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Outline
• Motivation

• A model

• SGWBs

• NANOGrav 15yr Data & SUSY B-L model

• UHECRs

- Cosmological moduli problem
- Thermal inflation

- An extension of MSSM based on 
- Cosmological aspects

GSM × U(1)B−L

- Thick cosmic strings & their properties
- SGWBs from cosmic string loops

- Sources (Scalar condensation & TCS itself)
- Extra feature
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Motivations 
(Cosmological moduli problem in SUGRA)

- Moduli = Planckian flat directions in the field space of a given theory.

- Their presence is quite generic in UV theories inspired by superstring theories.

- Some of moduli has Planckian VEVs and masses only from SUSY-breaking.

[Dine, Fishler & Nemeschansky, PLB 136, 169 (1983); … ]

⟨ϕi⟩ ∼ MP, mϕi
∼

M2
SUSY

MP

! O(1)TeV

•Moduli & their cosmological implications

- Long life time, but too abundant(due to large coherent oscillations)! ⇒ danger in BBN
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! BBN bound on long-living particles ( , )φ ψ3/2

cf . Y
th
φ ∼ 107 ( 10TeV

mφ )
1/2

A dilution by a factor larger than  is necessary!𝒪(1021)

[Kawasaki et al, PRD 97, 2018 ]
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Injection of energetic SM particles disturbs the abundances of light elements.
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Pushing up mass scale:

mφ ≳ m3/2 ≳ 𝒪(100)TeV ⇒ Γφ, Γ3/2 ≳ HBBN ( ∼ 10−24GeV)

Note! If R-parity is conserved, the LSP becomes dark matter &

mLSP ∼ msoft = 𝒪(1)TeV

⇒ LSP over-production (from the decay of moduli & gravitinos) unless 

Γ3/2 ≳ Hfo ∼
mLSP/20

MP

⇔ m3/2 ≳ 𝒪(100)PeV

* If R-parity is violated,  would be enough to solve the problem.mφ, m3/2 ≳ 𝒪(100)TeV

• A simple solution to the moduli problem?
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! Thermal inflation (as a sol. to the moduli problem)

T ≫ mϕ ∼ msoft

T ≪ mϕ

φ

V(ϕ) = V0 +
1

2 (λ2
T

2 − m
2
ϕ)

2

ϕ2 + ⋯

[Lyth & Stewart, 1995 ]

Ti ∼ V 1/4
0

Tf ∼ mφ/λ

∆NTI
e = ln (Ti/Tf ) ∼ 10

∆
TI
dil =

V0

T 3
f
Td

∼ O(1020−24)

- Realized very naturally in SUSY. 
- The most compelling sol. to the moduli problem!

V0

φ0 ∼ 10
−6

MP

- A short inflation well after the primordial inflation, caused by thermal effect.
- Usually expected for a flat potential ( ) as long as  is not very small. ⟨ϕ⟩ ≫ mϕ λ

ρr ≪ V0

(thanks to the late time entropy injection)
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! A realization of TI ( -model)U(1)PQ

ΔW ∋
λμϕ2HuHd

M
+

λϕϕ4

M

-  should be a flat direction (i.e., )

- It should couple to SM particles (to recover the standard RD universe). 

- The Peccei-Quinn field of  sym. is a good candidate for the flaton.

ϕ ⟨ϕ⟩ ≫ mϕ

U(1)PQ

ϕ0 ∼
msoftMP

λϕ

, μ = λμϕ2
0 /M

- DM = GeVish axino (if ) + axion

- However, no SUSY signals at EW scale: 

-  (due to SN cooling & axion DM abundance)

-  becomes higher ⇒ over-production axino/neutralino LSPs 

λϕ = 0, & msoft ∼ 𝒪(102) GeV

msoft ↑ ⇒ mã ↑

𝒪(109) ≲
ϕ0

GeV
≲ 𝒪(1010)

Td ∝ 1/ϕ0

problem
atic

!
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A SUSY local  modelU(1)B−L
[Jeannerot, PRD 59 (1999)); Jeff A. Dror et al., PRL 124, 041804 (2020); W. Buchmuller et al., PLB 809 (2020) 135764; …]

• The model ( )GSM × U(1)B−L
[Kwang Sik Jeong & WIP, JCAP 11 (2023) 016]

