sequence
D = dN1 is modeled as follows. During replication, with probability 1

2 , each nucleosome on a daughter chromatin is
either directly inherited from its parental counterpart (i.e. di = mi) or newly deposited (i.e. di = 0) from a pool
of fresh histones assembled de novo [24]. This process is equivalent to doing a logical AND operation of the mother
sequence M with an independent binary vector Z (noise), which is generated by independent tosses of a fair coin.
Thus, D = M.Z (see Fig. 1(c)), where Z has Independent and Identically Distributed (IID) entries. This biological
process leads to a memoryless model with the conditional probability

P(dN1 |mN
1 ) =

NY

i=1

P(di|mi). (2)

In biology, the question is, given a daughter sequence dN1 soon after replication, how can a cell reconstruct a mother-
like sequence M̂ = m̂N

1 ? In other words, is it possible to build a decoder that would reconstruct a M̂ from D, as
depicted in Fig. 1(c). Ideally, a cell would want to choose a binary sequence M̂ having the minimum deviation from
M. The fraction of errors in the reconstructed sequence is a highly desired deviation metric, given by

�(M, M̂) =
1

N

NX

i=1

(mi � m̂i)
2. (3)
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that employs state of the art Information theory inspired algorithms can recover the original mother sequence. The
remaining question is, can a real enzyme do as good as this computing algorithm?
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FIG. 3: The average deviation between the original mother and the mother-like corrected daughter sequences (�̄ =
ensemble averaged �(M, M̂)) is plotted for di↵erent ↵ and � values as a heatmap (see color bar on the side). The
error is averaged over the error 300 mother sequences and 200 daughter sequences corresponding to each mother

sequence — that is, 60000 �(M, M̂) values.

Threshold-k model: enzymes filling unmodified islands of size at most k maintain chromatin fidelity

Whether biological enzymes are equipped to do complex SMAP computations like trellis decoding by themselves is
debatable. Nevertheless, we argue that in certain biologically relevant parameter regimes, the decoding rule can be
simple enough for enzymes to potentially execute. Among the known histone modification patterns, it is common to
have regions densely filled by a certain modification (e.g., H3K27me3), and other regions where the modification is
totally absent. This corresponds to higher values of ↵ and � in our Markov model (see Fig. 1b; also see SI Sec. IV).
Below we show that in this regime, the SMAP algorithm simplifies to tasks that the enzymes may easily carry out.

Consider an island of k unmodified nucleosomes in the daughter chromatin, giving the pattern (1, 0k, 1). From

the trellis diagram (Fig. 2), it can be seen that, if
�
↵
2

�k+1
> 1

2 (1 � ↵)�k�1(1 � �), the probability of having the
all-one path (1, 1k, 1) at the mother is greater than that of (1, 0k, 1). In other words, when the function gk(↵,�) =�
↵
2

�k+1 � 1
2 (1� ↵)�k�1(1� �) is positive, an all-ones path is preferred over a run of k zeros by SMAP decoding. We

can characterize the values of ↵ and � for which the above condition holds true. The expression gk(↵,�) = 0 is easy
to solve if we take k to be a real value, this yields the root k⇤ as:

k⇤ =
log

⇣
(1�↵)(1��)

(↵2/2)

⌘

log(↵/2�)
+ 1. (10)

Notice that the solution for k⇤ is unique when 0 < ↵ < 1 and 0 < � < 1. Since g1(↵,�) =
1
4↵

2 � 1
2 (1 � ↵)(1 � �),

the condition g1(↵,�) > 0 implies that the sequence (1, 1, 1) is preferred over (1, 0, 1). In addition, this condition will
also imply that the numerator of Eq. (10) is positive. The uniqueness of k⇤ will now have the following implications:

On a unit square region of parameters (↵,�) 2 (0, 1)⇥ (0, 1),

• When ↵ < 2� and g1(↵,�) > 0, one gets k⇤ � 1; we find that gk(↵,�) > 0 for all positive integers k  k⇤ in
Eq. (10). This suggests that the SMAP algorithm will replace (1, 0k, 1) with (1, 1k, 1), if and only if k  k⇤.
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FIG. 4: Behavior of our algorithms across the parameter spaces (a) Four (A, B, C, D) regions in (↵,�) parameter
space. The curves shown are g1(↵,�) = 0, and ↵� 2� = 0. In region A (g1 > 0,↵ > 2�), the SMAP will replace
every 0 with 1. In the region B (g1 > 0,↵ < 2�), enzymes can implement threshold-k filling (see text). This

parameter regime is realistic, biologically. (b) The mean error (�̄) when we fill all islands of 0s having size at most
kt. All these curves have (↵,�) values in region B, and �̄ is non-monotonic having a finite optimum kt = k⇤. (c) �̄
for parameter values in region A (red and green curves) are monotonically decreasing suggesting that the optimal kt

is unbounded; hence the least error would be when all 0s are replaced with 1s. In regimes C,D (blue and violet
curves) the mean error is minimal when nothing is filled suggesting that threshold-k filling is not suitable here. The

standard errors here are smaller than the size of the points.

