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The Volume Problem

Given a measurable, compact set K in n-dimensional space, find a
number A such that:

(1—¢e)vol(K) < A < (1+¢)vol(K)
K is given by

a point xg € K,s.t. xo + B, € K € RB,

a membership oracle: answers YES/NO to “x € K? "



Volume: first attempt

Divide and conquer:

Difficulty: number of parts grows exponentially in n.



Volume: second attempt: Sandwiching

Thm (John). Maximum volume ellipsoid E contained in convex
body K satisfies

E S K CnkE.

K is in isotropic position if Ex(x) = 0 and Ex(xxT) = I.

Thm (KLS95). For a convex body K in isotropic position,

n+1

/TBn c K cn(n+ 1B,

Both are factor n sandwichings, with different ellipsoids.



Volume via Sandwiching

The John ellipsoid can be approximated using the Ellipsoid
algorithm, s.t.
EcKcn'E

The Inertial ellipsoid can be approximated to within any

constant factor (we’ll see how)

Using either one,
Ec K cnPWE = vol(E) < vol(K) < n°™ vol(E).
Polytime algorithm, n°(") approximation

Can we do better?



Complexity of Volume Estimation

Thm [E86, BF87]. For any deterministic algorithm that uses at
most n% membership calls to the oracle for a convex body K
and computes two numbers A and B such that A < vol(K) < B,

there is some convex body for which the ratio B/A is at least
n

cn \2
alogn

where c is an absolute constant.

Thm [DF88]. Computing the volume of an explicit polytope
Ax < b is #P-hard, even for a totally unimodular matrix A and

rational b.



Complexity of Volume Estimation

Thm [BF]. For deterministic algorithms:

# oracle calls approximation lower bound
n/2
a cn
n (a log n)
1 n
(E) (1 + €)n

1 o(n)
Matching upper bound of (1 + €)™ in time (—)
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Randomized Volume Computation

[Dyer-Frieze-Kannan|989]

Thm.There is a polynomial-time randomized algorithm that
estimates the volume of a convex body to within relative
error (1 4+ €) with probability at least 1 — § in time

1 R
poly(n, - log E)‘



Volume Computation: an ongoing adventure

Exponent New aspects

Dyer-Frieze-Kannan 89 23 everything
Lovasz-Simonovits 90 |6 localization
Applegate-K 90 10 logconcave integration

L 90 10 ball walk

DF 91 8 error analysis

LS 93 7/ multiple improvements
KLS 97 5 speedy walk, isotropy
LV 03,04 4 annealing, wt. isoper.

LV 06 4 integration, local analysis
Cousins-V. |5 (well-rounded) 3 Gaussian cooling



Volume: third attempt: Sampling

Pick random samples from ball/cube containing K.
Compute fraction c of sample in K.
Output c.vol(outer ball).

Need too many samples!



Volume via Sampling [DFK89]

Let K, =K n 2UMB i =0,1,..,m= nlogR.

vol(K;) vol(K,) wvol(Ky)

vol(K) = vol(B).vOl(KO) : 7ol (K " 7ol (Ks)

Estimate each ratio with random samples.



Volume via Sampling

I{i:ani/"B, i =0,1,..,m=nlogR.

vol(K,) vol(K,) vol(K,,)

vol(K) = vol(B).val(KO) ol(K) " 7ol (Ks)

Claim. vol(K;;1) < 2.vol(K;).

#samples for (1 + €) approximation = m. 6—2 = 0" (nz)

But, how to sample!?



Sampling

Input; function f: R™ —» R_ specified by an oracle,
P + SP Y
point X, error parameter €.

Output: A point y from a distribution within distance € of
distribution with density proportional to f.

Any logconcave density can be sampled in polytime.

Many applications: Rounding, Optimization, Integration,
Learning



Rounding via Sampling

Sample m random points from K

Compute sample mean and sample covariance matrix
> z = E(x) A=E((x—2)(x—2)").

1
Output B = A4 .
Then, B(K — z) is nearly isotropic.

Thm. [Adamczak-Litvak-Pajor-Tomczak]aegermann09]
For isotropic K, estimate A with C(€) - n random points satisfies

E(JA=1]|) <e.



How to Sample?

Ball walk:

At X,

-pick random y from x + 6B,
-ifyisin K,gotoy

Hit-and-Run:

At X,

-pick a random chord L through x
-go to a random pointy on L



» Technique: show that “conductance” of Markov chain is large.