Potential along B-L D-flat direction with  :LHu = 0 & HuHd = 0

φ0 ∼

√

msoftMP/λΦ ∼ 10
11
GeV

(

msoft

10λΦTeV

)1/2

(Φ1 & Φ2 = B − L Higgs fields)

(

√

|m2
1| ∼

√

|m2
2| ∼ BΦ ∼ µφ ∼ AΦ ∼ msoft

)

(c.f., global sym. (?) ⇒ may work, but need care of domain-walls or the light PNGB)
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! Thermal inflation (thanks to the B-L D-flat direction)

T ≫ mϕ ∼ msoft

T ≪ mϕ

φ

V0

[Jeannerot, PRD 59 (1999)]

Ti ∼ V 1/4
0 ∼

√

mφφ0

Tf ∼ mφ/λ ∼ mφ

∆NTI
e = ln (Ti/Tf ) ∼ 10

∆
TI
dil =

V0

T 3
f
Td

∼

φ2
0

mφTd

∼ O(1023−24)

φ0 ∼ 10
−4

MP

∆Whigh ⊃
λµ

M
Φ1Φ2HuHd −→

Td = O(1)GeV ×

( mφ

10TeV

)3/2
(

1014GeV

φ0

)(

|µeff |

mφ

)2
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mφ = mϕmoduli before TI

moduli after TI

If φ0 = MP,

1 GeV

10 GeV

100 GeVTd =

! Parameter space safe from the moduli problem

ms ! 8 TeV ,

3× 10
12 "

φ0

GeV
" 2× 10

15
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Im [φ]

Re [φ]

nnet
q = i (φ* ·φ −

·φ*φ) = − 2
·
θ |ϕ |2

AD-mechanism

[WIP, JHEP 07 (2010) 085; Jeong, Kadota, WIP & Stewart, JHEP 11 (2004) 046]
• Baryogenesis (Late time Affleck-Dine leptogenesis)

mν = 3 × 10−8eV

mν = 3 × 10−6eV

mν = 3 × 10−4eV

m2
LHu

< 0
ϕ∼0→ϕ0

m2
LHu

> 0 ( ∵ μMSSM = μMSSM(ϕ))
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- Neutralinos: from freeze-out during MD era & later entropy injection

• Dark Matter Candidates

- KSVZ-axinos (& axions): from decay of neutralino NLSPs 
Ωã = (mã /mχ̃) Ωχ̃

Higgsino Bino Wino

✓ Gray regions might be excluded by PPTA bound on GWs

Td

Excluded by GWs Excluded by GWs Excluded by GWs
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[Ringeval:1005.4842]

- characterized by string tension: 

- falls to the scaling regime: typical length .
μ ∼ πϕ2

0

ξ ∼ αt , α = 𝒪(0.1)

ρs

ρc

∼
μ

M2
P

∼ (
ϕ0

mP
)

2

= const .

- Composition: Network + string loops of various sizes

MD eraRD era

[E.g., Vilenkin & Shellard, 1994 ]• Cosmic string network

SGWBs from TCSs

- It can be formed when vacuum manifold is non-trivially connected (  )π1(ℳ) ≠ I
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Barreiro, Copelend, Lyth & Prokopec, PRD 54 (1996) 1379 
Perkins & Davis, PLB 428 (1998) 254

Y. Cui et al., PRD77 (2008) 043528

where ∆ ≈ m2

φ/m
2

A

cf. For thin strings (Type-II),
            ,    ws ∼ m−1

ϕ ∼ m−1

A
μ ≈ πϕ2

0

- Core width: wS ∼ m−1

ϕ ≫ m−1

A
∼ 1/ϕ0

- String tension:

• Thick cosmic strings (TCSs) (=Type I) 

- In Abelian Higgs model, it is the case of the scalar field much lighter than the gauge field

≡ β ≪ 1

µ/πv2 ≃

[

4.2

ln (1/∆)
+

14

ln2 (1/∆)

]

×

{

1 +

[

2.6

ln (1/∆)
+

57

ln2 (1/∆)

]

lnNw

}

= c1 × (1 + c2 lnNw)

winding #-dependence!
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A flat-potential ( )

⇒ attractive force between strings
⇒ zipping effect between strings
⇒ formation of higher winding number ( ) states if

β ≡ m2

ϕ /m2

A
⋘ 1

Nw

1+1 → 2

[Y. Cui et al., PRD77 (2008) 043528]• Zipping of TCSs 

 (a kinetic constraint due to energy conservation)

Zipping configuration

Kinetic para. space for Zipping
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Y. Cui et al., PRD77 (2008) 043528

equilibration of string species!
(i.e., )n

a
→ const .

