Schubert calculus on polytopes and semi-toric degenerations of Schubert varieties

Naoki Fujita

Kumamoto University

Combinatorics, Geometry, and Representation Theory

November 27, 2025

Introduction

2 Schubert polynomials and reduced pipe dream:

3 Toric degenerations to string polytopes

4 Semi-toric degenerations arising from cluster structures

Schubert calculus for G/B

- $G := GL_{n+1}(\mathbb{C})$,
- ullet $B\subseteq G$: the subgroup of upper triangular matrices,
- $B^- \subseteq G$: the subgroup of lower triangular matrices.

The quotient variety G/B is called the **full flag variety**. Let

$$G/B = \bigsqcup_{w \in W} B\overline{w}B/B = \bigsqcup_{w \in W} B^{-}\overline{w}B/B$$

be the orbit decompositions of G/B, where $W=S_{n+1}$ is the Weyl group and $\overline{w}\in G$ denotes the permutation matrix.

Definition

For $w \in W$, the **Schubert variety** X_w and the **opposite Schubert variety** X^w are defined by

$$X_w := \overline{B\overline{w}B/B} \subseteq G/B, \qquad X^w := \overline{B^-\overline{w}B/B} \subseteq G/B.$$

- $X^w \simeq X_{w_0 w}$ for some $w_0 \in W$ called the longest element,
- $[X^w] = [X_{w_0w}]$ in $H^*(G/B; \mathbb{Z})$, called a **Schubert class**.

Schubert calculus for G/B

Properties

- $H^*(G/B; \mathbb{Z}) = \sum_{w \in W} \mathbb{Z}[X_w] = \sum_{w \in W} \mathbb{Z}[X^w]$,
- $[X^u] \cdot [X^v] = \sum_{w \in W} c^w_{u,v}[X^w]$ for some $c^w_{u,v} \in \mathbb{Z}_{\geq 0}$.

Aim (of Schubert calculus)

to compute $c_{u,v}^w$ explicitly.

Approach

to realize $[X^w]$ as a concrete combinatorial object such as Schubert polynomials.

Slogan in this talk

Semi-toric degenerations of X^w can be expected as combinatorial models of $[X^w]$.

- Introduction
- 2 Schubert polynomials and reduced pipe dreams
- 3 Toric degenerations to string polytopes

4 Semi-toric degenerations arising from cluster structures

Reduced pipe dreams

Consider the Schubert polynomial $\mathfrak{S}_w \in \mathbb{Z}[x_1,\ldots,x_{n+1}]$ for $w \in W = S_{n+1}$, introduced by Lascoux–Schützenberger (1982). Its explicit formula is given by **reduced pipe dreams**.

- $Y_n := \{(i, j) \in \mathbb{Z}^2 \mid 1 \le i \le n, \ 1 \le j \le n i + 1\},$
- \mathcal{PD}_n : the power set of Y_n .

Definition (Knutson–Miller 2005)

An element of \mathcal{PD}_n is called a **pipe dream**.

Example

If n=3, then $Y_n=Y_3=$ ______. In addition, we represent a pipe dream

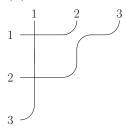
$$D = \{(1,1), (1,3), (2,2)\} \in \mathcal{PD}_3 \text{ as } D = + + +$$

Reduced pipe dreams

We describe a pipe dream $D \in \mathcal{PD}_n$ as a diagram of (n+1) pipes (see the example below).

- A pipe dream $D \in \mathcal{PD}_n$ is **reduced** if arbitrary two pipes do not cross more than once.
- RP(w): the set of reduced pipe dreams $D \in \mathcal{PD}_n$ whose diagram gives a permutation $w \in S_{n+1}$.

If n=2 and $w=(1\ 2\ 3)\in S_3$, then $D=\bigoplus_{\pm}\in RP(w)$ corresponds to the following diagram of 3 pipes.



Combinatorial properties of reduced pipe dreams

- $s_i := (i \ i+1) \in S_{n+1} \quad (i \in I := \{1, 2, \dots, n\}),$
- a sequence $i := (i_1, i_2, \dots, i_m) \in I^m$ is a **reduced word** for $w \in S_{n+1}$ if $w = s_{i_1} s_{i_2} \cdots s_{i_m}$ and if m is the minimum among such expressions of w,
- R(w): the set of reduced words for $w \in W = S_{n+1}$.

