
Astrophysical SGWB
Vuk Mandic

1



Star Formation Rate

Vangioni et al, MNRAS 447, 2575 (2015).
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• Many measurements at z 
< 3, fairly well 
understood.

• High redshifts are not as 
well understood, may 
depend on existence of 
Pop-3 stars etc.



Time-Delay Distribution

Time-delay distribution 
(functional form and minimum 
delay) lead to ~2x variation in 
the amplitude of the SGWB.
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Population synthesis: P(t) ~ tα, for t > tmin :
α = -0.5, -1, -1.5
tmin = 20, 100 Myr (BNS) 
tmin =100, 500 Myr (BBH)

Short GRBs: log-normal distribution.
No time-delay.
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arXiv:2101.12130
LIGO/Virgo O3 isotropic search paper



Stellar Core Collapse
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Aspherical  outflows

C. Ott
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Stellar Core Collapse 

Simulations of stellar core collapse GW 
production yield various predictions

K. Crocker et al, Phys. Rev. D 
95, 063015 (2017)
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Stellar core collapse model: probing the parameter space

K. Crocker et al, Phys. Rev. D 
95, 063015 (2017)
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Magnetar Model

C. Wu et al. Phys. Rev. D 87, 
042002 (2013).
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C. Wu et al. Phys. Rev. D 87, 
042002 (2013).

Magnetar Model: 
Poloidal Magnetic Field
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Primordial BBH Model

V. Mandic et al., Phys. Rev. Lett. 117, 201102 (2016).
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Primordial BBH Model

V. Mandic et al., Phys. Rev. 
Lett. 117, 201102 (2016).

• Assumes all BBH 
masses are the same 
as for GW150914.

• Do not expect 
significant difference 
when using more 
realistic BBH mass 
distributions. 



Stochastic Background of 
Gravitational Waves

 Energy density:

 Characterized by log-
frequency spectrum:

 Related to the strain power 
spectrum:

 Strain scale:
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Detection Strategy
 Cross-correlation estimator

 Theoretical variance

 Optimal Filter

Overlap Reduction Function

For template:

Choose N such that: 13TY αΩ=



O3 Result: Pre-processing 

 Time-series data are sampled at 16384 Hz.
» Downsample to 4096 Hz, so Nyquist frequency is 2048 Hz.
» Analyze data below 1726 Hz to avoid aliasing effects.

 High-pass filter is applied to remove the low-frequency noise 
(16th-order Butterworth filter, with a knee frequency of 11 Hz)

 Divide data into time segments of duration T=192 s.
» Hann-windowed and overlapped by 50%.

 Compute discrete Fourier transform on each segment. 
 Coarse-grain the spectrum 1/32 Hz.
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O3 Data Quality

 Stationarity cut
» Remove noise fluctuations that cause >20% variations in σY from 

segment to segment.
» These segments can have inaccurate estimates of the PSD or of 

Y(f), so we remove them. Typically lose 4-5% of the data.
 Frequency notching

» 60 Hz harmonics, violin modes, calibration lines, 1 Hz harmonics
» Occasionally observe beating of two lines
» Eliminate ~10% of the frequency band.
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LLO, 2017
arXiv:1908.11170



O3 Data Quality: Gating

 In O3, observed many loud glitches.
 Stationarity cut was expensive, losing >50% of the data. 
 Gating procedure: Identify glitch time, then nullify the time series.

16arXiv:2101.12130



O3 Data Quality: Magnetic Noise

 Magnetic noise can be globally correlated on Earth.
» Schumann resonances: standing waves in the resonant cavity 

between the Earth and the ionosphere, generated by storms.
 If magnetic field couples to GW detectors, this could generate 

correlated noise between GW detectors.
 Approach 1:

» Measure magnetic coupling via injections.
» Measure magnetic correlations between sites.
» Combine into a prediction of the magnetic contribution to ΩGW.

 Approach 2:
» Model the magnetic contamination.
» Estimate it simultaneously with the SGWB in a Bayesian 

parameter estimation framework.
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O3 Data Quality: Magnetic Noise
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arXiv:2101.12130



O3(+O2+O1) Results

 Observed cross-correlation 
spectrum is consistent with 
noise.

 Place upper limits on Ωα for 
different power law indices α.

 Adding magnetic noise to the 
model reduces the Bayes factor 
(prefers the no-magnetic-noise 
model).

arXiv:2101.12130
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O3(+O2+O1) Results

Can perform 2D fit to estimate both 
amplitude and power index.



Polarized Background

 Examples of overlap reduction 
functions for polarized SGWB 
background.

Crowder et al., Phys. Lett. B 726, 66 
(2013)
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Crowder et al., Phys. Lett. B 726, 66 (2013)

Polarized Background



Anisotropic Searches

 Measure from where (on the sky) the signal comes from.
» Time-delay between two detectors.
» Earth rotation breaks degeneracies for permanent signals.

 Redefine energy density:

 Point source (radiometer) search:

 Spherical harmonic decomposition (similar to CMB analyses):

2323



SGWB Directionality:
Radiometer and Sph. Harmonics
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 Cosmological SGWB likely 
isotropic.