N
max

w (t) ∼ Nc

(

t

ti

)0.22

ti ∼ 10tc

• Energy dist. of TCSs 
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[Gottenoire, Servant, Simakachorn: 1912.02569]

- Thick vs think CSs in regard of :ℓ*

- Radiation power of GWs:

 : particle regime
 : GW regime

ℓ < ℓ* ∼ 1/mϕ (ΓGμ)
2

ℓ > ℓ*

(Γ ≈ 50)

Barreiro, Copelend, Lyth & Prokopec, PRD 54 (1996) 1379 
Perkins & Davis, PLB 428 (1998) 254

Y. Cui et al., PRD77 (2008) 043528

- Radiation power of particles:

Pcusp ≈ 2µs

√

ws/ℓ

{

• GWs from TCS loops

ℓthick
*

ℓthin
*

∼
ϕ0

mϕ

= 1010 (
ϕ0

1013GeV ) ( 1TeV

mϕ ) ⇒  causes a critical impact on GW-spectrum
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,

• Signals expected - Stable TCSs of  HiggsU(1)B−L

due to zippering effects ( )∵ ws ≫ ϕ−1
0

Characteristic features
- Enhancement (w.r.t the case w/o zipping)
- Spectral distorsion
- Bending feature (related to  or )Td T*

Signal normalized at fPPTA

Clear spectral difference 
relative to the one without zipping
⇒ can be distinguished.

w/o zipping
w/ zipping

[Kwang Sik Jeong & WIP, JCAP 11 (2023) 016]
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[Astrophy. J. Lett. 951 (2023) 1, L8]

North American Nanohertz Observatory for Gravitational Waves

ΩGW(f)

2π2/3H2
0

= A2
GWf2

yr

(

f

fyr

)5−γ

∝ f2±?

NANOGrav 15yr & SUSY B-L



20

[Class.Quantum Grav. 32 (2015) 015014]supermassive blackhole binaries

• Astrophysical source?
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[Ellis & Lewicki, PRL 126, 041304 (2021) (see also PRL125, 211302(2020), …)]

GW
-sp
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le 
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ic 
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ings

does 
not m

atc
h N

ANOGrav
 15yr 

data
.

• Stable cosmic strings?
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• A SUSY B-L model with meta-stable strings

- A UV structure of the gauge group:

It might be originated from Pati-Salam model - 
’t Hooft-Polyakov monopoles could be inflated away.

(SU(4)c × SU(2)L × SU(2)R)/Z2

(cosmic strings segmented by monopole-antinopole pairs)

{

π2

(

SU(2)R
U(1)R

)

= π2

(

S
2
)

= Z

π1

(

U(1)R × U(1)B−L

U(1)Y

)

= π1

(

S
1
)

= Z

[Buchmüller, Domcke, Schmitz, 2307.04691]

Buchmüller, Domcke, Schmitz, 2307.04691
Ahmed et al., 2308.13248 

Low energy EFT:

( D1 ⊃ Φ1, D2 ⊃ Φ2 )

[R. Maji & WIP, JCAP 01 (2024) 016]



23

- Quantum population of monople-antimonopole pairs ( ):MSM

Schwinger, Phys. Rev. APS 82 (5) 664
Vilenkin,Nucl. Phys. B196 (1982) 240

Pair nucleation rate per unit length:

⇒ Segmentation of strings in a string network (  configurations - “dumbbells”)
⇒ Energy loss due to emission of radiation by accelerated (anti)monopoles:

⇒ Decay of the string network:

MSM

·
Es = −

g2
M

6π (
μs

mM
)

2

, gM =
4π

gR

τs ∼ Γ
−1/2
s

* high-frequency signals should be suppressed (e.g., by partially inflating away strings) 

Γs =
µs

2π
e
−πκ

(

κ =
m

2
M

µs

)
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(matches NANOGrav 15yr data) spectral bending

suppression 
at high freq.ΩGW ∝ f2

Td = O(0.1− 1)GeV

⇒f∗ = 10−4
− 10−2Hz

• Signal expected - Unstable TCSs of the  HiggsU(1)B−L

(effect of an MD-era)

[R. Maji & WIP, JCAP 01 (2024) 016]

[Buchmuller, Domcke, Schmitz, JCAP 12 (202) 006]

τs ∼ 3 × 105sec
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Scheduled for lunch in the mid-2030s!LISA mission timeline. Credit: ESA.