The set RP(w) of reduced pipe dreams has the following two kinds of remarkable combinatorial properties.

• (reduced subwords) There exists a natural bijection between RP(w) and the set of reduced words for w appearing as subwords of

$$(n, n-1, n, n-2, n-1, n, \dots, 1, 2, \dots, n) \in R(w_0).$$

• (mitosis recursion) RP(w) is obtained from $RP(w_0) = \{Y_n\}$ by a sequence of transposed mitosis operators:

$$RP(w) = \operatorname{mitosis}_{j_{\ell}}^{\top} \cdots \operatorname{mitosis}_{j_{1}}^{\top}(Y_{n})$$

for $(j_1, ..., j_\ell) \in R(w_0 w^{-1})$ (Knutson–Miller 2005, Miller 2003).

Pipe dream formula for Schubert polynomials

Theorem (Billey-Jockusch-Stanley 1993 and Fomin-Stanley 1994)

For $w \in W = S_{n+1}$, the following equality holds:

$$\mathfrak{S}_w = \sum_{D \in RP(w)} \boldsymbol{x}^D,$$

where $x^D \coloneqq \prod_{(i,j) \in D} x_i$.

Knutson–Miller (2005) gave a geometric proof of this formula using a semi-toric degeneration of the (matrix) opposite Schubert variety $\overline{X}^{w_0^{-1}ww_0}$. As a quotient of this degeneration, Kogan–Miller (2005) constructed a semi-toric degeneration of $X^{w_0^{-1}ww_0}$.

Gelfand-Tsetlin polytopes

For $\lambda=(\lambda_1,\ldots,\lambda_n)\in P_{++}\coloneqq\mathbb{Z}^n_{>0}$, the **Gelfand–Tsetlin polytope** $GT(\lambda)$ is defined to be the set of $(a_1^{(1)},a_1^{(2)},a_2^{(1)},a_1^{(3)},a_2^{(2)},a_3^{(1)},\ldots,a_1^{(n)},\ldots,a_n^{(1)})\in\mathbb{R}^N$ satisfying the following inequalities:

where $N:=\frac{n(n+1)}{2}$, $a_k^{(0)}:=\sum_{k\leq\ell\leq n}\lambda_\ell$ for $1\leq k\leq n+1$, and we mean by $\begin{array}{cc} a & c \\ b & \end{array}$ that $a\geq b\geq c$.

Gelfand-Tsetlin polytopes

- $GT(\lambda)$ is an N-dimensional integral convex polytope for all $\lambda \in P_{++}$.
- The set $GT(\lambda) \cap \mathbb{Z}^N$ of lattice points gives a natural parametrization of a specific basis of an irreducible G-module, called the Gelfand–Tsetlin basis.
- (toric degeneration) Gonciulea–Lakshmibai (1996) constructed a flat degeneration of G/B to the toric variety $Z(GT(\lambda))$ corresponding to $GT(\lambda)$.
- (Minkowski decomposition property)

$$GT(\lambda + \mu) = GT(\lambda) + GT(\mu)$$

for all λ, μ , which implies that $GT(\lambda)$, $\lambda \in P_{++}$, have the same normal fan. In particular, the combinatorial structure of faces of $GT(\lambda)$ is independent of the choice of λ .

Kogan faces and dual Kogan faces

Definition (Kogan 2000)

A face of $GT(\lambda)$ given by equations of the type $a_k^{(l)}=a_k^{(l+1)}$ (resp., $a_k^{(l)}=a_{k+1}^{(l-1)}$) is called a **Kogan face** (resp., a **dual Kogan face**).

We associate to each $D \in \mathcal{PD}_n$ a Kogan face $F_D(GT(\lambda))$ and a dual Kogan face $F_D^{\vee}(GT(\lambda))$.

$rac{ ext{Kogan faces}}{a_1^{(0)} \qquad a_2^{(0)} \qquad a}$

$\frac{\text{dual Kogan faces}}{a_1^{(0)} \quad a_2^{(0)} \quad a_3^{(0)}} \\ = \\ a_1^{(1)} \quad a_2^{(1)} \quad a_2^{(1)}$

Kogan faces and dual Kogan faces

A Kogan face $F_D(GT(\lambda))$ and a dual Kogan face $F_D^\vee(GT(\lambda))$ are said to be **reduced** if D is reduced. The reduced Kogan faces and reduced dual Kogan faces inherit information on the Schubert class $[X^w] = [X_{w_0w}]$ in several ways:

- through the pipe dream formula of Schubert polynomials,
- through the theory of Gelfand–Tsetlin integrable systems (Kogan 2000),
- through the theory of polytope rings (Kiritchenko–Smirnov–Timorin 2012).

