Reducing Isotropy to KLS: An Almost Cubic Volume Algorithm Santosh Vempala

with He Jia, Aditi Laddha and Yin Tat Lee

The Volume Problem

Given a measurable, compact set K in n-dimensional space, find a number A such that:

$$(1-\epsilon) \operatorname{vol}(K) \leq A \leq (1+\epsilon) \operatorname{vol}(K)$$

K is given by

- ▶ a point $x_0 \in K$, s.t. $x_0 + B_n \subseteq K \subseteq RB_n$
- ▶ a membership oracle: answers YES/NO to " $x \in K$?"

Volume: first attempt

Divide and conquer:

Difficulty: number of parts grows exponentially in n.

Volume: second attempt: Sandwiching

Thm (John). Maximum volume ellipsoid E contained in convex body K satisfies $E \subseteq K \subseteq nE$.

K is in isotropic position if $E_K(x) = 0$ and $E_K(xx^T) = I$.

Thm (KLS95). For a convex body K in *isotropic position*, $\sqrt{\frac{n+1}{n}}B_n \subseteq K \subseteq \sqrt{n(n+1)}B_n$

Both are factor n sandwichings, with different ellipsoids.

Volume via Sandwiching

The John ellipsoid can be approximated using the Ellipsoid algorithm, s.t.

 $E \subseteq K \subseteq n^{1.5}E$

- The Inertial ellipsoid can be approximated to within any constant factor (we'll see how)
- Using either one,

 $E \subseteq K \subseteq n^{O(1)}E \Rightarrow vol(E) \leq vol(K) \leq n^{O(n)} vol(E).$

- Polytime algorithm, n⁰⁽ⁿ⁾ approximation
- Can we do better?

Complexity of Volume Estimation

Thm [E86, BF87]. For any deterministic algorithm that uses at most n^a membership calls to the oracle for a convex body K and computes two numbers A and B such that $A \le vol(K) \le B$, there is some convex body for which the ratio B/A is at least

 $\left(\frac{cn}{a\log n}\right)^2$

where c is an absolute constant.

Thm [DF88]. Computing the volume of an explicit polytope $Ax \le b$ is #P-hard, even for a totally unimodular matrix A and rational b.

Complexity of Volume Estimation

Thm [BF]. For deterministic algorithms:

Thm [Dadush-V.13]. Matching upper bound of $(1 + \epsilon)^n$ in time $\left(\frac{1}{\epsilon}\right)^{O(n)}$ poly(*n*).

[Dyer-Frieze-Kannan 1989]

Thm. There is a polynomial-time randomized algorithm that estimates the volume of a convex body to within relative error $(1 + \epsilon)$ with probability at least $1 - \delta$ in time poly $(n, \frac{1}{\epsilon}, \log \frac{R}{\delta})$.

Volume Computation: an ongoing adventure

	Exponent	New aspects
Dyer-Frieze-Kannan 89	23	everything
Lovász-Simonovits 90	16	localization
Applegate-K 90	10	logconcave integration
L 90	10	ball walk
DF 91	8	error analysis
LS 93	7	multiple improvements
KLS 97	5	speedy walk, isotropy
LV 03,04	4	annealing, wt. isoper.
LV 06	4	integration, local analysis
Cousins-V. 15 (well-rounde	d) 3	Gaussian cooling

Volume: third attempt: Sampling

- Pick random samples from ball/cube containing K.
- Compute fraction c of sample in K.
- Output c.vol(outer ball).

Need too many samples!

Volume via Sampling [DFK89]

$B \subseteq K \subseteq RB.$

Let
$$K_i = K \cap 2^{i/n}B$$
, $i = 0, 1, ..., m = n \log R$.

$$vol(K) = vol(B) \cdot \frac{vol(K_1)}{vol(K_0)} \cdot \frac{vol(K_2)}{vol(K_1)} \cdots \frac{vol(K_m)}{vol(K_{m-1})}$$

Estimate each ratio with random samples.

