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The Volume Problem

Given a measurable, compact set 𝐾 in n-dimensional space, find a 

number A such that:

1 − 𝜖 vol 𝐾 ≤ 𝐴 ≤ 1 + 𝜖 vol 𝐾

𝐾 is given by 

 a point 𝑥0 ∈ 𝐾, s.t. 𝑥0 + 𝐵𝑛 ⊆ 𝐾 ⊆ 𝑅𝐵𝑛
 a membership oracle: answers YES/NO to “𝑥 ∈ 𝐾? "



Volume: first attempt

 Divide and conquer:

 Difficulty: number of parts grows exponentially in n.



Volume: second attempt: Sandwiching

Thm (John). Maximum volume ellipsoid 𝐸 contained in convex 
body 𝐾 satisfies

𝐸 ⊆ 𝐾 ⊆ 𝑛𝐸.

𝐾 is in isotropic position if 𝐸𝐾 𝑥 = 0 and 𝐸𝐾 𝑥𝑥𝑇 = 𝐼. 

Thm (KLS95).  For a convex body K in isotropic position,

𝑛+1

𝑛
𝐵𝑛 ⊆ 𝐾 ⊆ 𝑛 𝑛 + 1 𝐵𝑛

 Both are factor n sandwichings, with different ellipsoids. 



Volume via Sandwiching

 The John ellipsoid can be approximated using the Ellipsoid 

algorithm, s.t.

𝐸 ⊆ 𝐾 ⊆ 𝑛1.5𝐸

 The Inertial ellipsoid can be approximated to within any 

constant factor (we’ll see how)

 Using either one, 

𝐸 ⊆ 𝐾 ⊆ 𝑛𝑂 1 𝐸 ⇒ 𝑣𝑜𝑙 𝐸 ≤ 𝑣𝑜𝑙 𝐾 ≤ 𝑛𝑂(𝑛) 𝑣𝑜𝑙 𝐸 .

 Polytime algorithm, 𝑛𝑂 𝑛 approximation 

 Can we do better?



Complexity of Volume Estimation

Thm [E86, BF87]. For any deterministic algorithm that uses at 

most 𝑛𝑎 membership calls to the oracle for a convex body K 

and computes two numbers A and B such that A ≤ vol K ≤ B, 

there is some convex body for which the ratio B/A is at least

𝑐𝑛

𝑎 log 𝑛

n
2

where c is an absolute constant.

Thm [DF88]. Computing the volume of an explicit polytope 

𝐴𝑥 ≤ 𝑏 is #P-hard, even for a totally unimodular matrix A and 

rational b.



Complexity of Volume Estimation

Thm [BF]. For deterministic algorithms:

# oracle calls approximation lower bound

𝑛𝑎
𝑐𝑛

𝑎 log 𝑛

𝑛/2

1

𝜀

𝑛
1 + 𝜀 𝑛

Thm [Dadush-V.13]. 

Matching upper bound of 1 + 𝜖 𝑛 in time 
1

𝜖

𝑂 𝑛
poly(𝑛).



Randomized Volume Computation

[Dyer-Frieze-Kannan1989] 

Thm. There is a polynomial-time randomized algorithm that 

estimates the volume of a convex body to within relative 

error 1 + 𝜖 with probability at least 1 − 𝛿 in time 

poly(𝑛,
1

𝜖
, log

𝑅

𝛿
).   



Volume Computation: an ongoing adventure

Exponent New aspects

Dyer-Frieze-Kannan 89 23 everything

Lovász-Simonovits 90 16 localization 

Applegate-K 90 10 logconcave integration

L 90                            10 ball walk

DF 91                       8 error analysis

LS 93  7 multiple improvements

KLS 97 5 speedy walk, isotropy

LV 03,04    4          annealing, wt. isoper.

LV 06 4          integration, local analysis

Cousins-V. 15 (well-rounded) 3 Gaussian cooling



Volume: third attempt: Sampling

 Pick random samples from ball/cube containing K. 

