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The Volume Problem

Given a measurable, compact set 𝐾 in n-dimensional space, find a 

number A such that:

1 − 𝜖 vol 𝐾 ≤ 𝐴 ≤ 1 + 𝜖 vol 𝐾

𝐾 is given by 

 a point 𝑥0 ∈ 𝐾, s.t. 𝑥0 + 𝐵𝑛 ⊆ 𝐾 ⊆ 𝑅𝐵𝑛
 a membership oracle: answers YES/NO to “𝑥 ∈ 𝐾? "



Volume: first attempt

 Divide and conquer:

 Difficulty: number of parts grows exponentially in n.



Volume: second attempt: Sandwiching

Thm (John). Maximum volume ellipsoid 𝐸 contained in convex 
body 𝐾 satisfies

𝐸 ⊆ 𝐾 ⊆ 𝑛𝐸.

𝐾 is in isotropic position if 𝐸𝐾 𝑥 = 0 and 𝐸𝐾 𝑥𝑥𝑇 = 𝐼. 

Thm (KLS95).  For a convex body K in isotropic position,

𝑛+1

𝑛
𝐵𝑛 ⊆ 𝐾 ⊆ 𝑛 𝑛 + 1 𝐵𝑛

 Both are factor n sandwichings, with different ellipsoids. 



Volume via Sandwiching

 The John ellipsoid can be approximated using the Ellipsoid 

algorithm, s.t.

𝐸 ⊆ 𝐾 ⊆ 𝑛1.5𝐸

 The Inertial ellipsoid can be approximated to within any 

constant factor (we’ll see how)

 Using either one, 

𝐸 ⊆ 𝐾 ⊆ 𝑛𝑂 1 𝐸 ⇒ 𝑣𝑜𝑙 𝐸 ≤ 𝑣𝑜𝑙 𝐾 ≤ 𝑛𝑂(𝑛) 𝑣𝑜𝑙 𝐸 .

 Polytime algorithm, 𝑛𝑂 𝑛 approximation 

 Can we do better?



Complexity of Volume Estimation

Thm [E86, BF87]. For any deterministic algorithm that uses at 

most 𝑛𝑎 membership calls to the oracle for a convex body K 

and computes two numbers A and B such that A ≤ vol K ≤ B, 

there is some convex body for which the ratio B/A is at least

𝑐𝑛

𝑎 log 𝑛

n
2

where c is an absolute constant.

Thm [DF88]. Computing the volume of an explicit polytope 

𝐴𝑥 ≤ 𝑏 is #P-hard, even for a totally unimodular matrix A and 

rational b.



Complexity of Volume Estimation

Thm [BF]. For deterministic algorithms:

# oracle calls approximation lower bound

𝑛𝑎
𝑐𝑛

𝑎 log 𝑛

𝑛/2

1 𝑛
1 + 휀 𝑛

Thm [Dadush-V.13]. 

Matching upper bound of 1 + 𝜖 𝑛 in time 
1

𝜖

𝑂 𝑛
poly(𝑛).



Randomized Volume Computation

[Dyer-Frieze-Kannan1989] 

Thm. There is a polynomial-time randomized algorithm that 

estimates the volume of a convex body to within relative 

error 1 + 𝜖 with probability at least 1 − 𝛿 in time 

poly(𝑛,
1

𝜖
, log

𝑅

𝛿
).   



Volume Computation: an ongoing adventure

Exponent New aspects

Dyer-Frieze-Kannan 89 23 everything

Lovász-Simonovits 90 16 localization 

Applegate-K 90 10 logconcave integration

L 90                            10 ball walk

DF 91                       8 error analysis

LS 93  7 multiple improvements

KLS 97 5 speedy walk, isotropy

LV 03,04    4          annealing, wt. isoper.

LV 06 4          integration, local analysis

Cousins-V. 15 (well-rounded) 3 Gaussian cooling



Volume: third attempt: Sampling

 Pick random samples from ball/cube containing K. 

