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1 Energy Density in Gravitational Waves

Stochastic Gravitational Wave Background (SGWB) is an incoherent super-
position of many GW sources. It could be cosmological: for example, vacuum
fluctuations from the early universe could produce a stochastic background.
It could also be astrophysical: for example, adding contributions from all
binary black hole coalescences in the universe would produce a stochastic
background. While this background is expected to be permanent (i.e. not
transient), it is not expected to have a predictable waveform. However, dif-
ferent models predict different power spectra of the stochastic background,
and possible different distributions across the sky and different polarizations.

We typically describe the SGWB in terms of the normalized energy den-
sity of GWs:

ΩGW =
1

ρc,0

dρGW
d ln f

(1)

where we think of dρGW as the energy density in the frequency band between
f and f+df , and ρc,0 is the critical energy density needed to close the universe

ρc,0 =
3H2

0c
2

8πG
, (2)

where H0 is the Hubble constant, G is Newton’s constant and c is the speed
of light. Note that this is a similar (but not identical) definition to the nor-
malized energy densities we discussed in the context of cosmology. Further,
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the energy density in gravitational waves (GWs) is related to the average of
the square of the time derivative of the metric (where the average is assumed
to be computed over at least several wavelengths):

ρGW =
c2

32πG
〈ḣabḣab〉 (3)

Since this definition involves GW frequencies, it is helpful to convert our
metric perturbation into the frequency domain. Specifically, we write the
following decomposition:

hab(t, ~x) =
∑
A

∫ ∞
−∞

df

∫
dΩ̂hA(f, Ω̂)e2πif(t−Ω̂·~x/c)eAab(Ω̂) (4)

This is effectively a Fourier transform in both time and space, coupled with
the decomposition into the plus and cross polarizations. The unit vector
Ω̂ is a direction on the 2-D sphere (sky), described by two angles (θ, φ),
from which the GW is arriving. We can therefore write the wavevector as
~k = 2πf Ω̂/c. The amplitudes (at a given frequency, from a given direction
in the sky) obey hA(f, Ω̂) = h∗A(−f, Ω̂), which is a consequence of the fact
that hab is real. The polarization tensors have to be defined relative to the
wave propagation direction, which is Ω̂. Specifically, we can define them as
follows (see Allen-Romano paper):

e+
ab = m̂am̂b − n̂an̂b (5)

e×ab = m̂an̂b − n̂am̂b (6)

Ω̂ = sin θ cosφx̂+ sin θ sinφŷ + cos θẑ (7)

m̂ = sinφx̂− cosφŷ (8)

n̂ = cos θ cosφx̂+ cos θ sinφŷ − sin θẑ (9)

At this point, we have to make some assumptions about the SGWB. It is
common to assume that different polarizations are uncorrelated, and that
different frequencies are uncorrelated - while this is certainly not required,
most if not all SGWB models obey these assumptions. It is also typical to
assume that the SGWB is isotropic so that different sky directions are not
correlated - there certainly are cases where this assumption breaks down (for
example, galactic SGWB will not be isotropic). We will proceed with these
assumptions and write

〈h∗A(f, Ω̂)hA′(f
′, Ω̂′)〉 = δAA′δ(f − f ′)δ2(Ω̂, Ω̂′)H(f) (10)

δ(Ω̂, Ω̂′) = δ(φ− φ′)δ(cos θ − cos θ′) (11)
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where H(f) can be thought of as the GW strain power spectrum in frequency.
We will further assume that the SGWB is gaussian, so that 〈hA(f, Ω̂)〉 = 0.
We can then proceed with the calculation of the SGWB spectrum:

ΩGW =
1

ρc,0

dρGW
d ln f

(12)

=
f

ρc,0

c2

32πG

d

df
〈ḣabḣab〉 (13)

=
2c2f

32πGρc,0

∑
AA′

∫
df ′dΩ̂dΩ̂′〈h∗A(f, Ω̂)hA′(f

′, Ω̂′)〉

(−2πif)e−2πif(t−Ω̂·~x/c)2πif ′e2πif ′(t−Ω̂′·~x/c)eAab(Ω̂)eabA′(Ω̂
′) (14)

=
c2fπ

4Gρc,0

∑
AA′

∫
df ′dΩ̂dΩ̂′δAA′δ(f − f ′)δ2(Ω̂, Ω̂′)H(f)

ff ′e−2πif(t−Ω̂·~x/c)e2πif ′(t−Ω̂′·~x/c)eAab(Ω̂)eabA′(Ω̂
′) (15)

=
c2fπ

4Gρc,0

∑
A

∫
dΩ̂H(f)

f 2e−2πif(t−Ω̂·~x/c)e2πif(t−Ω̂·~x/c)eAab(Ω̂)eabA (Ω̂) (16)

=
4c2f4π2

4Gρc,0
f 2H(f) (17)

=
4π2c2

G

8πG

3H2
0c

2
f 3H(f) (18)

=
32π3

3H2
0

f 3H(f) (19)

In the third step, the factor of 2 in the numerator comes from the fact that
the integral over f (which is annulled by the derivative wrt f) has the range
between −∞ and +∞, while in line 3 we only consider positive frequencies
(so
∫ +∞
−∞ = 2

∫∞
0

). So the SGWB energy density is proportional to the strain

power spectrum, but note the f 3 factor which effectively weighs different
frequency bins of the power spectrum. Because of this f 3 factor, detectors
operating at lower frequencies (with the same strain sensitivity) would have
better sensitivity to ΩGW .
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2 Astrophysical Isotropic SGWB

There are many models of astrophysical SGWB, obtained by integrating the
contributions of astrophysical sources (such as binary black hole systems)
across the entire universe. To perform this integral, it is useful to use the
concept of the energy flux, i.e. energy travelling through some area A over
some time t:

F =
E

At
(20)

F

c
=

E

Atc
=
E

V
= ρ (21)

Then we can go back to the definition of the SGWB energy density spectrum
and rewrite it in terms of the flux (per unit frequency):

ΩGW (f) =
1

ρc,0

dρGW
d ln f

=
f

ρc,0

dρGW
df

=
f

ρc,0c

dF

df
(22)

On the other hand, the flux (per unit frequency as observed on Earth) can
be written as an integral of fluxes arriving from all sources in the universe:

dF

df
=

∫ ∞
0

dz
R(z)

4πd2
L(z)

1

1 + z

dEGW
df

∣∣∣∣∣
f(1+z)

(23)

where dL(z) is the luminosity distance for a given redshift z, R(z) is the
rate of GW sources per unit redshift as observed on Earth, and dE/df is the
energy spectrum emitted by a single source (evaluated in the frame of the
source, so before the redshift). The factor of (1 + z) accounts for the redshift
of gravitons by the time they reach Earth, hence reducing the energy they
carry. The rate of sources can further be cast in terms of the rate of sources
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per comoving volume RV (z):

R(z) =
RV (z)

1 + z

dV

dz
(24)

dV = (1 + z)3dVp = (1 + z)34πr2dr = (1 + z)4πd2
Ldr (25)

dr =
c

H0

dz√
ΩM,0(1 + z)3 + ΩΛ,0

(26)

R(z) =
4πd2

Lc

H0

RV (z)

1 + z

(1 + z)√
ΩM,0(1 + z)3 + ΩΛ,0

(27)

=
4πd2

Lc

H0

RV (z)√
ΩM,0(1 + z)3 + ΩΛ,0

(28)

ΩGW (f) =
f

ρc,0c

∫ ∞
0

dz
4πd2

Lc

H0

RV (z)√
ΩM,0(1 + z)3 + ΩΛ,0

1

4πd2
L(z)

1

1 + z

dEGW
df

∣∣∣∣∣
f(1+z)

(29)

=
f

ρc,0H0

∫ ∞
0

dz
RV (z)

(1 + z)
√

ΩM,0(1 + z)3 + ΩΛ,0

dEGW
df

∣∣∣∣∣
f(1+z)

(30)

In the first line, the factor of (1 + z) accounts for the redshifting of the rate
of sources: R(z) is measured in local time, while RV (z) is measured in the
source frame time. In the second line we defined the comoving volume dV in
terms of the proper volume dVp, and we used the relationship between the
luminosity and proper distance: dL = (1+z)r. In the third line we recall the
proper distance evaluated in terms of cosmological parameters, as we have
seen in the first part of the course. In the last line we combine all terms to
compute the SGWB energy spectrum.