 Astrophysical SGWB might be 
anisotropic.
» Point sources.
» Extended sources (e.g. Milky 

Way).
 Have pipelines to deal with both:

» Radiometer.
» Spherical harmonics 

decomposition.



25Anirban Ain: simulation of a point source






26Anirban Ain: simulation of an extended source






Regularization

 Diagonalize the Fisher matrix to find 
eigenvalues.
» Note the eigenvalues significantly 

drop.
 Replace these with infinity, allows the 

matrix to be inverted.
 Adding third detector helps regularize 

the overall Fisher matrix.
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arXiv:2103.08520



Anisotropic Signal 
Simulations

Anisotropic stochastic signal added to the data (in software or 
hardware) and successfully recovered. 
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WMAP map added to data in software
E. Thrane et al, Phys. Rev. D 80, 122002 (2009).

Point source simulation in hardware
M. Pihlaja’s M.S. Thesis (2011).

Injected

Recovered

28
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O1-O3 Broadband Radiometer 
Search

arXiv:2103.08520



 Performed in pixel basis, but integrating over a broad (20-1726 
Hz) frequency band.

 Repeated for different spectral (power-law) indices. 
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O1-O3 Broadband Radiometer 
Search

arXiv:2103.08520



O1-O3 Spherical Harmonics 
Decomposition

31arXiv:2103.08520



 Repeated for different power-
law index α.

 Note that different α values 
emphasize different 
frequencies.
» Implies different angular 

resolution and maximum l 
for the spherical harmonic 
decomposition.
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O1-O3 Spherical Harmonics 
Decomposition

arXiv:2103.08520



O1-O3 Narrowband Radiometer 
Search

 For specific promising point-source directions, complete frequency-
dependent analysis.
» Can search for narrowband (line) searches in these directions.
» Computationally expensive, not done for all directions on the sky.
» New search: All-sky-all-frequencies (ASAF) currently pursued.
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Angular Resolution

 Past searches use “diffraction limit” to define the angular resolution:

 We integrate over frequency, so searches pick the 
“most sensitive frequency” for a given α.

» f = 50 Hz implies lmax = 3-4.
 Diffraction limit refers to the size of a receiver
relative to the observed wavelength.
 But in our directional searches, we use the
time delay between 2 receivers to extract
directional information.

» Is it appropriate to use the diffraction limit?
» We include f > 50 Hz – shouldn’t this imply
some angular sensitivity at l > 3? 34



Intuition: Toy Model

 Imagine two buoys measuring the water wave height, assume a single 
plane wave.
» Vary the SNR of the buoy measurements.
» Infinite SNR means measuring perfectly the wave profile at each 

buoy, hence measuring perfectly the time-delay between two buoys, 
hence measuring perfectly the wave direction.

35

SNR

PD
F



Intuition: Toy Model

 If nature sends a single plane wave, and we search for a single plane 
wave with infinite SNR buoys, we can extract the wave direction with 
zero error.
» Beating the diffraction limit!

 What if nature sends two plane waves at the same frequency?
» Two sine waves add to make another sine wave with a different 

phase!
– May be able to distinguish them with a smarter algorithm, 

explicitly searching for two waves…
– If sources emit multiple frequencies, could use this too…

» What if there are more than 2 waves? What algorithm should we 
use? 

 What if the waves do not originate from point sources, but are instead 
coming from extended objects on the sky?
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Buoy Radiometer

 Andrew Matas: derived the full radiometer formalism for two 
buoys rotating around midpoint.
» Both for isotropic and “lighthouse” response.

 In isotropic response case, Fisher matrix proportional to the 
Bessel function:

 Peaks at n ~ 2π f D/c, the usual diffraction limit.
 In “lighthouse” response case, can beat the diffraction limit:

 Also recovered the single point source result:
» Angular resolution scales as SNR-1.
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Andrew Matas



Theoretical Modeling of 
Anisotropy: Compact Binaries

 Predictions by multiple author groups: 
» G. Cusin et al.
» M. Sakellariadou et al.

 Astrophysical Kernel as a function of redshift and GW frequency:

38PRD 96, 103019 (2017); PRD 100, 063004 (2019).



Theoretical Modeling of Anisotropy: 
Compact Binaries

SGWB angular power spectrum
Cusin et al, Phys. Rev. Lett. 120, 
231101 (2018)
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SGWB-Galaxy Count angular 
power spectrum
G. Cusin et al., Phys. Rev. D 
100, 063004 (2019).



Cosmic Strings SGWB Anisotropy

 Topological defects generated during 
phase transitions in the early universe.

 Or, string theory strings.
 Cusps and kinks produce GWs. 
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A.C. Jenkins and M. 
Sakellariadou, Phys. Rev. D 
98, 063509 (2018)



GW-EM Correlations
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O2 LIGO 
SGWB sky 
maps

SDSS Galaxy Count Distribution

K.Z. Yang et al, MNRAS 500, 1666 (2021)



GW-EM Correlations

42

p-values for observed Γ for different 
GW frequency bands and GC 
redshift bins

K.Z. Yang et al, MNRAS 500, 1666 (2021)
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Bayesian hierarchical formalism allows for 
recovery of a simulated angular power 
spectrum between BBH population and the 
galaxy count distribution. 
S. Banagiri et al., Phys. Rev. D 102, 
063007 (2020)
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