 Compute fraction c of sample in K.

 Output c.vol(outer ball).

 Need too many samples!



Volume via Sampling [DFK89]

𝐵 ⊆ 𝐾 ⊆ 𝑅𝐵.

Let 𝐾𝑖 = 𝐾 ∩ 2𝑖/𝑛𝐵, 𝑖 = 0, 1, … ,𝑚 = 𝑛 log 𝑅.

𝑣𝑜𝑙 𝐾 = 𝑣𝑜𝑙 𝐵 .
𝑣𝑜𝑙(𝐾1)

𝑣𝑜𝑙(𝐾0)
⋅
𝑣𝑜𝑙(𝐾2)

𝑣𝑜𝑙(𝐾1)
…

𝑣𝑜𝑙(𝐾𝑚)

𝑣𝑜𝑙(𝐾𝑚−1)
.

Estimate each ratio with random samples.



Volume via Sampling

𝐾𝑖 = 𝐾 ∩ 2𝑖/𝑛𝐵, 𝑖 = 0, 1, … ,𝑚 = 𝑛 log 𝑅.

𝑣𝑜𝑙 𝐾 = 𝑣𝑜𝑙 𝐵 .
𝑣𝑜𝑙(𝐾1)

𝑣𝑜𝑙(𝐾0)

𝑣𝑜𝑙(𝐾2)

𝑣𝑜𝑙(𝐾1)
…

𝑣𝑜𝑙(𝐾𝑚)

𝑣𝑜𝑙(𝐾𝑚−1)
.

Claim. vol 𝐾𝑖+1 ≤ 2. vol 𝐾𝑖 .

#samples for (1 + 𝜖) approximation = 𝑚.
𝑚

𝜖2
= 𝑂∗ 𝑛2 .

But, how to sample?



Sampling

Input: function f: 𝑅𝑛 → 𝑅+ specified by an oracle, 

point x, error parameter ε. 

Output: A point y from a distribution within distance ε of 
distribution with density proportional to f.

 Any logconcave density can be sampled in polytime.

 Many applications: Rounding, Optimization, Integration, 
Learning



Rounding via Sampling

1. Sample m random points from 𝐾

2. Compute sample mean and sample covariance matrix

 𝑧 = 𝐸 𝑥 𝐴 = 𝐸( 𝑥 − 𝑧 𝑥 − 𝑧 𝑇).

3. Output 𝐵 = 𝐴−
1

2.

Then, 𝐵(𝐾 − 𝑧) is nearly isotropic.

Thm. [Adamczak-Litvak-Pajor-TomczakJaegermann09]   

For isotropic 𝐾, estimate መ𝐴 with 𝐶 𝜖 ⋅ 𝑛 random points satisfies

𝐸 ‖𝐴 − 𝐼‖2 ≤ 𝜖.

I.e., for any unit vector 𝑣, 1 − 𝜖 ≤ 𝐸 𝑣𝑇𝑥
2

≤ 1 + 𝜖.



How to Sample?

Ball walk:

At x,  

-pick random y from 𝑥 + 𝛿𝐵𝑛
-if y is in K, go to y

Hit-and-Run:

At x, 

-pick a random chord L through x

-go to a random point y on L



Convergence depends on isoperimetry

 Technique: show that “conductance” of Markov chain is large. 

 (one-step overlap): Nearby points have overlapping one-step 
distributions

 (isoperimetry) Large subsets have large boundaries

𝜋 𝑆3 ≥
𝑐

𝑅
𝑑 𝑆1, 𝑆2 min𝜋 𝑆1 , 𝜋 𝑆2



Isoperimetry and the KLS conjecture

𝜓𝐾 = sup
𝑆:|𝑆|≤

|𝐾|
2

𝑣𝑜𝑙𝑛 𝑆

𝑣𝑜𝑙𝑛−1 𝜕𝑆

Thm. [KLS97]. Mixing rate of the ball walk in 𝐾 from a warm start is 𝑛2𝜓𝐾
2 .