2.1 Compact Binary Coalescences

In order to proceed further we need to choose a model, since this will specify
both dE/df and RV (z). Let us consider the background due to compact
binary coalescences (binary black holes (BBH), binary neutron stars (BNS)
and black-hole-neutron-star (BHNS) systems). The weak-field approxima-
tion of the energy spectrum emitted by a single binary in the inspiral phase
is:

dE

df
=

π2/3G2/3M5/3

3
f−1/3 (31)
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where M is the chirp mass of the binary system, related to the individual
component masses as M = (m1m2)3/5/(m1 + m2)1/5. We conclude that the
inspiral part of the binary coalescence waveform leads to dE/df ∼ f−1/3 and
ΩGW (f) ∼ f 2/3. Of course, adding the merger and ringdown contributions
would modify the SGWB spectrum, but it turns out the effect is not signifi-
cant in the frequency band of interest to LIGO/Virgo—the merger/ringdown
signal is associated with the final stage of the coalescence, and therefore con-
tributes the most at frequencies near the last stable orbit, which is typically
> 100 Hz. As we will see below, SGWB searches draw most of their sen-
sitivity from lower frequencies. Further, for the BNS or BHNS cases the
merger and ringdown are additionally complicated by the presence of mat-
ter, and are therefore usually not included in the model. For the BBH case,
the merger/ringdown contributions can be found in [3].

Note that the Eq. 31 assumes a single value of the chirp mass, i.e. it
assumes that all binaries have the same chirp mass. This can be further
developed by writing

dE

df
=

π2/3G2/3

3
f−1/3

∫
dMM5/3Pc(M) (32)

where we now average the chirp mass over some distribution Pc(M) that
can be extracted from the catalog of observed (nearby) compact binaries by
LIGO/Virgo. Or, equivalently, one can implement a double integral over the
distribution of two component masses. This is indeed the approach taken in
the recent LIGO/Virgo papers [4, 5].

As for the rate of these systems, if we assume that the black holes are
of stellar origin, then the merger rate will be related to the star formation
rate (SFR) R∗(z), which gives the rate of formation of stars in units of
mass per comoving volume per time. SFR has been extensively studied
by many authors and their estimates are converging at least for redshifts
below ∼ 6. For higher redshifts there is much uncertainty (e.g. in terms
of the population-3 stars etc), but the contribution of such distant systems
to the overall ΩGW is relatively small. The functional form used in recent
LIGO/Virgo paper is [6]

R∗(z) = ν
a exp (b(z − zm))

a− b+ b exp (a(z − zm))
(33)

where ν = 0.146 M�/yr/Mpc3, a = 2.80, b = 2.46, zm = 1.72, but there are
also possible variations on this, for example to account for the metallicity
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evolution which impacts the rate of black hole formation. Using SFR directly
is not sufficient because there is a time delay between formation of a binary
(which is the time when the star formation rate applies) and its merger time
(which is when the binary produces most of its GW signal). This delay could
be significant, and it is at the moment not fully understood. To account for
this, we can write

RV (z) = λ

∫ tmax

tmin

dtdR∗(t(z)− td)P (td) (34)

That is, the merger rate RV (z) is evaluated by averaging over some time-
delay distribution P (td), and the star formation rate is evaluated at the
formation time (that takes the time delay between formation and merger
into account). The time delay distribution is not well understood, but it is
typical to assume P (t) ∼ 1/t and that tmin = 50 Myr for BBH and 20 Myr
for BNS systems. The parameter λ in Eq. 34 denotes the mass fraction of
the stars that end up in compact binary systems. This parameter can be
treated as a free parameter, or could be fixed to match the locally observed
merger rate based on the LIGO/Virgo observations.

Another complication has to do with the fact that massive black holes
are formed preferentially in low-metallicity environments, and the metallicity
also evolves with redshift. To account for this, one can introduce an addi-
tional complexity in the model—for example, the O2 LIGO-Virgo analysis
[4] assumed for binary systems with at least one black hole more massive
than 30M� that the star formation rate would be reweighed by the fraction
of stars with metallicities smaller than 1/2 of the solar metallicity.

We then have all the ingredients to compute ΩGW (f) - see slides for recent
results.

2.2 Stellar Core Collapse

Stellar core collapse is the process that takes place at the end of a star’s life,
when the fusion processes cease. If the star is more massive than the Sun, it
will collapse to a neutron star or a black hole. The process of the collapse
is not yet fully understood, and it depends on the presence of magnetic
field, heat transfer, neutrino flows and other physical process. However, the
collapse is likely asymmetric, implying that large masses are moved at high
velocities, i.e. GW production is likely.

7



Multiple mechanisms for GW production are possible, including a quasi-
periodic signal generated during the post-shock convection phase, hot-bubble
convection and the standing accretion shock instability (SASI), anisotropic
neutrino emission, and the ringdown of the potentially newly formed black
hole. Full three-dimensional simulations that include a complete set of rel-
evant physical processes have become possible only recently, and their GW
predictions vary. Further, the dependency of the gravitational-wave signal
on stellar progenitor properties, such as mass or spin, is not well known, and
the rate of core collapse events is similarly uncertain.

Adding GW contributions from all core collapse events leads to a SGWB.
While there are significant uncertainties, one can model this SGWB simi-
larly to the case of compact binaries. The rate of core collapse events will
be directly proportional to the SFR (i.e. there is no time delay): Rv(z) =
λCCR∗(z). However, dE/df is far less certain because there are significant
variations in the predictions from core collapse simulations. The slides in-
clude some examples of these simulations. Since it is not possible to model
dE/df from first principles, one approach is to model it empirically [7]:

dE

df
=

G

c5
E2
ν〈q〉2

(
1 +

f

a

)2

e−2f/b (35)

where Eν is the energy carried away by neutrinos during the collapse, 〈q〉
is the averaged neutrino anisotropym and a, b are empirical parameters.
Crocker et al. [7] studied a broad range of simulations and fitted this func-
tional form to them, in order to find the allowed range for the parameters a
and b, finding

5 Hz < a < 150 Hz (36)

10 Hz < b < 400 Hz (37)

(38)

Pulling everything together, we arrive at the full expression for the SGWB
energy density spectrum:

ΩGW(f) =
8πGfξ

3H3
0c

2

∫ ∞
0

dz
R∗(z)

(1 + z)
√

ΩM,0(1 + z)3 + ΩΛ,0

(
1 +

f(1 + z)

a

)2

e−2f(1+z)/b

(39)
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where ξ = λCCE
2
ν〈q〉2 captures all amplitude uncertainties into one free pa-

rameter of the model. With these assumptions, one can compare the pre-
dicted ΩGW(f) to the detector sensitivities to determine the regions of this
empirical parameter space (ξ, a, b) that can be probed by observations. See
slides for some examples.