• Timeline of LISA
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UHECRs over GZK limit

• Ultra-high-energy cosmic rays(UHECRs) & GZK limit

[T. Damour & A. Vilenkin, PRL 78 (1997) 2288; T. Vachaspati, PRD81, 043531 (2010);]

Observations

[PoS (ICRC2021) 337]

k
dΦ

dAdk

∣

∣

∣

∣

obs

∼

10−3

km2
· yr · sr

GZK limit
A theoretical upper bnd. of cosmic ray protons
due to proton - CMB photon interactions

Super-GZK

Observed flux over GZK limit

Yet no astrophysical explanations!
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- Source 1: A linear coupling of a light scalar field  with mass  to stringsφ m

[T. Damour & A. Vilenkin, PRL 78 (1997) 2288; T. Vachaspati, PRD81, 043531 (2010);]

• Sources (at cusps of cosmic string loops. )

( κ = 𝒪(1), & ⟨Φ⟩ = M ∼ μs ) (with )k ∼ m mℓ

Plin

Pthin
cusp

∼
|cs |2

μ

ϕ0

m

|cs|
2∼μ

105
ϕ0 /1013

m /103

S ⊃ −cs

∫

d
2σ

√
−γδϕ

⇒ # of ptls per cusp ∼
|cs|2

m2

⇒ Emission power(Plin) ∼
|cs|2
√
mws

√

ws

ℓ

⇒ Huge enhancement of the radiation power! 
[T. Vachaspati, PRD81, 043531 (2010);]
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Our realization: Condensation of  flat-direction in string coresLHu

The expected direct flux: 

cs = πw2
s |m2

LHu
(0) |ϕAD,in

P thick
cusp

P thin
cusp

= O(0.1)

√

wthick
s

wthin
s

∼ O(0.1)

√

φ0

mφ

⇒
|cs|2

µ
∼ O(101−2)

(

φAD,in

φ0

)2

- Source 2: Thick string itself (even without a linear coupling)

* Once  is fixed by PTA data sets, either  or  may be fixed by UHECR data.ϕ0 ϕAD,in mϕ

Within the core of stings, 

V ⊃ m
2

LHu

(0)|φLHu
|2 + · · · ⊃ m

2

LHu

(0)⟨φLHu
⟩δφLHu

+ · · ·

cf . k
dΦ

d Adk

obs

∼
10−3

km2 ⋅ yr ⋅ sr
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• Extra feature (Extremely boosted LSPs)

Decays of  flat-direction produce SUSY particles:LHu

If the LSP is axino,  neutralinos can decay to axinos such as

- Neutralino LSP 

- Axino LSP

Cascade processes will produce diffuse neutrino flux.

Extremely energetic neutrinos and neutralinos are expected.

Details are under investigation.

The boosting at cusps:  γc ∼ ℓ/ws [Blanco-Pillado & Olum, PRD59, 063508 (1999);]
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Summary
• Sym.-breaking flat directions appear naturally in SUSY theories.

• A simple and well-motivated example is with SUSY local  sym..

• It can realize thermal inflation(TI).

• Higgs VEV is constrained as  to resolve the moduli problem.

• The soft SUSY-breaking mass is constrained as .

• SGWBs are expected within the reach of at least LISA and DECIGO.

• A simple UV-realization of the model can explain the NANOGrav discovery. 

• Spectral distortion & bending freq. may deliver a hint of SUSY at LISA/DECIGO 
type exps.

• EHE neutrinos & boosted LSPs are also expected and correlated with UHECRs.

U(1)B−L

1012 ≲ ϕ0/GeV ≲ 1016

msoft ≳ 8TeV

!"#$%&'()*