Relation with semi-toric degenerations

Theorem (Kogan-Miller 2005)

For $\lambda \in P_{++}$, Gonciulea–Lakshmibai's toric degeneration of G/B induces a degeneration of X^w to a reduced union of toric subvarieties of $Z(GT(\lambda))$, called a **semi-toric degeneration** of X^w . In addition, the semi-toric limit of X^w corresponds to

$$GT(\lambda, X^w) := \bigcup_{D \in RP(w_0^{-1}ww_0)} F_D^{\vee}(GT(\lambda)) \subseteq GT(\lambda).$$

Kogan-Miller's semi-toric degeneration

Example

Let n=2. Then $G/B=GL_3(\mathbb{C})/B$ is isomorphic to a hypersurface

$$\{ \boldsymbol{p} = ([p_1, p_2, p_3], [p_{1,2}, p_{1,3}, p_{2,3}]) \in \mathbb{P}^2 \times \mathbb{P}^2 \mid p_1 p_{2,3} = p_2 p_{1,3} - p_3 p_{1,2} \}$$

of $\mathbb{P}^2 \times \mathbb{P}^2$. Define a hypersurface \mathfrak{X} of $\mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{C}$ by

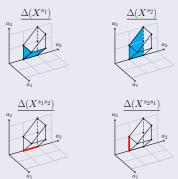
$$\mathfrak{X} = \{ (\boldsymbol{p}, t) \in \mathbb{P}^2 \times \mathbb{P}^2 \times \mathbb{C} \mid p_1 p_{2,3} = p_2 p_{1,3} - t p_3 p_{1,2} \},$$

and set $\pi\colon \mathfrak{X}\to \mathbb{C}$, $(p,t)\mapsto t$. Then π gives a toric degeneration of G/B. In particular, the toric variety $\pi^{-1}(0)$ corresponds to the following polytope $\Delta=GT((1,1))$:

Kogan-Miller's semi-toric degeneration

Example (continued)

The induced semi-toric degenerations of X^w are given as follows. In particular, $\Delta(X^{s_1}) \cap \Delta(X^{s_2}) = \Delta(X^{s_1s_2}) \cup \Delta(X^{s_2s_1})$, where $\Delta(X^w) \coloneqq GT((1,1),X^w)$. This relation corresponds to $[X^{s_1}] \cdot [X^{s_2}] = [X^{s_1s_2}] + [X^{s_2s_1}]$.



- Introduction
- 2 Schubert polynomials and reduced pipe dreams
- 3 Toric degenerations to string polytopes
- 4 Semi-toric degenerations arising from cluster structures

Borel-Weil theory

Aim

to give a generalization of Kogan-Miller's semi-toric degenerations using the theory of crystal bases and cluster algebras.

For $\lambda \in P_{++}$, the irreducible highest weight G-module $V(\lambda)$ with highest weight λ can be realized as $V(\lambda) = H^0(G/B, \mathcal{L}_{\lambda})^*$ for some ample line bundle \mathcal{L}_{λ} by the Borel–Weil theorem.

Set

$$R_{\lambda} := H^0(G/B, \mathcal{L}_{\lambda}) = V(\lambda)^*$$

and

$$R^{(\lambda)} := \bigoplus_{k \in \mathbb{Z}_{\geq 0}} R_{k\lambda}.$$

Then we have

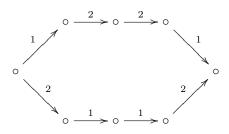
$$G/B = \operatorname{Proj}(R^{(\lambda)}).$$

Crystal bases

Let $\mathbf{B}^{\mathrm{up}}(\lambda) = \{G_{\lambda}^{\mathrm{up}}(b) \mid b \in \mathcal{B}(\lambda)\}$ denote Lusztig's dual canonical basis (= Kashiwara's upper global basis) of $H^0(G/B, \mathcal{L}_{\lambda})$. The index set $\mathcal{B}(\lambda)$ equipped with the Kashiwara operators $\{\tilde{e}_i \mid i \in I\} \cup \{\tilde{f}_i \mid i \in I\}$ is called a **crystal basis**. Define an I-colored directed graph structure on $\mathcal{B}(\lambda)$ by

$$b \xrightarrow{i} b'$$
 if and only if $b' = \tilde{f}_i b$.