2.3 Magnetars

Magnetars are neutron stars with a strong magnetic field, of order B ≈
1015 Gauss. The strength of the magnetic field and its geometry, combined
with the equation of state of the neutron star, can lead to asymmetry in
this rotating neutron star, hence producing GWs. We can again add up
contributions from all magnetars and produce a SGWB that we can model
similarly to above. The rate of magnetars will be directly proportional to
the SFR (i.e. there is no time delay): Rv(z) = λmR∗(z), where λm effectively
captures the fraction of star mass that ends up in magnetar objects. The
energy spectrum of each magnetar is given by [8]:

dE

df
= Iπ2f 3

(
5c2R6

192π2GI2

B2

ε2
+ f 2

)−1

(40)

where R is the radius of the magnetar, I is its moment of inertia, and ε is the
magnetar’s ellipticity. The first term in the bracket comes from the angular
acceleration caused by electromagnetic radiation, while the second term is
due to the acceleration caused by GW radiation.

As in the above cases, one can compare these predictions to the detector
sensitivities to determine which part of the parameter space (λm, B, ε) can
be probed by detectors. See slides for examples. Furthermore, different
models of the equation of state in neutron stars and different geometry of
the magnetic field (poloidal vs toroidal vs twisted torus) lead to different
relations between the elipticity and the magnetic field. For example, the
poloidal field model gives [8]:

ε = β
R8B2

4GI2
(41)

where β is a dimensionless parameter that depends on the field geometry and
equation of state. See slides for an example.
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2.4 Primordial Black Hole Binaries

Another interesting possibility is that the black hole binaries observed by
LIGO/VIRGO may be (at least partly) of primordial origin. That is, density
fluctuations in the early universe could lead to formation of black holes that
then grow over time as additional material falls into them. As such, these
black hole may contribute to the dark matter problem in cosmology—e.g.
these promordial black holes could have been initiated by density fluctuations
in dark matter itself.

There are multiple mechanisms for production of binary systems of black
holes and for production of GWs. We will consider here the mechanism in
which the primordial black holes in the dark matter halo interact with each
other via the emission of GWs and form binaries. The GW energy spectrum
emitted by a single source (single primordial BBH) will be exactly the same
as for any compact binary discussed above. However, the rate of primordial
BBH systems will no longer be associated with the star formation rate, since
the black holes are not created by the collapsing stars.

The cross section for the BBH capture has been computed [9]. When
combined with th black hole number density in the dark matter halo, one
gets the following rate of primordial BBH mergers per halo:

Rhalo(z) =

(
85π

6
√

2

)2/7
2π

3

G2M2
virD(v)λ2

R3
Scg

2(C)

[
1− 1

(1 + C)3

]
. (42)

Here, λ is the fraction of dark matter in the form of black holes, RS is the
characteristic radius of the halo profile, Mvir is the mass inside the virial
radius Rvir (defined to be the radius at which the NFW dark matter profile
reaches 200 times the critical density of the universe), C = Rvir/RS is the
concentration parameter, g(C) = ln(1 + C) − C/(1 + C), and D(v) is the
expected value of (2v/c)3/7 for the Maxwell-Boltzmann distribution of veloc-
ity v. To calculate the merger rate, the rate per halo should be multiplied
by the number of halos. This is done using the halo mass function dn/dMvir

which can be obtained from simulations:

RV (z) =

∫
Rhalo(z)

dn

dMvir

dMvir (43)

One can then proceed as above the compute ΩGW [10]. The slides show
the results of this calculation for multiple choices of the halo mass function
and anchoring RV (0) to the observed rate of BBHs. Since RV (z) for the
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primordial BBHs is a much slower function of redshift that the SFR, the
overall number of the BBH mergers in the primordial model is much smaller
than that in the stellar BBH model (discussed above), and therefore the
corresponding primordial BBH ΩGW is weaker.

3 Searching for Isotropic SGWB

3.1 Cross-Correlation Search

The cross-correlation search for SGWB is based on the formalism developed
by Bruce Allen and Joe Romano [1]. The key aspect of it is that when
computing the cross-correlation of two GW detectors’ time series, one is
effectively probing the two-point correlation of the metric, which by Eq. 3
is also related to the GW energy density. There are some differences having
to do with the coupling of the metric to the GW detectors, and with the
separation and orientation of two detectors, but these can be quantified. To
start, let us assume that the two detector time series will have the SGWB
and the detector noise contributions, i.e. we write

s1(t) = n1(t) + h1(t) (44)

s2(t) = n2(t) + h2(t) (45)

We will assume that both the noise ni(t) and the SGWB signal hi(t) are ran-
dom variables obeying Gaussian distributions, and that these distributions
are stationary in time. Hence,

〈si〉 = 〈ni + hi〉 = 0. (46)

Then, assuming that we observe over some period of time T , we can define
the cross correlation estimator (following [1])

Y =

∫ T/2

−T/2
dt

∫ T/2

−T/2
dt′s1(t)s2(t′)Q(t, t′) (47)

where we have added a filter Q(t, t′) which is yet to be determined. If we
assume that the SGWB is stationary and that the detector noise is also
stationary, this filter will only depend on the time difference t − t′, i.e. we
can write Q(t, t′) = Q(t−t′). Furthermore, we would expect that the optimal
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form of this filter would peak at t = t′—due to the geographic separation of
detectors, and due to the broadband nature of the SGWB, we would expect
this filter to approach zero as |t− t′| → ∞, which allows us to replace one of
the integral’s limits:

Y =

∫ T/2

−T/2
dt

∫ ∞
−∞

dt′s1(t)s2(t′)Q(t, t′) (48)

We now switch to the frequency domain, by defining the Fourier transform
as:

g(t) =

∫ ∞
−∞

dfg(f)e2πift (49)

Fourier transforming s1, s2 and Q then gives:

Y =

∫ T/2

−T/2
dt

∫ ∞
−∞

dt′s1(t)s2(t′)Q(t, t′)

=

∫ T/2

−T/2
dt

∫ ∞
−∞

dt′
∫ ∞
−∞

dfs∗1(f)e−2πift

∫ ∞
−∞

df ′s2(f ′)e2πif ′t′
∫ ∞
−∞

df ′′Q(f ′′)e2πif ′′(t−t′)

=

∫ T/2

−T/2
dt

∫ ∞
−∞

df

∫ ∞
−∞

df ′
∫ ∞
−∞

df ′′s∗1(f)s2(f ′)Q(f ′′)e−2πi(f−f ′′)t
∫ ∞
−∞

dt′e2πi(f ′−f ′′)t′

=

∫ T/2

−T/2
dt

∫ ∞
−∞

df

∫ ∞
−∞

df ′
∫ ∞
−∞

df ′′s∗1(f)s2(f ′)Q(f ′′)e−2πi(f−f ′′)tδ(f ′ − f ′′)