 Compute fraction c of sample in K.

 Output c.vol(outer ball).

 Need too many samples!



Volume via Sampling [DFK89]

𝐵 ⊆ 𝐾 ⊆ 𝑅𝐵.

Let 𝐾𝑖 = 𝐾 ∩ 2𝑖/𝑛𝐵, 𝑖 = 0, 1, … ,𝑚 = 𝑛 log 𝑅.

𝑣𝑜𝑙 𝐾 = 𝑣𝑜𝑙 𝐵 .
𝑣𝑜𝑙(𝐾1)

𝑣𝑜𝑙(𝐾0)
⋅
𝑣𝑜𝑙(𝐾2)

𝑣𝑜𝑙(𝐾1)
…

𝑣𝑜𝑙(𝐾𝑚)

𝑣𝑜𝑙(𝐾𝑚−1)
.

Estimate each ratio with random samples.



Volume via Sampling

𝐾𝑖 = 𝐾 ∩ 2𝑖/𝑛𝐵, 𝑖 = 0, 1, … ,𝑚 = 𝑛 log 𝑅.

𝑣𝑜𝑙 𝐾 = 𝑣𝑜𝑙 𝐵 .
𝑣𝑜𝑙(𝐾1)

𝑣𝑜𝑙(𝐾0)

𝑣𝑜𝑙(𝐾2)

𝑣𝑜𝑙(𝐾1)
…

𝑣𝑜𝑙(𝐾𝑚)

𝑣𝑜𝑙(𝐾𝑚−1)
.

Claim. vol 𝐾𝑖+1 ≤ 2. vol 𝐾𝑖 .

#samples for (1 + 𝜖) approximation = 𝑚.
𝑚

𝜖2
= 𝑂∗ 𝑛2 .

But, how to sample?



Sampling

Input: function f: 𝑅𝑛 → 𝑅+ specified by an oracle, 

point x, error parameter ε. 

Output: A point y from a distribution within distance ε of 
distribution with density proportional to f.

 Any logconcave density can be sampled in polytime.

 Many applications: Rounding, Optimization, Integration, 
Learning



Rounding via Sampling

1. Sample m random points from 𝐾

2. Compute sample mean and sample covariance matrix

 𝑧 = 𝐸 𝑥 𝐴 = 𝐸( 𝑥 − 𝑧 𝑥 − 𝑧 𝑇).

3. Output 𝐵 = 𝐴−
1

2.

Then, 𝐵(𝐾 − 𝑧) is nearly isotropic.

Thm. [Adamczak-Litvak-Pajor-TomczakJaegermann09]   

For isotropic 𝐾, estimate መ𝐴 with 𝐶 𝜖 ⋅ 𝑛 random points satisfies

𝐸 ‖𝐴 − 𝐼‖2 ≤ 𝜖.

I.e., for any unit vector 𝑣, 1 − 𝜖 ≤ 𝐸 𝑣𝑇𝑥
2

≤ 1 + 𝜖.



How to Sample?

Ball walk:

At x,  

-pick random y from 𝑥 + 𝛿𝐵𝑛
-if y is in K, go to y

Hit-and-Run:

At x, 

-pick a random chord L through x

-go to a random point y on L



Convergence depends on isoperimetry

 Technique: show that “conductance” of Markov chain is large. 

 (one-step overlap): Nearby points have overlapping one-step 
distributions

 (isoperimetry) Large subsets have large boundaries

𝜋 𝑆3 ≥
𝑐

𝑅
𝑑 𝑆1, 𝑆2 min𝜋 𝑆1 , 𝜋 𝑆2



Isoperimetry and the KLS conjecture

𝜓𝐾 = sup
𝑆:|𝑆|≤

|𝐾|
2

𝑣𝑜𝑙𝑛 𝑆

𝑣𝑜𝑙𝑛−1 𝜕𝑆

Thm. [KLS97]. Mixing rate of the ball walk in 𝐾 from a warm start is 𝑛2𝜓𝐾
2 .