» (one-step overlap): Nearby points have overlapping one-step
distributions

» (isoperimetry) Large subsets have large boundaries

7(S,) > %d(sl,sz) min7(S,), 7(S,)



[soperimetry and the KLS conjecture

Yr = sup

Thm. [KLS97]. Mixing rate of the baII walk in K from a warm start is nyz.

A= Ex((x—x)(x-2)")

note: Y; A;(4) = Ex(|lx — x1I?)

isotropic (A = 1) mixing time
Thm. [KLS95]. ¢y < c/2;4i(4) 0(\/n) n3
Conj.[KLS95]. vYg < c/A41(4) 0(1) n?
1/4
Thm[leeVi7) Y <e (At @) oy n

» Thm. [Chen20]. Y < n°W - /1,(4) 0 (n°M) n2+o()



The Conjecture

For any logconcave density in any dimension, halfspaces minimize

the isoperimetric ratio up to a universal constant.

Covariance of p: A = E,((x — x) (x —x)T).

A1 (4) = max vT Av
lvll=1

Isoperimetry of halfspace cuts: project distribution to normal of halfspace, to

get logconcave distribution with variance g2 = v Av. Then,

Y (halfspaces) < g, S /41(4).



Sampling and KLS

Thm. [KLS] For any logconcave density g in R™ with KLS
constant Y, the mixing time of the ball walk from a warm

start is n°yg.

n?+°() for isotropic
n? - Tr(4) = 0(n?) for a well-rounded body.

KLS volume algorithm is n - n - n® = 0*(n®).



Simulated Annealing [LV03, Kalai-V.04]

To estimate [ f consider a sequence fg, f1, [2, -, [ = fm
with [ f, being easy, e.g., constant function over ball.

o 1= (A8 e

Each ratio can be estimated by sampling:

Sample X with density proportional to f;
fi+1(X)
fi(X)

Compute ¥ =

fir1(X) fi(X) S fiv
fi(X) " [ fi(0 X = Jfi

Then, E(Y) = |



Annealing [LVOO]

Define filX)=e ail|X||
1 €
a, = 2R, al+1—al/(1+\/—ﬁ), am = 5=

m ~ nlog(2R/¢) phases

f JA Jf | fm
T AT fme1

_ fi+1(X) 2
Lemma. VAR (Y =0 ) < 4E(Y)~.

Although expectation of Y can be large (exponential even), we need
only a few samples to estimate it!

LoVe algorithm:y/n X yn x n® = n*



LV rounding algorithm

Volume algorithm assumes body is near-isotropic

But how to round? (make nearly isotropic)

A sequence of doubling balls intersected with K:
K;=Kn2'B, LoT TS~

y 2t S
/ ,- ‘\ \

—_— -

Lemma. K; isotropic = K;,, well-rounded, i.e, E||x]|* = 0(n).

Repeat: use 0(n) samples to make K;, , isotropic.
Complexity:logn - n - n* (\/ﬁ)z = 0(n*).



Gaussian Cooling [Cousins-V.20195]

[ fisa
T

Estimate == using samples drawn according to f;

Why Gaussian!?
KLS conjecture holds for Gaussian restricted to any convex body (Bobkov, Ledoux).
Thm. 7(S3) = = d(Sy,S;) minm(Sy), 7(S,)

Thm. [Cousins-V. |3]. Ball walk applied to Gaussian N (0, 521,,) restricted to convex
body K containing the unit ball mixes in n? max {1, 0%} steps from a warm start.



Gaussian Cooling

For O-iz < 1, we set O-iz — i2—1 (1 + \/iﬁ)

Sampling time: 1% max {1, 0%} = n?
#Hphases, #samples per phase:\/n

So, total time = n? X \/n X yn = n?



Gaussian Cooling

fiX)=e
For 6/ > 1, we set 6 = 0/~ 1( \/_)

For this accelerated schedule, we need K to be well-rounded

Sampling time: n* max {1,0%} = 0°n* (too much??)

#phases to double o is g , SO #samples per phase is also ?

\/_

CV algorithm: £ X =X 0°n? X logn = 0*(n?)

Thm.The volume of any well-rounded convex body K can be
estimated using 0*(n>) membership queries.



Rounding and KLS?

Can we round (isotropicize) faster than n* ?

Main new result:

Thm. Any convex body can be brought into near-isotropic
position using 5(7131/),%) membership queries.