=

∫ ∞
−∞

df

∫ ∞
−∞

df ′s∗1(f)s2(f ′)Q(f ′)

∫ T/2

−T/2
dte−2πi(f−f ′)t

=

∫ ∞
−∞

df

∫ ∞
−∞

df ′s∗1(f)s2(f ′)Q(f ′)δT (f − f ′) (50)

where in the last step we define the finite-time approximation to the Dirac
delta function

δT (f − f ′) =

∫ T/2

−T/2
dte−2πi(f−f ′)t =

sin(πT (f − f ′))
π(f − f ′)

(51)

Note that δT (0) = T , but in the limit T → ∞, δT approaches the standard
Dirac delta function. Our next task is to determine the expected value of
this estimator:

〈Y 〉 =

∫ ∞
−∞

df

∫ ∞
−∞

df ′〈s∗1(f)s2(f ′)〉Q(f ′)δT (f − f ′). (52)
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If we assume that the noise in the two detectors is uncorrelated, and that
the SGWB and detector noise are uncorrelated, then

〈s∗1(f)s2(f ′)〉 = 〈h∗1(f)h2(f ′)〉. (53)

That is, the two-point correlation of the two detector time series reduces the
two-point correlation of the SGWB signals in the two detectors. The SGWB
signal observed in each detector can be written as a contraction of the GW
metric and the detector response:

hi(t) = hab(t, ~xi)d
ab(t, ~xi) (54)

dab(t, ~xi) =
1

2

(
X̂aX̂b − Ŷ aŶ b

)
(55)

where we have defined the detector response dab(t, ~xi) in terms of the unit
vectors X̂ and Ŷ along the x- and y-arms of the detector. Note that since
Earth rotates, the detector response tensor will be a function of time and of
position of the detector on the Earth, ~xi. Our next step is to express the
metric as a plane-wave expansion, in frequency domain, which then gives
each detector’s signal as:

hi(f ; t) =
∑
A

∫
dΩ̂hA(f, Ω̂)e−2πifΩ̂·~xi/ceAab(Ω̂)dab(t, ~xi)

=
∑
A

∫
dΩ̂hA(f, Ω̂)e−2πifΩ̂·~xi/cFA

i (Ω̂, t) (56)

where the variable t now serves as an index of the time segment being an-
alyzed (more on that later). Inserting the plane-wave expansion for both
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detectors into the 2-point correlation gives:

〈h∗1(f)h2(f ′)〉 =
∑
A,A′

∫
dΩ̂dΩ̂′〈h∗A(f, Ω̂)hA′(f

′, Ω̂′)〉

e2πifΩ̂·~x1/ce−2πif ′Ω̂′·~x2/cFA
1 (Ω̂, t)FA′

2 (Ω̂′, t)

=
∑
A,A′

∫
dΩ̂dΩ̂′δAA′δ(f − f ′)δ2(Ω̂, Ω̂′)H(f)

e2πifΩ̂·~x1/ce−2πif ′Ω̂′·~x2/cFA
1 (Ω̂, t)FA′

2 (Ω̂′, t)

=
∑
A

∫
dΩ̂δ(f − f ′)H(f)e2πifΩ̂·(~x1−~x2)/cFA

1 (Ω̂, t)FA
2 (Ω̂, t)

=
3H2

0

32π3f 3
ΩGW(f)δ(f − f ′)

∑
A

∫
dΩ̂e2πifΩ̂·(~x1−~x2)/cFA

1 (Ω̂, t)FA
2 (Ω̂, t)

=
3H2

0

20π2f 3
ΩGW(f)δ(f − f ′)γ12(f) (57)

In the second step we used the assumed 2-point correlation for isotropic
and stationary SGWB from Eq. 11, and in the second-to-last step we used
the relationship between the GW strain power H(f) and the normalized
energy density ΩGW(f) from Eq. 19. In the last step, we defined the overlap
reduction function:

γ12(f) =
5

8π

∑
A

∫
dΩ̂e2πifΩ̂·(~x1−~x2)/cFA

1 (Ω̂)FA
2 (Ω̂) (58)

which averages the detector responses across the full sky (note, the detectors
are ”pointing” in different directions) and accounts for the time-delay in
GW propagation between two detectors due to their different geographic
locations. This is a purely geometric reduction factor, and it is dependent on
the locations and relative orientations of the two detectors that are being used
in the analysis. The prefactor of 5/8π is chosen so that γ = 1 for collocated
and coaligned detectors. We will get back to the overlap reduction factor a bit
later, for now let’s press on to calculate the expected value of our estimator
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in Eq. 52:

〈Y 〉 =

∫ ∞
−∞

df

∫ ∞
−∞

df ′〈s∗1(f)s2(f ′)〉Q(f ′)δT (f − f ′)

=

∫ ∞
−∞

df

∫ ∞
−∞

df ′〈h∗1(f)h2(f ′)〉Q(f ′)δT (f − f ′)

=
3H2

0

20π2

∫ ∞
−∞

df

∫ ∞
−∞

df ′f−3ΩGW(f)δ(f − f ′)γ12(f)Q(f ′)δT (f − f ′)

=
3H2

0T

20π2

∫ ∞
−∞

dff−3ΩGW(f)γ12(f)Q(f) (59)

where in the last step we integrated over f ′ which eliminated the Dirac delta
function, forcing f = f ′ and evaluating δT (0) = T . Note that the final
frequency integral is over both positive and negative frequencies, while in
practice we deal with only positive frequencies. This issue can be resolved
by forcing the frequency to be positive in the 2-point correlation, Eq. 11 (see
Allen-Romano for more detail [1]).

The last result is very nice because it shows that if we cross-correlate two
detectors’ time series, the expected value will be directly related to ΩGW(f).
But we have not yet determined the filter Q(f) and we have not examined
the uncertainty associated with the estimator Y . The variance of Y is given
by:

σ2
Y = 〈Y 2〉 − 〈Y 〉2 (60)

We have already calculated 〈Y 〉 and we saw that it is proportional to ΩGW(f).
If we assume that the SGWB power will be much smaller than the detector
noise power (which is a safe assumption), we can ignore the second term in
the last equation, so we have:

σ2
Y ≈ 〈Y 2〉

≈
∫ ∞
−∞

df

∫ ∞
−∞

df ′
∫ ∞
−∞

dk

∫ ∞
−∞

dk′

〈n∗1(f)n2(f ′)n∗1(k)n2(k′)〉δT (f − f ′)δT (k − k′)Q(f ′)Q(k′)

≈
∫ ∞
−∞

df

∫ ∞
−∞

df ′
∫ ∞
−∞

dk

∫ ∞
−∞

dk′

〈n∗1(f)n1(−k)〉〈n∗2(−f ′)n2(k′)〉δT (f − f ′)δT (k − k′)Q(f ′)Q(k′)(61)
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where in the last line we used the fact that n1 and n2 are statistically inde-
pendent (which implies that 4-point correlation can be written as a product
of 2-point correlations) and that they are real which implies n∗i (f) = ni(−f).
Defining the noise power spectrum by

〈n∗i (f)ni(f
′)〉 =

1

2
δ(f − f ′)Pi(|f |) (62)

allows us to simplify the variance to

σ2
Y ≈

∫ ∞
−∞

df

∫ ∞
−∞

df ′
∫ ∞
−∞

dk

∫ ∞
−∞

dk′

1

2
δ(f + k)P1(|f |)1

2
δ(f ′ + k′)P2(|f ′|)δT (f − f ′)δT (k − k′)Q(f ′)Q(k′)