𝐴 = 𝐸𝐾((𝑥 − 𝑥)(𝑥 − ҧ𝑥)𝑇)

note:  σ𝑖 𝜆𝑖(𝐴) = 𝐸𝐾 𝑥 − ҧ𝑥 2

isotropic (𝐴 = 𝐼)        mixing time

Thm. [KLS95].     𝜓𝐾 ≤ 𝑐 σ𝑖 𝜆𝑖(𝐴) 𝑂( 𝑛) 𝑛3

Conj. [KLS95].     𝜓𝐾 ≤ 𝑐 𝜆1(𝐴) 𝑂(1) 𝑛2

Thm. [Lee-V.17].  𝜓𝐾 ≤ 𝑐 σ𝑖 𝜆𝑖
2
𝐴

1/4
𝑂(𝑛1/4) 𝑛2.5

Thm. [Chen20]. 𝜓𝐾 ≤ 𝑛𝑜 1 ⋅ 𝜆1 𝐴 𝑂(𝑛𝑜(1)) 𝑛2+𝑜(1)



The Conjecture

For any logconcave density in any dimension, halfspaces minimize 

the isoperimetric ratio up to a universal constant.

Covariance of 𝑝: 𝐴 = 𝔼𝑝( 𝑥 − ҧ𝑥 𝑥 − ҧ𝑥)𝑇 .

𝜆1 𝐴 = max
𝑣 =1

𝑣𝑇𝐴𝑣

Isoperimetry of halfspace cuts: project distribution to normal of halfspace, to 

get logconcave distribution with variance 𝜎𝑣
2 = 𝑣𝑇𝐴𝑣.  Then, 

𝜓 halfspaces ≲ 𝜎𝑣 ≲ 𝜆1(𝐴).



Sampling and KLS

Thm. [KLS] For any logconcave density 𝑞 in 𝑹𝑛 with KLS 

constant 𝜓𝑞, the mixing time of the ball walk from a warm 

start is 𝑛2𝜓𝑞
2. 

 𝑛2+𝑜(1) for isotropic

 𝑛2 ⋅ 𝑇𝑟 𝐴 = ෨𝑂 𝑛3 for a well-rounded body.

 KLS volume algorithm is 𝑛 ⋅ 𝑛 ⋅ 𝑛3 = 𝑂∗ 𝑛5 . 



Simulated Annealing [LV03, Kalai-V.04]

To estimate ׬𝑓 consider a sequence 𝑓0, 𝑓1, 𝑓2, … , 𝑓 = 𝑓𝑚
with ׬ 𝑓0 being easy, e.g., constant function over ball.

Then,   ׬ 𝑓 = ׬ 𝑓0.
׬ 𝑓1

׬ 𝑓0
.
׬ 𝑓2

׬ 𝑓1
…

׬ 𝑓𝑚

׬ 𝑓𝑚−1
.

Each ratio can be estimated by sampling:

1. Sample X with density proportional to 𝑓𝑖

2. Compute 𝑌 =
𝑓𝑖+1 𝑋

𝑓𝑖 𝑋

Then, 𝐸 𝑌 = ׬
𝑓𝑖+1 𝑋

𝑓𝑖 𝑋
. 
𝑓𝑖 𝑋

׬ 𝑓𝑖 𝑋
𝑑𝑋 =

׬ 𝑓𝑖+1

׬ 𝑓𝑖
.



Annealing [LV06]

 Define: 𝑓𝑖 𝑋 = 𝑒−𝑎𝑖 𝑋

 𝑎0 = 2𝑅, 𝑎𝑖+1 = 𝑎𝑖/ 1 +
1

𝑛
, 𝑎𝑚 =

𝜖

2𝑅

 𝑚 ~ 𝑛 log(2𝑅/𝜖) phases

 𝑓0.
׬ 𝑓1

׬ 𝑓0
.
׬ 𝑓2

׬ 𝑓1
…

׬ 𝑓𝑚

׬ 𝑓𝑚−1
.