Volume via Sampling $K_i = K \cap 2^{i/n}B, \quad i = 0, 1, ..., m = n \log R.$ $vol(K) = vol(B). \frac{vol(K_1)}{vol(K_0)} \frac{vol(K_2)}{vol(K_1)} ... \frac{vol(K_m)}{vol(K_{m-1})}.$

Claim. $\operatorname{vol}(K_{i+1}) \leq 2.\operatorname{vol}(K_i)$.

#samples for $(1 + \epsilon)$ approximation $= m \cdot \frac{m}{\epsilon^2} = O^*(n^2)$.

But, how to sample?

Sampling

Input: function f: $\mathbb{R}^n \to \mathbb{R}_+$ specified by an oracle,

point x, error parameter ε .

Output: A point **y** from a distribution within distance ϵ of distribution with density proportional to f.

- Any logconcave density can be sampled in polytime.
- Many applications: Rounding, Optimization, Integration, Learning

Rounding via Sampling

- I. Sample m random points from K
- 2. Compute sample mean and sample covariance matrix
- z = E(x) $A = E((x z)(x z)^T).$ 3. Output $B = A^{-\frac{1}{2}}$.

Then, B(K - z) is nearly isotropic.

Thm. [Adamczak-Litvak-Pajor-TomczakJaegermann09] For isotropic K, estimate \hat{A} with $C(\epsilon) \cdot n$ random points satisfies

 $E(\|A-I\|_2) \le \epsilon.$

I.e., for any unit vector v, $1 - \epsilon \le E\left(\left(v^T x\right)^2\right) \le 1 + \epsilon$.

How to Sample?

Ball walk:

At x,

- -pick random y from $x + \delta B_n$
- -if y is in K, go to y

Hit-and-Run:

At x,

-pick a random chord L through x

-go to a random point y on L

Convergence depends on isoperimetry

Technique: show that "conductance" of Markov chain is large.

- (one-step overlap): Nearby points have overlapping one-step distributions
- (isoperimetry) Large subsets have large boundaries $\pi(S_3) \ge \frac{c}{R} d(S_1, S_2) \min \pi(S_1), \pi(S_2)$

Isoperimetry and the KLS conjecture

$$\psi_{K} = \sup_{S:|S| \le \frac{|K|}{2}} \frac{vol_{n}(S)}{vol_{n-1}(\partial S)}$$

Thm. [KLS97]. Mixing rate of the ball walk in K from a warm start is $n^2 \psi_K^2$.

$$A = E_K((x - \overline{x})(x - \overline{x})^T)$$

note:
$$\sum_i \lambda_i(A) = E_K(||x - \bar{x}||^2)$$

Thm. [KLS95]. $\psi_K \le c \sqrt{\sum_i \lambda_i(A)}$ isotropic (A = I)mixing time $0(\sqrt{n})$ n^3

Conj. [KLS95]. $\psi_K \le c \sqrt{\lambda_1(A)}$ O(1) n^2

Thm. [Lee-V.17].
$$\psi_K \le c \left(\sum_i \lambda_i^2(A)\right)^{1/4}$$
 $O(n^{1/4})$ $n^{2.5}$ Thm. [Chen20]. $\psi_K \le n^{o(1)} \cdot \sqrt{\lambda_1(A)}$ $O(n^{o(1)})$ $n^{2+o(1)}$

The Conjecture

For any logconcave density in any dimension, halfspaces minimize the isoperimetric ratio up to a universal constant.

Covariance of
$$p: A = \mathbb{E}_p((x - \bar{x})(x - \bar{x})^T).$$

$$\lambda_1(A) = \max_{\|v\|=1} v^T A v$$

Isoperimetry of halfspace cuts: project distribution to normal of halfspace, to get logconcave distribution with variance $\sigma_v^2 = v^T A v$. Then, ψ (halfspaces) $\leq \sigma_v \leq \sqrt{\lambda_1(A)}$. Sampling and KLS

Thm. [KLS] For any logconcave density q in \mathbb{R}^n with KLS constant ψ_q , the mixing time of the ball walk from a warm start is $n^2 \psi_q^2$.