=

∫ ∞
−∞

df

∫ ∞
−∞

df ′
1

4
P1(|f |)P2(|f ′|)δ2

T (f − f ′)Q2(f ′)

=
T

4

∫ ∞
−∞

dfP1(|f |)P2(|f |)Q2(f) (63)

where in the last line we approximated one of the finite-time delta functions
with an ordinary Dirac delta function, and evaluated the other finite-time
delta function at δT (f−f ′) = δT (0) = T . We can then summarize our results
as:

〈Y 〉 =
3H2

0T

20π2

∫ ∞
−∞

dff−3ΩGW(f)γ12(f)Q(f) (64)

σ2
Y ≈ T

4

∫ ∞
−∞

dfP1(|f |)P2(|f |)Q2(f) (65)

For a given filter Q, we can compute the estimator Y using Eq. 52 and we
can compute the variance on this estimator using Eq. 63, where the Pi’s
can be computed by Fourier transforming si(t) and then squaring it (i.e.
Pi(f) s2

i (f)), which is a good approximation in the limit where the SGWB
is much smaller than the detector noise. To determine the optimal form of
the filter, we use the trick of Allen-Romano [1] and define the following inner
product between two functions:

(A,B) =

∫ ∞
−∞

dfA∗(f)B(f)P1(|f |)P2(|f |) (66)
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In terms of this inner product, we can write

〈Y 〉 =
3H2

0T

20π2

(
Q(f),

ΩGW(|f |)γ12(f)

|f |3P1(|f |)P2(|f |)

)
(67)

σ2
Y ≈ T

4
(Q,Q) (68)

Finally, to maximize the signal to noise ratio we want to maximize:

SNR2 =
〈Y 〉2

σ2
Y

=

(
3H2

0

10π2

)
T

(
Q(f), ΩGW(|f |)γ12(f)

|f |3P1(|f |)P2(|f |)

)2

(Q,Q)
. (69)

The last expression is maximized when the two ”vectors” in the numerator
are equal to each other (up to a scaling factor), yielding this form of the
optimal filter:

Q(f) = λ
ΩGW(|f |)γ12(f)

|f |3P1(|f |)P2(|f |)
. (70)

Inserting this back into the expression for the SNR gives:

SNR =
3H2

0

10π2

√
T

(∫ ∞
−∞

Ω2
GW(|f |)γ2

12(f)

|f |6P1(|f |)P2(|f |)

)1/2

. (71)

We immediately see several implications. First, the SNR increases with the
square root of time—averaging longer datasets helps, but with diminishing
returns. Second, due to the factors of Pi(f) in the denominator, the fre-
quencies at which the detectors are noisy are deweighed in the integral and
they contribute less—this includes the very low frequencies (< 10 Hz) where
seismic noise dominates, very high frequencies > 300 Hz) where the detector
strain noise starts to climb, and all narrowband loud lines (power line har-
monics, calibration lines etc, although many of these are notched anyways).
Third, note the factor of f 6 in the denominator—this factor heavily weighs
the lowest frequencies. In other words, if we can push the sensitive band of
GW detectors to lower frequencies, we would very quickly gain in sensitivity
to the SGWB. And fourth, note that ΩGW(f) shows up in the expression
for the SNR and for Q(f)—this might be surprising at first, since we do not
know a priori what is the energy density of the SGWB, nor its frequency
dependence. This is therefore an assumption that must go into the analysis.
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In other words, we will have to choose some template for ΩGW(f) to conduct
the search, and the optimal filter calculated for this choice of ΩGW(f) is in-
deed the optimal filter we could choose to search for it. If we want to search
for a different energy density shape, we would use a different optimal filter.

In practice, we often choose a power-law functional form for the SGWB
template spectrum:

ΩGW(f) = Ωα

(
f

fref

)α
(72)

This functional form is sufficient for most (if not all) models of SGWB in the
relatively narrow band of the terrestrial GW detectors. Furthermore, for a
chosen power law index α, one can choose the scaling factor λ in Eq. 70 so
that 〈Y 〉 = Ωα. This can be done over the entire frequency band of the search
(e.g. between 20 − 100 Hz), in which case one assumes the spectral shape
over the entire frequency band and therefore extracts a single parameter from
the analysis (namely, Ωα). Alternatively, one can assume α = 0 and repeat
the analysis for each individual frequency bin (which is often chosen to be
0.25 Hz or 1/32 Hz)—in this case, one is effectively measuring Y (f) such
that 〈Y (f)〉 = ΩGW(f), which lends itself for comparisons with theoretical
models of SGWB (and therefore for parameter estimation).

In particular, one can define a likelihood function of the form:

L(Yi, σi|~θ) ∝ exp

(
−(Yi − ΩM(fi, ~θ))

2

2σ2
i

)
(73)

where Yi and σi are the value of the estimator and the associated uncertainty
measured in the frequency bin fi, and ΩM(fi, ~θ) is the SGWB model evalu-

ated at the frequency fi for some set of parameters ~θ. One can then combine
this with the Bayes theorem:

Ppost(~θ|Yi, σi) =
L(Yi, σi|~θ)Pprior(~θ)

P (Yi, σi)
(74)

That is, for some choice of prior distribution on the parameters ~θ, this proce-
dure yields the posterior distribution of the parameters, allowing us to place
constraints on parameters e.g. at 95% confidence. The simplest model we
can use is the power law of Eq. 72 in which case we would be estimating
the amplitude Ωα and the corresponding power index α (see slides). But
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in principle ΩM could be any SGWB model, including all of those we ex-
amined above. It could also be a combination of an SGWB model and of
correlated noise spectrum (e.g. due to correlated magnetic noise between two
GW detectors).

3.2 Polarized SGWB

The above analysis could be extended to study different polarizations. We
consider the left- and right-handed correlators [11, 12]:

〈hR/L(f, Ω̂)h∗R/L(f ′, Ω̂′)〉 =
δ(f − f ′)δ2(Ω̂− Ω̂′)

4π
[I(f)± V (f)] (75)

where hL = (h+ + ih×)/
√

2, hR = (h+ − ih×)/
√

2, and + and × are the
standard plus and cross polarizations. This is the point of departure from
the searches for unpolarized isotropic SGWB, which assume V = 0. Further
note that 〈hRh∗L〉 vanishes due to statistical isotropy. In this notation, the
normalized energy density is:

ΩGW(f) =
f

ρc

dρGW

df
=

πf 3

GNρc
I(f) (76)

The standard cross-correlation estimator is now modified [12]:

〈Ŷ 〉 =

∫ +∞

−∞
df

∫ +∞

−∞
df ′δT (f − f ′)〈(s∗1(f)s2(f ′)〉Q̃(f ′)

=
3H2

0T

10π2

∫ ∞
0

df
Ω′GW(f)γI(f)Q̃(f)

f 3
, (77)

where

Ω′GW(f)γI(f) = ΩGW(f) [γI(f) + Π(f)γV (f)] (78)

γI(f) =
5

8π

∫
dΩ̂(F+

1 F
+∗
2 + F×1 F

×∗
2 )e2πifΩ̂·∆~x

γV (f) = − 5

8π

∫
dΩ̂i(F+

1 F
×∗
2 − F×1 F+∗

2 )e2πifΩ̂·∆~x.