Lemma. 𝑉𝐴𝑅 𝑌 =
𝑓𝑖+1 𝑋

𝑓𝑖 𝑋
< 4 𝐸 𝑌 2.

 Although expectation of Y can be large (exponential even), we need 
only a few samples to estimate it!

LoVe algorithm: 𝑛 × 𝑛 × 𝑛3 = 𝑛4



LV rounding algorithm

 Volume algorithm assumes body is near-isotropic

 But how to round? (make nearly isotropic)

 A sequence of doubling balls intersected with 𝐾:  

𝐾𝑖 = 𝐾 ∩ 2𝑖𝐵𝑛

Lemma. 𝐾𝑖 isotropic ⇒ 𝐾𝑖+1 well-rounded, i.e., E 𝑥 2 = 𝑂(𝑛). 

 Repeat: use 𝑂(𝑛) samples to make 𝐾𝑖+1 isotropic.

 Complexity: log 𝑛 ⋅ 𝑛 ⋅ 𝑛2 𝑛
2
= ෨𝑂 𝑛4 .

2t

t



Gaussian Cooling [Cousins-V.2015]

 𝑓𝑖 𝑋 = 𝑒
−

𝑋
2

2𝜎𝑖
2

 𝜎0
2 =

1

𝑛
, 𝜎𝑚

2 = 𝑂 𝑛 .

 Estimate 
׬ 𝑓𝑖+1

׬ 𝑓𝑖
using samples drawn according to 𝑓𝑖

Why Gaussian?

 KLS conjecture holds for Gaussian restricted to any convex body (Bobkov, Ledoux).

Thm. 𝜋 𝑆3 ≥
𝑐

𝜎
𝑑(𝑆1, 𝑆2)min𝜋 𝑆1 , 𝜋(𝑆2)

Thm. [Cousins-V. 13]. Ball walk applied to Gaussian 𝑁(0, 𝜎2𝐼𝑛) restricted to convex 
body 𝐾 containing the unit ball mixes in 𝑛2max {1, 𝜎2} steps from a warm start.



Gaussian Cooling

 𝑓𝑖 𝑋 = 𝑒
−

𝑋
2

2𝜎𝑖
2

For 𝜎𝑖
2 ≤ 1, we set 𝜎𝑖

2 = 𝜎𝑖−1
2 1 +

1

𝑛

 Sampling time:  𝑛2max {1, 𝜎2} = 𝑛2

 #phases, #samples per phase: 𝑛

 So, total time = 𝑛2 × 𝑛 × 𝑛 = 𝑛3



Gaussian Cooling

 𝑓𝑖 𝑋 = 𝑒
−

𝑋
2

2𝜎𝑖
2

 For 𝜎𝑖
2 > 1, we set 𝜎𝑖

2 = 𝜎𝑖−1
2 1 +

𝜎𝑖−1

𝑛

 For this accelerated schedule, we need 𝐾 to be well-rounded

 Sampling time: 𝑛2max {1, 𝜎2} = 𝜎2𝑛2 (too much??)

 #phases to double 𝜎 is 
𝑛

𝜎
, so #samples per phase is also 

𝑛

𝜎

CV algorithm:  
𝑛

𝜎
×

𝑛

𝜎
× 𝜎2𝑛2 × log 𝑛 = 𝑂∗(𝑛3)

Thm. The volume of any well-rounded convex body 𝐾 can be 
estimated using 𝑂∗(𝑛3) membership queries.



Rounding and KLS?

 Can we round (isotropicize) faster than 𝑛4 ?

Main new result:

Thm.  Any convex body can be brought into near-isotropic 

position using ෨𝑂 𝑛3𝜓𝑛
2 membership queries.

Cor.  Volume of a convex body can be computed in 𝑂∗ 𝑛3𝜓2 .

 𝑛3+𝑜(1) with current bound, 𝑛3 if KLS holds.