If $G = GL_3(\mathbb{C})$ and $\lambda = (1,1) \in P_{++}$, then $\mathcal{B}(\lambda)$ is given by



String parametrizations

For
$$b \in \mathcal{B}(\lambda)$$
 and $\boldsymbol{i} = (i_1, \dots, i_N) \in R(w_0)$, define $\Phi_{\boldsymbol{i}}(b) = (a_1, \dots, a_N) \in \mathbb{Z}_{\geq 0}^N$, called the **string parametrization**, by $a_1 \coloneqq \max\{a \in \mathbb{Z}_{\geq 0} \mid \tilde{e}_{i_1}^a b \neq 0\},$ $a_2 \coloneqq \max\{a \in \mathbb{Z}_{\geq 0} \mid \tilde{e}_{i_2}^a \tilde{e}_{i_1}^{a_1} b \neq 0\},$ \vdots $a_N \coloneqq \max\{a \in \mathbb{Z}_{\geq 0} \mid \tilde{e}_{i_N}^a \tilde{e}_{i_{N-1}}^{a_{N-1}} \cdots \tilde{e}_{i_1}^{a_1} b \neq 0\}.$
$$(1,0,0) \xrightarrow{2} (0,1,1) \xrightarrow{2} (0,2,1)$$

$$(0,0,0) \xrightarrow{2} (0,1,0) \xrightarrow{1} (1,1,0) \xrightarrow{1} (2,1,0)$$

String polytopes

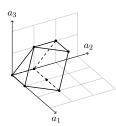
We set

$$S_{\mathbf{i}}(\lambda) := \bigcup_{k \in \mathbb{Z}_{>0}} \{ (k, \Phi_{\mathbf{i}}(b)) \mid b \in \mathcal{B}(k\lambda) \} \subseteq \mathbb{Z}_{>0} \times \mathbb{Z}^{N},$$

 $C_i(\lambda)$: the smallest real closed cone containing $S_i(\lambda)$,

$$\Delta_{\boldsymbol{i}}(\lambda) \coloneqq \{ \boldsymbol{a} \in \mathbb{R}^N \mid (1, \boldsymbol{a}) \in C_{\boldsymbol{i}}(\lambda) \}.$$

The set $\Delta_{\pmb{i}}(\lambda)$ is called **Berenstein–Littelmann–Zelevinsky's string polytope**. If $G=GL_3(\mathbb{C})$, $\lambda=(1,1)\in P_{++}$, and $\pmb{i}=(1,2,1)$, then the string polytope $\Delta_{\pmb{i}}(\lambda)$ is given by



Caldero's toric degenerations

Fix $\lambda \in P_{++}$, and recall $R^{(\lambda)} := \bigoplus_{k \in \mathbb{Z}_{>0}} R_{k\lambda}$.

Theorem (Caldero 2002)

For $b_1 \in \mathcal{B}(k\lambda)$ and $b_2 \in \mathcal{B}(k'\lambda)$, there exists $b \in \mathcal{B}((k+k')\lambda)$ such that $\Phi_{\boldsymbol{i}}(b) = \Phi_{\boldsymbol{i}}(b_1) + \Phi_{\boldsymbol{i}}(b_2)$ and such that

$$G_{k\lambda}^{\mathrm{up}}(b_1) \cdot G_{k'\lambda}^{\mathrm{up}}(b_2) \in \mathbb{C}^{\times} G_{(k+k')\lambda}^{\mathrm{up}}(b) + \sum_{\substack{b' \in \mathcal{B}((k+k')\lambda); \\ \Phi_i(b') < \Phi_i(b)}} \mathbb{C} G_{(k+k')\lambda}^{\mathrm{up}}(b'),$$

where we consider the lexicographic order on $\{\Phi_i(b') \mid b' \in \mathcal{B}((k+k')\lambda)\}$.