- $n^{2+o(1)}$ for isotropic
- $n^2 \cdot Tr(A) = \tilde{O}(n^3)$ for a well-rounded body.
- KLS volume algorithm is $n \cdot n \cdot n^3 = O^*(n^5)$.

Simulated Annealing [LV03, Kalai-V.04]

To estimate $\int f$ consider a sequence $f_0, f_1, f_2, \dots, f = f_m$ with $\int f_0$ being easy, e.g., constant function over ball.

Then,
$$\int f = \int f_0 \cdot \frac{\int f_1}{\int f_0} \cdot \frac{\int f_2}{\int f_1} \cdot \cdot \frac{\int f_m}{\int f_{m-1}}$$
.

Each ratio can be estimated by sampling:

1. Sample X with density proportional to f_i 2. Compute $Y = \frac{f_{i+1}(X)}{f_i(X)}$

Then,
$$E(Y) = \int \frac{f_{i+1}(X)}{f_i(X)} \cdot \frac{f_i(X)}{\int f_i(X)} dX = \frac{\int f_{i+1}}{\int f_i}$$
.

Annealing [LV06]

• Define: $f_i(X) = e^{-a_i ||X||}$

•
$$a_0 = 2R$$
, $a_{i+1} = a_i / \left(1 + \frac{1}{\sqrt{n}}\right)$, $a_m = \frac{\epsilon}{2R}$

•
$$m \sim \sqrt{n} \log(2R/\epsilon)$$
 phases
• $f_0 \cdot \frac{\int f_1}{\int f_0} \cdot \frac{\int f_2}{\int f_1} \dots \frac{\int f_m}{\int f_{m-1}}$.

Lemma.
$$VAR\left(Y = \frac{f_{i+1}(X)}{f_i(X)}\right) < 4 E(Y)^2.$$

Although expectation of Y can be large (exponential even), we need only a few samples to estimate it!

LoVe algorithm:
$$\sqrt{n} \times \sqrt{n} \times n^3 = n^4$$

LV rounding algorithm

- Volume algorithm assumes body is near-isotropic
- But how to round? (make nearly isotropic)
- A sequence of doubling balls intersected with K:

 $K_i = K \cap 2^i B_n$

Lemma. K_i isotropic $\Rightarrow K_{i+1}$ well-rounded, i.e., $\mathbb{E}||x||^2 = O(n)$.

- Repeat: use O(n) samples to make K_{i+1} isotropic.
- Complexity: $\log n \cdot n \cdot n^2 (\sqrt{n})^2 = \tilde{O}(n^4)$.

Gaussian Cooling [Cousins-V.2015]

- $f_i(X) = e^{-\frac{||X||^2}{2\sigma_i^2}}$ • $\sigma_0^2 = \frac{1}{n}, \sigma_m^2 = O(n).$
- Estimate $\frac{\int f_{i+1}}{\int f_i}$ using samples drawn according to f_i

Why Gaussian?

KLS conjecture holds for Gaussian restricted to any convex body (Bobkov, Ledoux).

Thm. $\pi(S_3) \ge \frac{c}{\sigma} d(S_1, S_2) \min \pi(S_1), \pi(S_2)$

Thm. [Cousins-V. 13]. Ball walk applied to Gaussian $N(0, \sigma^2 I_n)$ restricted to convex body K containing the unit ball mixes in $n^2 \max \{1, \sigma^2\}$ steps from a warm start.