𝐴 = 𝐸𝐾((𝑥 − 𝑥)(𝑥 − ҧ𝑥)𝑇)

note:  σ𝑖 𝜆𝑖(𝐴) = 𝐸𝐾 𝑥 − ҧ𝑥 2

isotropic (𝐴 = 𝐼)        mixing time

Thm. [KLS95].     𝜓𝐾 ≤ 𝑐 σ𝑖 𝜆𝑖(𝐴) 𝑂( 𝑛) 𝑛3

Conj. [KLS95].     𝜓𝐾 ≤ 𝑐 𝜆1(𝐴) 𝑂(1) 𝑛2

Thm. [Lee-V.17].  𝜓𝐾 ≤ 𝑐 σ𝑖 𝜆𝑖
2
𝐴

1/4
𝑂(𝑛1/4) 𝑛2.5

Thm. [Chen20]. 𝜓𝐾 ≤ 𝑛𝑜 1 ⋅ 𝜆1 𝐴 𝑂(𝑛𝑜(1)) 𝑛2+𝑜(1)



The Conjecture

For any logconcave density in any dimension, halfspaces minimize 

the isoperimetric ratio up to a universal constant.

Covariance of 𝑝: 𝐴 = 𝔼𝑝( 𝑥 − ҧ𝑥 𝑥 − ҧ𝑥)𝑇 .

𝜆1 𝐴 = max
𝑣 =1

𝑣𝑇𝐴𝑣

Isoperimetry of halfspace cuts: project distribution to normal of halfspace, to 

get logconcave distribution with variance 𝜎𝑣
2 = 𝑣𝑇𝐴𝑣.  Then, 

𝜓 halfspaces ≲ 𝜎𝑣 ≲ 𝜆1(𝐴).



Sampling and KLS

Thm. [KLS] For any logconcave density 𝑞 in 𝑹𝑛 with KLS 

constant 𝜓𝑞, the mixing time of the ball walk from a warm 

start is 𝑛2𝜓𝑞
2. 

 𝑛2+𝑜(1) for isotropic

 𝑛2 ⋅ 𝑇𝑟 𝐴 = ෨𝑂 𝑛3 for a well-rounded body.

 KLS volume algorithm is 𝑛 ⋅ 𝑛 ⋅ 𝑛3 = 𝑂∗ 𝑛5 . 



Simulated Annealing [LV03, Kalai-V.04]

To estimate 𝑓 consider a sequence 𝑓0, 𝑓1, 𝑓2, … , 𝑓 = 𝑓𝑚
with  𝑓0 being easy, e.g., constant function over ball.

Then,    𝑓 =  𝑓0.
 𝑓1

 𝑓0
.
 𝑓2

 𝑓1
…

 𝑓𝑚

 𝑓𝑚−1
.

Each ratio can be estimated by sampling:

1. Sample X with density proportional to 𝑓𝑖

2. Compute 𝑌 =
𝑓𝑖+1 𝑋

𝑓𝑖 𝑋

Then, 𝐸 𝑌 = 
𝑓𝑖+1 𝑋

𝑓𝑖 𝑋
. 
𝑓𝑖 𝑋

 𝑓𝑖 𝑋
𝑑𝑋 =

 𝑓𝑖+1

 𝑓𝑖
.



Annealing [LV06]

 Define: 𝑓𝑖 𝑋 = 𝑒−𝑎𝑖 𝑋

 𝑎0 = 2𝑅, 𝑎𝑖+1 = 𝑎𝑖/ 1 +
1

𝑛
, 𝑎𝑚 =

𝜖

2𝑅

 𝑚 ~ 𝑛 log(2𝑅/𝜖) phases

 𝑓0.
 𝑓1

 𝑓0
.
 𝑓2

 𝑓1
…

 𝑓𝑚

 𝑓𝑚−1
.