Well-rounded  Isotropic

 Outer loop: For 𝑖 = 1 to log𝑅, make 𝐾𝑖 = 𝐾 ∩ 2𝑖𝐵𝑛
isotropic. 

 Inner loop: set 𝑟 = 1, 𝑘 = ෨𝑂 𝑟2 . 

 While 𝑟2 log 𝑛 < 𝑛,

 Sample 𝑘 points from 𝐾𝑖. Estimate covariance ሚ𝐴. 

 Let 𝑉 be subspace with “large” eigenvalues, 𝜆 ሚ𝐴 > 𝑛. 

 Scale up along all directions in 𝑉⊥ by a factor of 2.  

2t

t



Well-rounded  Isotropic

Sample 𝑘 points from 𝐾𝑖 . Estimate covariance ሚ𝐴. 

Let 𝑉 be subspace with “large” eigenvalues, 𝜆 ሚ𝐴 > 𝑛. 

Scale up along all directions in 𝑉⊥ by a factor of 2.

 Naïve algorithm: estimate covariance; scale up small eigenvalue 
directions. 

 Difficulty: needs 𝑛 samples, each takes 𝑛3

Idea: use coarse estimates and gradually refine. 

 Initially, estimate very large eigenvalues, scale up the rest

 Gradually estimate smaller eigenvalues.

Why is this better?

 When we get finer estimates, body is more isotropic and sampling is 
faster!



How to get round

 Find “big” directions using a few samples

 Scale up complementary subspace

 Repeat with more samples

 Threshold for “big” stays the same



Getting rounder, efficiently

 Sampling complexity is 𝑛2 ⋅
𝜓2

𝑟2
≤ 𝑛2 ⋅

𝑇𝑟 𝐴𝑗

𝑟2

 But can be controlled better!

Thm. If 𝜓𝑛 = 𝑂(𝑛1/𝑝), then 𝜓𝑞 = ෨𝑂( 𝐴 𝑝
1/2

).

 So sampling can be done in 𝑛2 ⋅
𝐴𝑗 𝑝

𝑟𝑗
2



Getting rounder, efficiently
Lemma 1. 

 𝑇𝑟 𝐴0 ≤ 𝐶𝑛, 𝑇𝑟 𝐴𝑗 ≤ 𝑐𝑟𝑗
2 ⋅ 𝑇𝑟(𝐴0)

 𝐴𝑗 𝑝
= σ𝑖 𝜆𝑖

𝑝
𝐴𝑗

1/𝑝
≤ 𝑐 log 𝑛 ⋅ 𝑛𝑟𝑗

2/𝑝

Lemma 2.  Assume 𝑛 ≥ 4𝑟2 log 𝑛 . In each iteration, radius of inner ball, 𝑟,

increases by a factor of 2 1 −
1

log 𝑛
. 

Lemma 3. In 𝑗’th phase, 𝑘 = ෨𝑂(𝑟𝑗
2) samples suffice.

Therefore, complexity is 

𝑟𝑗
2 ⋅ 𝑛2 ⋅

𝐴𝑗 𝑝

𝑟𝑗
2 = ෨𝑂 𝑛3𝑟𝑗

2/𝑝
= ෨𝑂 𝑛3+1/𝑝 = ෨𝑂 𝑛3𝜓2



To round, scale up skinny subspace

Lemma 1. 

 𝑇𝑟 𝐴0 ≤ 𝐶𝑛, 𝑇𝑟 𝐴𝑗 ≤ 𝑐𝑟𝑗
2𝑇𝑟(𝐴0)

 𝐴𝑗 𝑝

𝑝
= σ𝑖 𝜆𝑖

𝑝
(𝐴𝑗) ≤ 𝑐 log 𝑛 ⋅ 𝑛𝑟𝑗

2/𝑝

෍

𝑖

𝜆𝑖
𝑝
(𝐴𝑗+1) ≤ ෍

𝑖:𝜆𝑖≤𝜆

(2𝜆)𝑝 + ෍

𝑖:𝜆𝑖>𝜆

𝜆𝑖
𝑝
(𝐴𝑗)