Gaussian Cooling

$$f_i(X) = e^{-\frac{||X||^2}{2\sigma_i^2}}$$

For
$$\sigma_i^2 \leq 1$$
, we set $\sigma_i^2 = \sigma_{i-1}^2 \left(1 + \frac{1}{\sqrt{n}} \right)$

- Sampling time: $n^2 \max \{1, \sigma^2\} = n^2$
- > #phases, #samples per phase: \sqrt{n}

So, total time =
$$n^2 imes \sqrt{n} imes \sqrt{n} = n^3$$

Gaussian Cooling

- $f_i(X) = e^{-\frac{||X||^2}{2\sigma_i^2}}$
- For $\sigma_i^2 > 1$, we set $\sigma_i^2 = \sigma_{i-1}^2 \left(1 + \frac{\sigma_{i-1}}{\sqrt{n}} \right)$
- For this accelerated schedule, we need K to be well-rounded
- Sampling time: $n^2 \max \{1, \sigma^2\} = \sigma^2 n^2$ (too much??)
- \blacktriangleright #phases to double σ is $\frac{\sqrt{n}}{\sigma}$, so #samples per phase is also $\frac{\sqrt{n}}{\sigma}$

CV algorithm:
$$\frac{\sqrt{n}}{\sigma} \times \frac{\sqrt{n}}{\sigma} \times \sigma^2 n^2 \times \log n = O^*(n^3)$$

Thm. The volume of any well-rounded convex body K can be estimated using $O^*(n^3)$ membership queries.

Rounding and KLS?

Can we round (isotropicize) faster than n⁴?
Main new result:

Thm. Any convex body can be brought into near-isotropic position using $\tilde{O}(n^3\psi_n^2)$ membership queries.

Cor. Volume of a convex body can be computed in $O^*(n^3\psi^2)$.

• $n^{3+o(1)}$ with current bound, n^3 if KLS holds.

Well-rounded \rightarrow Isotropic

• Outer loop: For i = 1 to $\log R$, make $K_i = K \cap 2^i B_n$ isotropic.

- Inner loop: set r = 1, $k = \tilde{O}(r^2)$.
- While $r^2 \log n < n$,
 - Sample k points from K_i . Estimate covariance \tilde{A} .
 - Let V be subspace with "large" eigenvalues, $\lambda(\tilde{A}) > n$.
 - Scale up along all directions in V^{\perp} by a factor of 2.

Well-rounded \rightarrow Isotropic

Sample k points from K_i . Estimate covariance \tilde{A} . Let V be subspace with "large" eigenvalues, $\lambda(\tilde{A}) > n$. Scale up along all directions in V^{\perp} by a factor of 2.

- Naïve algorithm: estimate covariance; scale up small eigenvalue directions.
- Difficulty: needs n samples, each takes n^3

Idea: use coarse estimates and gradually refine.

- Initially, estimate very large eigenvalues, scale up the rest
- Gradually estimate smaller eigenvalues.

Why is this better?

When we get finer estimates, body is more isotropic and sampling is faster!

How to get round

- Find "big" directions using a few samples
- Scale up complementary subspace

- Repeat with more samples
- Threshold for "big" stays the same

Getting rounder, efficiently

- Sampling complexity is $n^2 \cdot \frac{\psi^2}{r^2} \le n^2 \cdot \frac{Tr(A_j)}{r^2}$
- But can be controlled better! Thm. If $\psi_n = O(n^{1/p})$, then $\psi_q = \tilde{O}(||A||_p^{1/2})$.
- So sampling can be done in $n^2 \cdot \frac{\|A_j\|_p}{r_j^2}$

Getting rounder, efficiently

Lemma I.

- $Tr(A_0) \le Cn, \ Tr(A_j) \le cr_j^2 \cdot Tr(A_0)$
- $\|A_j\|_p = \left(\sum_i \lambda_i^p (A_j)\right)^{1/p} \le c \log n \cdot nr_j^{2/p}$

Lemma 2. Assume $n \ge 4r^2 \log n$. In each iteration, radius of inner ball, r, increases by a factor of $2\left(1 - \frac{1}{\log n}\right)$.

Lemma 3. In j'th phase, $k = \tilde{O}(r_j^2)$ samples suffice.

Therefore, complexity is

$$r_{j}^{2} \cdot n^{2} \cdot \frac{\|A_{j}\|_{p}}{r_{j}^{2}} = \tilde{O}\left(n^{3}r_{j}^{2/p}\right) = \tilde{O}\left(n^{3+1/p}\right) = \tilde{O}\left(n^{3}\psi^{2}\right)$$

To round, scale up skinny subspace

Lemma I.