Lemma. 𝑉𝐴𝑅 𝑌 =
𝑓𝑖+1 𝑋

𝑓𝑖 𝑋
< 4 𝐸 𝑌 2.

 Although expectation of Y can be large (exponential even), we need 
only a few samples to estimate it!

LoVe algorithm: 𝑛 × 𝑛 × 𝑛3 = 𝑛4



LV rounding algorithm

 Volume algorithm assumes body is near-isotropic

 But how to round? (make nearly isotropic)

 A sequence of doubling balls intersected with 𝐾:  

𝐾𝑖 = 𝐾 ∩ 2𝑖𝐵𝑛

Lemma. 𝐾𝑖 isotropic ⇒ 𝐾𝑖+1 well-rounded, i.e., E 𝑥 2 = 𝑂(𝑛). 

 Repeat: use 𝑂(𝑛) samples to make 𝐾𝑖+1 isotropic.

 Complexity: log 𝑛 ⋅ 𝑛 ⋅ 𝑛2 𝑛
2
= ෨𝑂 𝑛4 .

2t

t



Gaussian Cooling [Cousins-V.2015]

 𝑓𝑖 𝑋 = 𝑒
−

𝑋
2

2𝜎𝑖
2

 𝜎0
2 =

1

𝑛
, 𝜎𝑚

2 = 𝑂 𝑛 .

 Estimate 
 𝑓𝑖+1

 𝑓𝑖
using samples drawn according to 𝑓𝑖

Why Gaussian?

 KLS conjecture holds for Gaussian restricted to any convex body (Bobkov, Ledoux).

Thm. 𝜋 𝑆3 ≥
𝑐

𝜎
𝑑(𝑆1, 𝑆2)min𝜋 𝑆1 , 𝜋(𝑆2)

Thm. [Cousins-V. 13]. Ball walk applied to Gaussian 𝑁(0, 𝜎2𝐼𝑛) restricted to convex 
body 𝐾 containing the unit ball mixes in 𝑛2max {1, 𝜎2} steps from a warm start.



Gaussian Cooling

 𝑓𝑖 𝑋 = 𝑒
−

𝑋
2

2𝜎𝑖
2

For 𝜎𝑖
2 ≤ 1, we set 𝜎𝑖

2 = 𝜎𝑖−1
2 1 +

1

𝑛

 Sampling time:  𝑛2max {1, 𝜎2} = 𝑛2

 #phases, #samples per phase: 𝑛

 So, total time = 𝑛2 × 𝑛 × 𝑛 = 𝑛3



Gaussian Cooling

 𝑓𝑖 𝑋 = 𝑒
−

𝑋
2

2𝜎𝑖
2

 For 𝜎𝑖
2 > 1, we set 𝜎𝑖

2 = 𝜎𝑖−1
2 1 +

𝜎𝑖−1

𝑛

 For this accelerated schedule, we need 𝐾 to be well-rounded

 Sampling time: 𝑛2max {1, 𝜎2} = 𝜎2𝑛2 (too much??)

 #phases to double 𝜎 is 
𝑛

𝜎
, so #samples per phase is also 

𝑛

𝜎

CV algorithm:  
𝑛

𝜎
×

𝑛

𝜎
× 𝜎2𝑛2 × log 𝑛 = 𝑂∗(𝑛3)

Thm. The volume of any well-rounded convex body 𝐾 can be 
estimated using 𝑂∗(𝑛3) membership queries.



Rounding and KLS?

 Can we round (isotropicize) faster than 𝑛4 ?

Main new result:

Thm.  Any convex body can be brought into near-isotropic 

position using ෨𝑂 𝑛3𝜓𝑛
2 membership queries.

Cor.  Volume of a convex body can be computed in 𝑂∗ 𝑛3𝜓2 .

 𝑛3+𝑜(1) with current bound, 𝑛3 if KLS holds.



Well-rounded  Isotropic

 Outer loop: For 𝑖 = 1 to log𝑅, make 𝐾𝑖 = 𝐾 ∩ 2𝑖𝐵𝑛
isotropic. 