The factor γI(f) is the standard overlap reduction function arising from
different locations and orientations of the two detectors, and γV (f) is a new
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function, associated with the parity violating term and first computed in
[11]. See slides for an example of these functions for two real detector pairs.
Finally, Π(f) = V (f)/I(f) encodes the parity violation, with maximal values
Π = ±1 corresponding to fully right- or left-handed polarizations. Setting
Π = 0 reproduces the standard unpolarized SGWB search [?].

Notice that the above expressions are effectively the same as for the un-
polarized background, with the only change being that ΩGW(f) is replaced
by Ω′GW(f) which encodes the polarization information. Hence, the analysis
can proceed as usual, with the difference taking place only in the last step,
when the likelihood is evaluated in Eq. 73. Slides show an example of such an
analysis for power law SGWB. Other examples have been studied for axion
inflationary models [12] and for phase transitions [13].

Note that similar approach can be taken for other non-GR polarizations
as well (i.e. scalar and vector polarizations), the difference in the analysis
reduces to the difference in the overlap reduction function. The latest results
on this can be found in [5].

4 Directional SGWB Search

The above analysis has focused on isotropic SGWB. It is possible, however,
that there is anisotropy in the SGWB sky, i.e. that the GW energy density
in some directions is higher than in others. It is also possible to use a single
GW detector pair to measure the anisotropy. This might be surprising since
one cannot triangulate the wave direction using only two detectors. However,
in the case of persistent sources (which is what we assume), we can use the
fact that Earth rotates to effectively make measurements with detectors in
different locations.

The formalism starts off similarly to the isotropic case, but we now have
to modify our 2-point correlation function:

〈h∗A(f, Ω̂)hA′(f
′, Ω̂′)〉 =

1

4
δAA′δ(f − f ′)δ2(Ω̂, Ω̂′)P(f, Ω̂). (79)

(The factor 1/4 is a choice, conveniently accounting for one-sided strain
power.) That is, different directions on the sky are still uncorrelated, but
the strain power will now be direction-dependent. It is common to assume
that frequency and direction dependencies can be separated:

P(f, Ω̂) = P (Ω̂)H(f), (80)
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where the common choice is H(f) = (f/fref )β. Following similar calculation
to above, we have

ΩGW(f) =
2π2

3H2
0

f 3H(f)

∫
dΩ̂P (Ω̂), (81)

which is very similar to Eq. 19, but with a different prefactor constant. The
next step is to decompose the directional dependence in terms of some basis
of functions on the sphere:

P (Ω̂) = Pαeα(Ω̂), (82)

with the summation over repeated index understood. The two choices for
the basis that are commonly used are the pixel basis:

P (Ω̂) = PΩ̂′δ(Ω̂, Ω̂
′), (83)

and the spherical harmonics basis:

P (Ω̂) = PlmYlm(Ω̂)

Plm =

∫
dΩ̂P (Ω̂)Y ∗lm(Ω̂). (84)

We then proceed similarly to the isotropic case, calculating the cross-correlation
between two detectors, but without the optimal filter in this case:

Cft =
2

T
s∗1(f)s2(f) (85)
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If the noise in the two detectors in uncorrelated, then

〈Cft〉 =
2

T
〈s∗1(f)s2(f)〉 =

2

T
〈h∗1(f)h2(f)〉

= 2
∑
A,A′

∫
dΩ̂dΩ̂′〈h∗A(f, Ω̂)hA′(f, Ω̂

′)〉

e2πifΩ̂·~x1/ce−2πifΩ̂′·~x2/cFA
1 (Ω̂, t)FA′

2 (Ω̂′, t)

= 2
∑
A,A′

∫
dΩ̂dΩ̂′δAA′δ

2(Ω̂, Ω̂′)H(f)P (Ω̂)

e2πifΩ̂·~x1/ce−2πifΩ̂′·~x2/cFA
1 (Ω̂, t)FA′

2 (Ω̂′, t)

= 2
∑
A

∫
dΩ̂H(f)P (Ω̂)e2πifΩ̂·(~x1−~x2)/cFA

1 (Ω̂, t)FA
2 (Ω̂, t)

= H(f)

∫
dΩ̂P (Ω̂)γ(Ω̂, f, t) (86)

γ(Ω̂, f, t) =
1

2

∑
A

e2πifΩ̂·∆~x/cFA
1 (Ω̂, t)FA

2 (Ω̂, t) (87)

In the second line, the factor of T was cancelled by the finite delta function
evaluated at δT (f − f) = T , and in the last line we define the equivalent of
the overlap reduction function which is now direction dependent. Note that
again this factor is purely geometrical. If we then decompose P (Ω̂):

〈Cft〉 = H(f)Pα
∑
A

∫
dΩ̂eα(Ω̂)γ(Ω̂, f, t)

= H(f)Pαγα(f, t) (88)

γα(f, t) =
1

2

∑
A

∫
dΩ̂eα(Ω̂)e2πifΩ̂·∆~x/cFA

1 (Ω̂, t)FA
2 (Ω̂, t) (89)

Our goal is to estimate the coefficients of the expansion, Pα. In the pixel
basis

γΩ̂′(f, t) =
1

2

∑
A

∫
dΩ̂δ(Ω̂, Ω̂′)e2πifΩ̂·∆~x/cFA

1 (Ω̂, t)FA
2 (Ω̂, t)

=
1

2

∑
A

e2πifΩ̂′·∆~x/cFA
1 (Ω̂′, t)FA

2 (Ω̂′, t) (90)
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and in the spherical harmonics basis

γlm(f, t) =
1

2

∑
A

∫
dΩ̂Ylm(Ω̂)e2πifΩ̂·∆~x/cFA

1 (Ω̂, t)FA
2 (Ω̂, t) (91)

Again, γ’s are geometric factors that can be calculated once, and then the
expected value of the cross correlation can be expressed simply as

〈Cft〉 = H(f)Pαγα(f, t) (92)

The corresponding covariance matrix is given by

Nft,f ′t′ = 〈CftC∗f ′t′〉 − 〈Cft〉〈C∗f ′t′〉
≈ δtt′δff ′P1(f, t)P2(f, t) (93)

where Pi(f, t) are the one-sided noise power spectra, as before. To estimate
Pα, we can set up a likelihood function and then attempt to maximize it.
Our analysis will be done by splitting a long observation into many small
segments, we can assume that the Cft’s are Gaussian-distributed, so we can
write

L ∝ exp(−(C∗ft − 〈C∗ft〉)N−1
ft,f ′t′(Cf ′t′ − 〈Cf ′t′〉))

= exp(−(C∗ft −H(f)P ∗αγ
∗
α(f, t))

1

P1(f, t)P2(f, t)
(Cft −H(f)Pβγβ(f, t)))

(94)

Maximizing this likelihood (i.e. set derivative relative to Pα to zero) yields
the solution of the form:

P̂α = (Γ−1)αβXβ (95)

Xβ =
∑
tf

γ∗β(f, t)
H(f)

P1(f, t)P2(f, t)
Cft (96)

Γαβ =
∑
tf

γ∗α(f, t)
H2(f)

P1(f, t)P2(f, t)
γβ(f, t) (97)

The array Xβ is known as the ”dirty” map—it encodes the map of the SGWB
sky convolved with the response of the detector network. The matrix Γαβ
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is known as the Fisher matrix, and it can be shown that in the weak signal
approximation

〈XαX
∗
β〉 − 〈Xα〉〈X∗β〉 ≈ Γαβ (98)

i.e. the Fisher matrix is the covariance matrix of the dirty map. Similarly,
the array P̂α is known as the ”clean” map, as the response of the detector
network has been deconvolved. This map is therefore a better representation
of the SGWB sky. It can also be shown that in the weak signal approximation

〈P̂αP̂ ∗β 〉 − 〈P̂α〉〈P̂ ∗β 〉 ≈ Γ−1
αβ (99)

i.e. the inverse of the Fisher matrix is the covariance matrix of the clean
map.