≤
𝑇𝑟 𝐴𝑗

𝜆
⋅ (2𝜆)𝑝 + ෍

𝑖:𝜆𝑖>𝜆

𝜆𝑖
𝑝
(𝐴𝑗)

Setting 𝜆 = 𝑛, in each iteration, increase in 𝐴𝑗 𝑝
is at most 

𝑟𝑗
2𝑛

𝑛
⋅ 2𝑛 𝑝

1/𝑝

= 2𝑛𝑟𝑗
2/𝑝



Grow your inner ball

Lemma. While 𝜆 ≥ 4𝑟2 log 𝑛, 𝑟 increases by a factor of at least 2 1 −
1

log 𝑛
in 

each iteration. (We use 𝜆 = 𝑛). 

Proof sketch:  

Scale up all directions with variance < 𝜆.

𝑉 contains ellipsoid with minimum axis length 𝜆

𝑉⊥ contains a ball of radius 𝑟 that is scaled up by 2.

Then, new body contains a ball of radius nearly 2𝑟.

𝑥 = 𝛼𝑦 + 1 − 𝛼 where 𝛼 ∈ 0,1 , 𝑦 ∈ 𝜕𝐵 2𝑟 ∩ 𝑉⊥, 𝑧 ∈ 𝜕𝐵𝑛 𝜆 ∩ 𝑉

Then,  

𝑥 2 = 𝛼24𝑟2 + 1 − 𝛼 2𝜆 ≥
4𝜆𝑟2

𝜆 + 4𝑟2
≥ 4 ⋅

log 𝑛

log 𝑛 + 1
⋅ 𝑟2



Matrix, Chernoff, and all that

Lemma 2.  𝑘 = ෨𝑂 𝑟𝑗
2 samples suffice.

Lem. [Matrix-Chernoff]. 

𝐴: covariance, መ𝐴: empirical covariance of 𝑘 samples. Then, 

−𝜀𝐴 − 𝑐 log3 𝑛 ⋅
𝑇𝑟 𝐴

𝜀𝑘
𝐼 ≼ መ𝐴 − 𝐴 ≼ 𝜀𝐴 + 𝑐 log3 𝑛 ⋅

𝑇𝑟 𝐴

𝜀𝑘
𝐼.

So with 𝜀 =
1

2
and 𝑘 = 2𝑐 ⋅ 𝑇𝑟 𝐴 ⋅

log3 𝑛

𝑛
, 

1

2
𝐴 − 𝑛𝐼 ≼ መ𝐴 ≼

1

2
𝐴 + 𝑛𝐼

Suffices to detect eigenvalues larger than 4𝑛. 



Localizing isoperimetry to the isotropic case

 Thm [LV16]. 𝜓𝑞 = 𝑂( 𝐴 𝐹
1/2

) which is 𝑂(𝑛1/4) for isotropic. 

 Thm[LV16]. Suppose 𝜓𝑛 = 𝑂(𝑛𝛽), for some 0 < 𝛽 ≤ 1/2. Then, for any 
logconcave density 𝑞 in 𝑹𝑛 with covariance 𝐴, we have 

𝜓𝑞 ≲
log𝑛

𝛽
𝐴 1/2𝛽

1/2

 𝜓𝑛
2 = Θ 𝑛1/𝑝 ⇒ 𝜓𝑞

2 = 𝑂 𝐴 𝑝 log 𝑛

 Complexity is 𝑛3+(1/𝑝) = 𝑛3𝜓𝑛
2.

 Thm [Chen20]. 𝜓𝑛
2 = 2

𝑂 log 𝑛 log log 𝑛
= 𝑛𝑜 1 . 

 Thm.  Complexity of  Rounding/Volume is ෨𝑂 𝑛3+𝑜 1 . 



Open question

 How true is the KLS conjecture?



Open question

 Can we estimate the volume of an explicit polytope in 

deterministic polynomial time?

𝐴𝑥 ≤ 𝑏



Thank you!