 Inner loop: set 𝑟 = 1, 𝑘 = ෨𝑂 𝑟2 . 

 While 𝑟2 log 𝑛 < 𝑛,

 Sample 𝑘 points from 𝐾𝑖. Estimate covariance ሚ𝐴. 

 Let 𝑉 be subspace with “large” eigenvalues, 𝜆 ሚ𝐴 > 𝑛. 

 Scale up along all directions in 𝑉⊥ by a factor of 2.  

2t

t



Well-rounded  Isotropic

Sample 𝑘 points from 𝐾𝑖 . Estimate covariance ሚ𝐴. 

Let 𝑉 be subspace with “large” eigenvalues, 𝜆 ሚ𝐴 > 𝑛. 

Scale up along all directions in 𝑉⊥ by a factor of 2.

 Naïve algorithm: estimate covariance; scale up small eigenvalue 
directions. 

 Difficulty: needs 𝑛 samples, each takes 𝑛3

Idea: use coarse estimates and gradually refine. 

 Initially, estimate very large eigenvalues, scale up the rest

 Gradually estimate smaller eigenvalues.

Why is this better?

 When we get finer estimates, body is more isotropic and sampling is 
faster!



How to get round

 Find “big” directions using a few samples

 Scale up complementary subspace

 Repeat with more samples

 Threshold for “big” stays the same



Getting rounder, efficiently

 Sampling complexity is 𝑛2 ⋅
𝜓2

𝑟2
≤ 𝑛2 ⋅

𝑇𝑟 𝐴𝑗

𝑟2

 But can be controlled better!

Thm. If 𝜓𝑛 = 𝑂(𝑛1/𝑝), then 𝜓𝑞 = ෨𝑂( 𝐴 𝑝
1/2

).

 So sampling can be done in 𝑛2 ⋅
𝐴𝑗 𝑝

𝑟𝑗
2



Getting rounder, efficiently
Lemma 1. 

 𝑇𝑟 𝐴0 ≤ 𝐶𝑛, 𝑇𝑟 𝐴𝑗 ≤ 𝑐𝑟𝑗
2 ⋅ 𝑇𝑟(𝐴0)

 𝐴𝑗 𝑝
= σ𝑖 𝜆𝑖

𝑝
𝐴𝑗

1/𝑝
≤ 𝑐 log 𝑛 ⋅ 𝑛𝑟𝑗

2/𝑝

Lemma 2.  Assume 𝑛 ≥ 4𝑟2 log 𝑛 . In each iteration, radius of inner ball, 𝑟,

increases by a factor of 2 1 −
1

log 𝑛
. 

Lemma 3. In 𝑗’th phase, 𝑘 = ෨𝑂(𝑟𝑗
2) samples suffice.

Therefore, complexity is 

𝑟𝑗
2 ⋅ 𝑛2 ⋅

𝐴𝑗 𝑝

𝑟𝑗
2 = ෨𝑂 𝑛3𝑟𝑗

2/𝑝
= ෨𝑂 𝑛3+1/𝑝 = ෨𝑂 𝑛3𝜓2



To round, scale up skinny subspace

Lemma 1. 

 𝑇𝑟 𝐴0 ≤ 𝐶𝑛, 𝑇𝑟 𝐴𝑗 ≤ 𝑐𝑟𝑗
2𝑇𝑟(𝐴0)

 𝐴𝑗 𝑝

𝑝
= σ𝑖 𝜆𝑖

𝑝
(𝐴𝑗) ≤ 𝑐 log 𝑛 ⋅ 𝑛𝑟𝑗

2/𝑝



𝑖

𝜆𝑖
𝑝
(𝐴𝑗+1) ≤ 

𝑖:𝜆𝑖≤𝜆

(2𝜆)𝑝 + 

𝑖:𝜆𝑖>𝜆

𝜆𝑖
𝑝
(𝐴𝑗)