It is important to note that the analysis can be performed in any basis,
and the results will be the same. Indeed there are python routines that allow
conversion of maps from pixel to spherical harmonic basis and back. However,
the targeted source may lead to a preference of one basis over another. For
example, when searching for point sources on the sky, pixel basis is the more
natural choice—one can then simply use the dirty map and the diagonal
entries of the Fisher matrix as the variances at each pixel (by construction,
SGWB pixels are not correlated). On the other hand, for extended sources
on the sky (such as the galactic plane), the spherical harmonic basis may
be a better choice—one would then prefer to use the clean map to estimate
the source, along with the full inverse of the Fisher matrix as its covariance
matrix.

In the spherical harmonic case, it is possible to take one step further and
define

Ĉl =
1

2l + 1

l∑
m=−l

|P̂lm|2 (100)

The Cl’s are encoding the (clean) angular power spectrum of the SGWB,
analogous to the angular temperature spectrum of the CMB. It is important
to note, however, that the Fisher matrix might not be invertible. Each
detector pair will have directions (or modes) on the sky that it is not very
sensitive to. This can be seen by diagonalizing the Fisher matrix—some of the
eigenvalues can be very small, implying there are directions with little power.
As a consequence, the Fisher matrix is singular and has to be regularized
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before inversion. Regularization can be done in different ways, a common
approach is to replace the lowest third of the eigenvalues with infinity and
then invert. This in turn can lead to a bias in Cl’s—the bias can be estimated
and subtracted:

Ĉreg
l = Ĉl −

1

2l + 1

∑
M

(Γ−1)lm,lm (101)

It should also be noted that if there are more than two detectors available,
the analysis can be repeated for each detector pair and the final dirty maps
and Fisher matrices can be added across all pairs. In this case, different
pairs will be insensitive to different modes, implying that they can naturally
regularize the overall Fisher matrix. Slides show some of the recent results
from LIGO/Virgo analysis.

4.1 Angular Resolution

The question of angular resolution is a very interesting one. Namely, the
nature provides some GW power at all angular scales, but we have to cut
off our spherical harmonic expansion at some l (or, equivalently, we have to
define a finite size of the pixels in the pixel basis). What determines the
angular resolution at which we should preform the analysis? Historically, we
used the diffraction limit as the argument:

θ =
c

2Df
, lmax =

π

θ
=

2πDf

c
(102)

where D is the separation between two detectors. For f = 50 Hz, which
is roughly the most sensitive frequency bin for α = 0 analysis, this yields
lmax = 3 − 4. For higher values of α, the most sensitive frequency will be
higher, implying the higher value of lmax.

However, diffraction limit has to do with waves interacting with detec-
tors (telescopes in EM case). This is not what happens in the SGWB
measurement—rather, we are using the time-delay between two detectors
to ascertain the direction of an incoming GW. Consider a toy example: a
single plane waves on the surface of a lake passing by two buoys that can
measure the height of water as the waves pass by. The time delay between
the time-series of water heights at the two buoys indicate the direction of this
single plane wave. If the buoys have zero error, the time-delay will also be
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measured with zero uncertainty, and therefore the direction of the plane wave
can be determined with zero uncertainty as well. That is, the measurement
surpasses the ”diffraction limit” as defined above.

Things become more complex when we have multiple plane waves and if
we don’t know how many plane waves exist. In this case, we are measuring a
superposition of all plane waves (as we do in the SGWB searches), and there
will be partial cancellation of waves propagating in different directions. In
fact, it can be shown (by Andrew Matas) that for isotropic buoy detectors
operating in this situation, there is a limitation in the angular resolution that
is similar to the diffraction limit defined above. If detectors are not-isotropic
and rotate (which is the case with LIGO/Virgo detectors), then it is possible
to surpass the diffraction limit again.

Further complication arises from the fact that optimal angular resolution
will depend on what exactly we are trying to accomplish. For example, if
we ask ”Is there a point source in the sky map?” the optimal choice may
be to use poor angular resolution, minimizing the number of parameters we
need to estimate. However, if we want to know ”Where on the sky is the
point source?”, we should repeat the analysis with a higher lmax allowing
better angular resolution, even though the SNR of the source will decrease
as we increase lmax. And, of course, the situation is further complicated by
the many possible choices of the frequency band to be used in the analysis:
higher frequencies carry information about smaller angular scales. This is an
active area study.

4.2 Theoretical Models of Anisotropy

Theoretical modeling of SGWB anisotropy is a relatively new area in the
literature. The anisotropy is possible in both cosmological and astrophysi-
cal models. Furthermore, it is possible to look for correlations between the
SGWB sky-maps and the maps of electromagnetic tracers of matter struc-
ture, such as galaxy counts and gravitational lensing.

In the case of compact binaries SGWB model, the first paper on the
topic came from Cusin et al. [14, 15], revealing that the SGWB anisotropy is
driven by 3 scales: (i) cosmological, in the sense of expansion of the Universe;
(ii) galactic, in the sense that mass clustering introduces anisotropy; and
(iii) astrophysical, taking into account the dynamics (and inspiral time) of
individual binaries. The calculation is beyond the scope of these lectures,
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but the result can be summarized as [15]:

δΩ`(k, f) =
f

4πρc

∫ ηo

η∗

dηA(η, f) [(bδm,k(η) + (b− 1)3Hvk(η)) j`(k∆η)− 2kvk(η)j′`(k∆η)] ,

(103)

where k stands for the wavenumbers of density fluctuations, δm is the matter
density fluctuation, η depicts the comoving distance, b captures the bias
between galaxy and dark matter overdensity (δG = bδm), v is the comoving
velocity field, H is the comoving Hubble parameter, and j` is the spherical
Bessel function. The function A(η, f) is the kernel computed by Cusin et al
[14, 15] by solving the evolution of density equations. The slides show what
this function looks like. With these definitions, one can compute the angular
power spectrum in the SGWB autocorrelation:

C`(f) =
2

π

∫
dk k2|δΩ`(k, f)|2 , (104)

Slides depict estimates of this angular power spectrum as well.
Cusin et al. have also computed the corresponding angular spectrum for

cross-correlation of the SGWB sky with similar sky estimates of electromag-
netic tracers of the matter structure, such as galaxy counts and gravitational
(weak) lensing. In the case of galaxy counts, they find:

∆`(k, η) =

∫
dηW (η)

[
(bδm,k(η) + (b− 1)3Hvk(η)) j`(k∆η) + k∂η

(vk
H

)
vk(η)j′`(k∆η)

]
,

D`(f) ≡ 2

π

∫
dk k2δΩ∗`(k, f) ∆`(k) . (105)

Here, W (η) is a window function used in the galaxy survey. The slides show
some of their calculation results.