Considering $gr(R^{(\lambda)})$, we can degenerate the relation above as follows:

$$\overline{G_{k\lambda}^{\rm up}(b_1)} \cdot \overline{G_{k'\lambda}^{\rm up}(b_2)} \in \mathbb{C}^{\times} \overline{G_{(k+k')\lambda}^{\rm up}(b)},$$

which gives the toric variety $Z(\Delta_i(\lambda))$ corresponding to $\Delta_i(\lambda)$. Through the theory of Rees algebras, we have a toric degeneration of $G/B = \operatorname{Proj}(R^{(\lambda)})$ to $Z(\Delta_i(\lambda)) = \operatorname{Proj}(\operatorname{gr}(R^{(\lambda)}))$.

Realization as Newton-Okounkov polytopes

The filtration on $R^{(\lambda)}$ is induced from the parametrization

$$\mathbf{B}^{\mathrm{up}}(k\lambda)\ni G_{k\lambda}^{\mathrm{up}}(b)\mapsto (k,\Phi_{\boldsymbol{i}}(b))\in \mathbb{Z}_{\geq 0}\times \mathbb{Z}^N.$$

Theorem (Kaveh 2015)

This parametrization is extended to a valuation $\nu_i \colon R^{(\lambda)} \setminus \{0\} \to \mathbb{Z}_{\geq 0} \times \mathbb{Z}^N$ with respect to some total order \prec on $\mathbb{Z}_{\geq 0} \times \mathbb{Z}^N$, and

$$\Delta_{\mathbf{i}}(\lambda) = \bigcup_{k \in \mathbb{Z}_{>0}} \frac{1}{k} \nu_{\mathbf{i}}(R_{k\lambda} \setminus \{0\}).$$

- The right hand side is the **Newton–Okounkov body (polytope)** of $G/B = \operatorname{Proj}(R^{(\lambda)})$ associated with the valuation ν_i (Lazarsfeld–Mustata 2009, Kaveh–Khovanskii 2012).
- If we consider a different kind of valuation ν , then we obtain a different Newton–Okounkov body of $G/B = \operatorname{Proj}(R^{(\lambda)})$, which induces a toric degeneration under some conditions (Anderson 2013).

A map $\nu \colon R^{(\lambda)} \setminus \{0\} \to \mathbb{Z}_{\geq 0} \times \mathbb{Z}^N$ is a **valuation** on $R^{(\lambda)}$ if for $\sigma, \tau \in R^{(\lambda)} \setminus \{0\}$ and $c \in \mathbb{C}^{\times}$,

- (i) $\nu(\sigma + \tau) \succeq \min{\{\nu(\sigma), \nu(\tau)\}}$ unless $\sigma + \tau = 0$,
- (ii) $\nu(c \cdot \sigma) = \nu(\sigma)$,
- (iii) $\nu(\sigma \cdot \tau) = \nu(\sigma) + \nu(\tau)$.

Replacing the condition (iii) by

(iv)
$$\nu(\sigma \cdot \tau) \succeq \nu(\sigma) + \nu(\tau)$$
,

we reach the definition of quasi-valuations.

Question (see Chirivì-Fang-Littelmann 2023)

Can we develop the Newton–Okounkov theory using quasi-valuations instead of valuations?

→ Yes, but the resulting Newton–Okounkov set is not necessarily convex.

Let $R_{w,\lambda} \coloneqq H^0(X_w, \mathcal{L}_\lambda)$, and set $R_w^{(\lambda)} \coloneqq \bigoplus_{k \in \mathbb{Z}_{\geq 0}} R_{w,k\lambda}$. Then we have $X_w = \operatorname{Proj}(R_w^{(\lambda)})$ and the restriction map $R^{(\lambda)} \twoheadrightarrow R_w^{(\lambda)}$. Through $R^{(\lambda)} \twoheadrightarrow R_w^{(\lambda)}$, Kaveh's valuation ν_i on $R^{(\lambda)}$ induces a quasi-valuation $\nu_{i,X_w} \colon R_w^{(\lambda)} \setminus \{0\} \to \mathbb{Z}_{\geq 0} \times \mathbb{Z}^N$.

Definition

The **Newton–Okounkov set** $\Delta(X_w, \mathcal{L}_{\lambda}, \nu_{i, X_w})$ of $X_w = \operatorname{Proj}(R_w^{(\lambda)})$ associated with ν_{i, X_w} is defined by

$$\Delta(X_w, \mathcal{L}_{\lambda}, \nu_{i, X_w}) = \overline{\bigcup_{k \in \mathbb{Z}_{>0}} \frac{1}{k} \nu_{i, X_w} (R_{w, k\lambda} \setminus \{0\})}.$$

Write $\Delta_{\boldsymbol{i}}(\lambda, X_w) \coloneqq \Delta(X_w, \mathcal{L}_{\lambda}, \nu_{\boldsymbol{i}, X_w})$

Theorem (see Morier-Genoud 2008)

Let $i \in R(w_0)$, $\lambda \in P_{++}$, and $w \in W$.