- $Tr(A_0) \le Cn$, $Tr(A_j) \le cr_j^2 Tr(A_0)$
- $\|A_j\|_p^p = \sum_i \lambda_i^p (A_j) \le c \log n \cdot nr_j^{2/p}$

$$\sum_{i} \lambda_{i}^{p} (A_{j+1}) \leq \sum_{i:\lambda_{i} \leq \lambda} (2\lambda)^{p} + \sum_{i:\lambda_{i} > \lambda} \lambda_{i}^{p} (A_{j})$$
$$\leq \frac{Tr(A_{j})}{\lambda} \cdot (2\lambda)^{p} + \sum_{i:\lambda_{i} > \lambda} \lambda_{i}^{p} (A_{j})$$

Setting $\lambda = n$, in each iteration, increase in $\|A_j\|_n$ is at most

$$\left(\frac{r_j^2 n}{n} \cdot (2n)^p\right)^{1/p} = 2nr_j^{2/p}$$

Grow your inner ball

Lemma. While $\lambda \ge 4r^2 \log n$, r increases by a factor of at least $2\left(1 - \frac{1}{\log n}\right)$ in each iteration. (We use $\lambda = n$).

Proof sketch:

Scale up all directions with variance $< \lambda$. V contains ellipsoid with minimum axis length λ V^{\perp} contains a ball of radius r that is scaled up by 2. Then, new body contains a ball of radius nearly 2r.

$$x = \alpha y + (1 - \alpha)$$
 where $\alpha \in [0,1], y \in \partial B(2r) \cap V^{\perp}, z \in \partial B^n(\sqrt{\lambda}) \cap V$
Then,

$$\|x\|^{2} = \alpha^{2} 4r^{2} + (1-\alpha)^{2}\lambda \ge \frac{4\lambda r^{2}}{\lambda + 4r^{2}} \ge 4 \cdot \frac{\log n}{\log n + 1} \cdot r^{2}$$

Matrix, Chernoff, and all that

Lemma 2. $k = \tilde{O}(r_i^2)$ samples suffice.

Lem. [Matrix-Chernoff].

A: covariance, \hat{A} : empirical covariance of k samples. Then,

$$-\varepsilon A - c \log^3 n \cdot \frac{Tr(A)}{\varepsilon k} I \leq \hat{A} - A \leq \varepsilon A + c \log^3 n \cdot \frac{Tr(A)}{\varepsilon k} I.$$

So with
$$\varepsilon = \frac{1}{2}$$
 and $k = 2c \cdot Tr(A) \cdot \frac{\log^3 n}{n}$,
 $\frac{1}{2}A - nI \leq \hat{A} \leq \frac{1}{2}A + nI$

Suffices to detect eigenvalues larger than 4n.

Localizing isoperimetry to the isotropic case

• Thm [LVI6]. $\psi_q = O(||A||_F^{1/2})$ which is $O(n^{1/4})$ for isotropic.

Thm[LV16]. Suppose $\psi_n = O(n^{\beta})$, for some $0 < \beta \le 1/2$. Then, for any logconcave density q in \mathbb{R}^n with covariance A, we have

$$\psi_q \lesssim \frac{\sqrt{\log n}}{\beta} \|A\|_{1/2\beta}^{1/2}$$

$$\psi_n^2 = \Theta(n^{1/p}) \Rightarrow \psi_q^2 = O(||A||_p \log n)$$

• Complexity is
$$n^{3+(1/p)} = n^3 \psi_n^2$$
.

- Thm [Chen20]. $\psi_n^2 = 2^{O(\sqrt{\log n \log \log n})} = n^{O(1)}$.
- Thm. Complexity of Rounding/Volume is $\tilde{O}(n^{3+o(1)})$.

How true is the KLS conjecture?

Open question

Can we estimate the volume of an explicit polytope in deterministic polynomial time?

$Ax \leq b$

Thank you!

D