This story is not complete for two reasons. First, there is a shot noise
contribution having to do with the realization of the galaxy field. And second,
there is an additional shot (popcorn) noise having to do with the realization
of merging compact binaries during the observation time. These noise terms
can be thought of biases in the angular power spectra, which have been
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computed [15]. For shot noise:

(NS
` )cross =

f

4πρc

∫
dr

r2

1

a3n̄G
W (r)A(r, f) , (106)

(NS
` )Gal =

∫
dr

r2

1

a3n̄G
W 2(r) , (107)

(NS
` )GW =

(
f

4πρc

)2 ∫
dr

r2

1

a3n̄G
(A(r, f))2 . (108)

For popcorn noise

(NPC
` )cross = (NS

` )cross , (109)

(NPC
` )GW =

(
1 +

1

βT

)
(NS

` )GW � (NS
` )GW , (110)

(NPC
` )Gal = (NS

` )Gal , (111)

where

βT =
T

a3nG
× dN
dtdV

(112)

dN
dtdV

<
dN

dtmdV
∼ 100Gpc−3yr−1 . (113)

Here tm is the comoving time of the source, i.e. t = (1 + z)tm > tm.
Then using a constant comoving galaxy density a3nG ∼ 0.1 Mpc−3, we find
βT/T < 10−6/yr implying that the popcorn noise bias is much larger in the
SGWB autocorrelation case than in the SGWB-Galaxy case. Finally, we
note that the SGWB autocorrelation anisotropy model has been studied by
other groups of authors as well—the agreement is not yet perfect, there are
differences in the predictions at the level of 1 order of magnitude [16, ?, 18].

We briefly note that cosmological SGWB models can also result in anisotropy,
and there are recent studies in this area too. For example, cosmic strings are
topological defects that may have been produced in the phase transitions in
the early universe. They are typically described by the string tension Gµ.
The strings can intersect each other or themselves, in which case they can
reconnect and produce loops. Cusps or kinks on these strings can produce
GW radiation, the sum of which results in a SGWB. The amplitude of the
SGWB depends on the density of string loops, which in turn depends on
the dynamics of the cosmic strings network. Recently, [19] have studied the
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anisotropy in some of the currently favored cosmic string models, predict-
ing the angular power spectrum of specific shape, although typically several
orders of magnitude smaller than the isotropic (monopole) component (see
slides for example).

Another example is the SGWB due to phase transitions (PT) in the early
universe, which are expected to produce GWs via a variety of mechanisms
(bubble collisions, turbulence etc). The PT will occur at slightly different
redshift at different sky directions, due to slightly different temperatures in
different regions in the early universe [20]. If the phase transition happens
after the reheating phase of inflation, i.e. after the primordial density fluctua-
tions are established, then the anisotropy in the PT SGWB will be correlated
with the CMB temperature anisotropy. The level of correlation will therefore
depend on the physics of inflation and of the phase transition [20].

4.3 GW-EM Correlations

We conclude this discussion by highlighting another rising area, that of angu-
lar correlations between the SGWB and electromagnetic tracers of the matter
structure. We saw above that there are already theoretical predictions for
this cross-correlation, and there are now the first attempts to measure this
correlation using recent LIGO/Virgo data. There are multiple directions one
can pursue, and we briefly mention them here.

The simplest approach is to compute the coherence between two sky-
maps, following [21]:

Γ =
〈δMGW δMGC〉2

〈δM2
GW 〉〈δM2

GC〉
(114)

where δMGW and δMGC denote the fluctuation maps for the SGWB and
galaxy counts, respectively. The GC map can be extracted from the Sloan
Digital Sky Survey (SDSS), which includes both photometric and spectro-
metric catalogs. For the GW map, [21] used the O2 LIGO data and com-
puted the anisotropy maps in several frequency bands (resulting in maps of
different angular resolution, and also of different sensitivity). To assess the
significance of the computed value of Γ, a series of simulations of noise-only
maps was used to understand the noise distribution of the Γ parameter. The
slides highlight some of the results of this analysis, which did not detect a
correlation.
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Another approach is to compute the 2-point correlations in a hierarchi-
cal Bayesian inference framework, which performs the parameter estimation
procedure all all LIGO/Virgo data (and not only on segments that contain
clear CBC signals). This approach allows an estimate of the sky-distribution
of the CBC population, which can then be correlated with the SDSS galaxy
count maps. This is beyond the scope of these lectures, but see [22] for more
detail and the slides for an example of a simulated angular spectrum recovery.

Yet another approach is to compute the cross-power spectrum of the
SGWB and GC maps,

D`(f) =
1

2`+ 1

∑
m

P ∗GW,lmaGC,lm. (115)

This quantity is closely related to the theoretically computed D` in Eq. 105.
This is an active area of study, we are working on understanding the covari-
ance matrix for these estimators and to use the measurement to constrain
the theoretical model, taking into account the shot noise contribution to the
angular power spectrum.

5 Tutorials

5.1 Days 1 and 2

During the first two tutorials, you will compute the SGWB frequency spec-
trum using python, matlab, or another platform your are comfortable with.
Start with the Eq. 30, which is the general expression for ΩGW for astrophys-
ical SGWB models. Apply it first to the CBC model. Start simple: assume
that all binaries have the same chirp mass and that their merger rate follows
exactly the star formation rate (i.e. ignore the time delay). Compare your
results with the sensitivity of the upcoming LIGO/Virgo detectors, or with
the future 3rd generation detectors.

Then add the time-delay, as described by Eq. 34. This will require you
to figure out the connection between redshift and time, so you may have to
look up some cosmology texts. Try different time delay distributions to get
a sense of how significant this factor is.

Next, try to add a more complex distribution of chirp masses following
Eq. 32. Play with different mass distributions to see how much this impacts
the overall ΩGW(f).
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If time allows, try to vary the star formation rate. There are multiple
papers you could use to this end, but [6] gives a few examples you could try.

5.2 Day 3

Repeat the exercise from days 1 and 2 but for other astrophysical SGWB
models, namely magnetars and stellar core collapse. These models are easier
to code up because there is no need to worry about the time delays. However,
they are far less understood because the mechanism for GW production is
complex. Try to vary the parameters of the model (i.e. those that deter-
mine dE/df) and see how much the overall ΩGW changes. Compare your
results with the sensitivity of the upcoming LIGO/Virgo detectors, or with
the future 3rd generation detectors.

5.3 Day 4

Repeat the calculation leading to the estimator of the isotropic SGWB esti-
mator. That is, re-derive Eqs. 59, 63, 70, and 71.

If time allows, make a simulation of a simple toy model:

s1(t) = n1(t) + h1(t) (116)

s2(t) = n2(t) + h2(t) (117)

Y =
∑
t

s1(t)s2(t) (118)

That is, we are computing the correlation estimator in time-domain with a
delta function as the filter. Draw ni(t) from a Gaussian distribution (e.g.
zero mean, unit variance). As a first step, try h1(t) = h2(t) = h = const,
where h << 1. How long does you simulation need to be for you to detect h?
Then repeat the above by let h be a random variable drawn from a Gaussian
distribution.

5.4 Day 5

Repeat the derivation of the estimators in the directional SGWB search. Fill
in the gaps in the lecture, such as computing Xβ and Γαβ by optimizing the
likelihood function, and computing the regularization bias on Cl.
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