• When ↵ > 2� and g1(↵,�) > 0, we find that gk(↵,�) > 0 for any positive integer k; hence the SMAP algorithm
will replace (1, 0k, 1) with (1, 1k, 1), for any value of k.

Notice that when every path of at most k⇤ zeros between two ones has less path metric than the corresponding
all ones path, clearly any possible path other than all ones cannot have the maximum SMAP metric, while decoding
sequences of length less than k⇤.

The above analysis based on trellis decoding suggests two simple ways for enzymes to work. Enzymes of Type A
would simply modify all unmodified nucleosomes (0s) between two modified nucleosomes (1s). Such enzymes may
be preferred when the modification pattern can be modeled by parameters ↵ and � that corresponds to region A in
Fig. 4(a); notice that this has large ↵ and small �. An enzyme of Type B would fill all unmodified nucleosomes (0s),
if and only if the size of the unmodified region is  k⇤. That is, replace (1, 0k, 1) by (1, 1k, 1), if the island size is
k  k⇤. Thus long islands of 0s are left unfilled. We call this a threshold-k filling model, which becomes active
in region B of Fig. 4(a). Notice that when both ↵ and � are close to 1, the modification is expected to have long
domains (islands) with its presence, followed by islands with no modification. Biologically, this is a realistic regime
for many modifications where enzymes can do threshold-k filling.

We tested the threshold-k filling model on a computer by generating several mother and daughter sequences, for
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the condition g1(↵,�) > 0 implies that the sequence (1, 1, 1) is preferred over (1, 0, 1). In addition, this condition will
also imply that the numerator of Eq. (10) is positive. The uniqueness of k⇤ will now have the following implications:
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FIG. 5: Error Correction in H3K27me3 data (a) Mean deviation (�̄) between corrected daughters and
corresponding mothers, where the experimental population-averaged parental data for H3K27me3 is from [26] (see
database GEO: GSE110354). Error correction was performed using the threshold-k filling algorithm for di↵erent kt
values. (b) The population averaged histone modification occupancy for H3K27me3 is plotted for mother sequence

(top), and corrected daughter sequences corresponding to di↵erent values of kt.

DISCUSSION AND CONCLUSION

In this work, we proposed that the problem of the daughter chromatin retrieving histone modification patterns, to
achieve a mother-like chromatin state, can be mapped to a communication theory problem of receiving noisy signal
and correcting it to retrieve the original signal. Using ideas from Information theory, we argued that if enzymes were
ideal computing machines, the best they could do is to execute a MAP decoding algorithm to get back a mother-like
sequence. We showed how well this algorithm would reconstruct the mother – the error can be as low as 5% in
certain parameter regimes. However, the question was whether realistic enzymes can practically do such complex
algorithms. We showed that in a biologically relevant parameter regime, MAP decoding algorithm is equivalent to a

Our k-filling algorithm can reconstruct experimentally observed patterns
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DISCUSSION AND CONCLUSION

In this work, we proposed that the problem of the daughter chromatin retrieving histone modification patterns, to
achieve a mother-like chromatin state, can be mapped to a communication theory problem of receiving noisy signal
and correcting it to retrieve the original signal. Using ideas from Information theory, we argued that if enzymes were
ideal computing machines, the best they could do is to execute a MAP decoding algorithm to get back a mother-like
sequence. We showed how well this algorithm would reconstruct the mother – the error can be as low as 5% in
certain parameter regimes. However, the question was whether realistic enzymes can practically do such complex
algorithms. We showed that in a biologically relevant parameter regime, MAP decoding algorithm is equivalent to a
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Summary-II
• Given partial information about histone modifications after 

replication, how do cells reconstruct the complete 
information?


• What can a “machine” do?


• MAP-decoding algorithm = filling islands 0s of size <= k


• Simple enough for an enzyme to execute


• It can reconstruct experimental data reasonably well!
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