≤
𝑇𝑟 𝐴𝑗

𝜆
⋅ (2𝜆)𝑝 + 

𝑖:𝜆𝑖>𝜆

𝜆𝑖
𝑝
(𝐴𝑗)

Setting 𝜆 = 𝑛, in each iteration, increase in 𝐴𝑗 𝑝
is at most 

𝑟𝑗
2𝑛

𝑛
⋅ 2𝑛 𝑝

1/𝑝

= 2𝑛𝑟𝑗
2/𝑝



Grow your inner ball

Lemma. While 𝜆 ≥ 4𝑟2 log 𝑛, 𝑟 increases by a factor of at least 2 1 −
1

log 𝑛
in 

each iteration. (We use 𝜆 = 𝑛). 

Proof sketch:  

Scale up all directions with variance < 𝜆.

𝑉 contains ellipsoid with minimum axis length 𝜆

𝑉⊥ contains a ball of radius 𝑟 that is scaled up by 2.

Then, new body contains a ball of radius nearly 2𝑟.

𝑥 = 𝛼𝑦 + 1 − 𝛼 where 𝛼 ∈ 0,1 , 𝑦 ∈ 𝜕𝐵 2𝑟 ∩ 𝑉⊥, 𝑧 ∈ 𝜕𝐵𝑛 𝜆 ∩ 𝑉

Then,  

𝑥 2 = 𝛼24𝑟2 + 1 − 𝛼 2𝜆 ≥
4𝜆𝑟2

𝜆 + 4𝑟2
≥ 4 ⋅

log 𝑛

log 𝑛 + 1
⋅ 𝑟2



Matrix, Chernoff, and all that

Lemma 2.  𝑘 = ෨𝑂 𝑟𝑗
2 samples suffice.

Lem. [Matrix-Chernoff]. 

𝐴: covariance, መ𝐴: empirical covariance of 𝑘 samples. Then, 

−휀𝐴 − 𝑐 log3 𝑛 ⋅
𝑇𝑟 𝐴

휀𝑘
𝐼 ≼ መ𝐴 − 𝐴 ≼ 휀𝐴 + 𝑐 log3 𝑛 ⋅

𝑇𝑟 𝐴

휀𝑘
𝐼.

So with 휀 =
1

2
and 𝑘 = 2𝑐 ⋅ 𝑇𝑟 𝐴 ⋅

log3 𝑛

𝑛
, 

1

2
𝐴 − 𝑛𝐼 ≼ መ𝐴 ≼

1

2
𝐴 + 𝑛𝐼

Suffices to detect eigenvalues larger than 4𝑛. 



Localizing isoperimetry to the isotropic case

 Thm [LV16]. 𝜓𝑞 = 𝑂( 𝐴 𝐹
1/2

) which is 𝑂(𝑛1/4) for isotropic. 

 Thm[LV16]. Suppose 𝜓𝑛 = 𝑂(𝑛𝛽), for some 0 < 𝛽 ≤ 1/2. Then, for any 
logconcave density 𝑞 in 𝑹𝑛 with covariance 𝐴, we have 

𝜓𝑞 ≲
log𝑛

𝛽
𝐴 1/2𝛽

1/2

 𝜓𝑛
2 = Θ 𝑛1/𝑝 ⇒ 𝜓𝑞

2 = 𝑂 𝐴 𝑝 log 𝑛

 Complexity is 𝑛3+(1/𝑝) = 𝑛3𝜓𝑛
2.

 Thm [Chen20]. 𝜓𝑛
2 = 2

𝑂 log 𝑛 log log 𝑛
= 𝑛𝑜 1 . 

 Thm.  Complexity of  Rounding/Volume is ෨𝑂 𝑛3+𝑜 1 . 



Open question

 How true is the KLS conjecture?



Open question

 Can we estimate the volume of an explicit polytope in 

deterministic polynomial time?

𝐴𝑥 ≤ 𝑏



Thank you!