Cor. Volume of a convex body can be computed in 0*(n31)?).

n3*t°() with current bound, n3 if KLS holds.



Well-rounded -2 Isotropic

» Outer loop: For i = 1 to log R, make K; = K N 2!B,

iIsotropic. Y
,° 2t S

» Inner loop:set r = 1,k = 0(r?).

» While r?logn < n,
» Sample k points from K;. Estimate covariance A.
» Let V be subspace with “large” eigenvalues, A(/D > n.
» Scale up along all directions in V+ by a factor of 2.



Well-rounded -2 Isotropic

Sample k points from K;. Estimate covariance A.

Let I/ be subspace with “large” eigenvalues, /1(/1) > n.
Scale up along all directions in V+ by a factor of 2.

Naive algorithm: estimate covariance; scale up small eigenvalue
directions.

Difficulty: needs n samples, each takes n>

|dea: use coarse estimates and gradually refine.
Initially, estimate very large eigenvalues, scale up the rest
Gradually estimate smaller eigenvalues.

Why is this better?
When we get finer estimates, body is more isotropic and sampling is
______ faster!



How to get round

Find “big” directions using a few samples

Scale up complementary subspace
!

Repeat with more samples

Threshold for “big” stays the same



Getting rounder, efficiently

2 Tr(A;
Sampling complexity is n2 - If—z < n?. _521)

But can be controlled better!

Thm. If 1, = 0(n/?), then ¥, = O(llAll,/?).

1 4;]]
So sampling can be done in n? - —*~

Ly



Getting rounder, efficiently

Lemma |.
Tr(4y) < Cn, Tr(Aj) < crjz - Tr(Ap)

4, = € 22(4)" < clogn - "

Lemma 2. Assume n > 4r? logn. In each iteration, radius of inner ball, ,
1

logn)

increases by a factor of 2 1 —

Lemma 3. In j’th phase, k = (7(7‘]-2) samples suffice.

Therefore, complexity is

2 .2 ”Aj”P A (3,-2/D A(+3+1/p A (113412
ren 2 =0(n f ) O(n )—O(ntp )
J



To round, scale up skinny subspace

Lemma I.
Tr(Ay) < Cn, Tr(Aj) < crjor(Ao)

|45117 = 5,27 (4)) < clogn - nr??

Z 2 (4y01) < Z @+ ) 24
AisA LA>A
Tr( )
L 2 + Z AP (4))
1A >A
Setting A = n, in each iteration, increase in ||Aj||p is at most

2 1/p
(J— (Zn)p> = 2nr2/?
n Jj

<



Grow your inner ball

Lemma.While 1 > 4r% logn, r increases by a factor of at least 2 (1 - ) in

each iteration. (We use A = n). .

Proof sketch:

Scale up all directions with variance < A. _ o
V contains ellipsoid with minimum axis length A

VL contains a ball of radius r that is scaled up by 2.

Then, new body contains a ball of radius nearly 2r. |

x=ay+ (1 —a)wherea €[0,1],y € 0B2r)n Vi, z € 63"(\/7) nv

Then,
41> logn
> 4.




Matrix, Chernoff, and all that

Lemma 2. k = (7(7‘]-2) samples suffice.

Lem. [Matrix-Chernoff].

A: covariance, A: empirical covariance of k samples.Then,

Tr(A R Tr(A
()IsA—A<€A+clog3n- ()I.
ek ek

—eA —clog®n -

log3 n

So with € = = and k=2c-Tr(4) -

1A I <A< 1A+I
> n N5 n

Suffices to detect eigenvalues larger than 4n.



Localizing isoperimetry to the isotropic case

Thm [LVI6]. ¥, = O(||A||¥?) which is O (nl/4) for isotropic.
q F P

Thm[LV16].Suppose i, = O(n#),for some 0 < 8 < 1/2.Then, for any
logconcave density g in R™ with covariance A, we have

J]logn
A= 7

l/)q = ,8 1/2p

P2 = 0(n'/?P) = ¢z = 0(||All, logn)

Complexity is n3+(1/P) = n3q)2.

Thm [Chen20]. 12 = 20(VIegnToglogn) _ ,o(1)

Thm. Complexity of Rounding/Volume is 0(n3+t°()),



Open question

» How true is the KLS conjecture!?



Open question

Can we estimate the volume of an explicit polytope in
deterministic polynomial time!?

Ax <b



Thank you!