- (1) The Newton–Okounkov set $\Delta_{i}(\lambda, X_{w})$ is a union of faces of $\Delta_{i}(\lambda)$.
- (2) $\Delta_{\boldsymbol{i}}(\lambda, X_w) \cap \mathbb{Z}^N = \Phi_{\boldsymbol{i}}(\mathcal{B}_w(\lambda))$ for the Demazure crystal $\mathcal{B}_w(\lambda) \subseteq \mathcal{B}(\lambda)$.
- (3) Caldero's toric degeneration of G/B induces a semi-toric degeneration of X_w . In addition, the semi-toric limit of X_w corresponds to $\Delta_i(\lambda, X_w)$.
- (4) Similar statements hold for X^w .

For $i = (i_1, \ldots, i_N) \in R(w_0)$ and $w \in W$, we set

$$R(i, w) := \{(k_1, \dots, k_\ell) \mid 1 \le k_1 < \dots < k_\ell \le N, \ (i_{k_1}, \dots, i_{k_\ell}) \in R(w)\}.$$

Example

Let $G = GL_4(\mathbb{C})$, $\mathbf{i} := (2, 1, 3, 2, 3, 1) \in R(w_0)$, and $w := s_1 s_3 = s_3 s_1$. Then we have $R(\mathbf{i}, w) = \{(2, 3), (2, 5), (3, 6), (5, 6)\}$.

Theorem (F. 2022)

For $i \in R(w_0)$, $w \in W$, and $\lambda \in P_{++}$, the maximal faces of Morier-Genoud's semi-toric limit $\Delta_i(\lambda, X^w) \subseteq \Delta_i(\lambda)$ are naturally parametrized by R(i, w).

Case of Gelfand-Tsetlin polytopes

Let

$$i_A := (1, \underbrace{2, 1}_{2}, \underbrace{3, 2, 1}_{3}, \dots, \underbrace{n, n-1, \dots, 1}_{n}) \in R(w_0).$$

Theorem (Littelmann 1998)

For $\lambda \in P_{++}$, the string polytope $\Delta_{i_A}(\lambda)$ is unimodularly equivalent to the Gelfand–Tsetlin polytope $GT(\lambda)$.

Theorem (F. 2022)

For $w\in W$ and $\lambda\in P_{++}$, Morier-Genoud's semi-toric limit $\Delta_{i_A}(\lambda,X^w)$ of X^w in the string polytope $\Delta_{i_A}(\lambda)$ corresponds to Kogan–Miller's semi-toric limit $GT(\lambda,X^w)$ in $GT(\lambda)$ under the unimodular affine transformation $\Delta_{i_A}(\lambda)\simeq GT(\lambda)$.

Case of Gelfand-Tsetlin polytopes

Claim (F. 2022)

Under the unimodular affine transformation $\Delta_{i_A}(\lambda) \simeq GT(\lambda)$, the (transposed) mitosis operator $\operatorname{mitosis}_j^{\top}$ for reduced Kogan faces $F_D(GT(\lambda))$ naturally corresponds to iterated actions $\bigcup_{k \in \mathbb{Z}_{\geq 0}} (\tilde{f}_j^*)^k$ of a certain twisted Kashiwara operator \tilde{f}_j^* , where \tilde{f}_j^* is an operator on the set of lattice points of the string cone

$$C_{i_A} = \bigcup_{\lambda \in P_{++}} \Delta_{i_A}(\lambda).$$

Theorem (F. 2022)

Let $w\in W$ and $\lambda\in P_{++}$. Under the unimodular affine transformation $\Delta_{{\boldsymbol i}_A}(\lambda)\simeq GT(\lambda)$, Morier-Genoud's semi-toric limit $\Delta_{{\boldsymbol i}_A}(\lambda,X_w)\subseteq \Delta_{{\boldsymbol i}_A}(\lambda)$ of X_w corresponds to $\bigcup_{D\in RP(w^{-1}w_0)}F_D(GT(\lambda))$.

Generalization to type C case

Let $G = Sp_{2n}(\mathbb{C})$ of type C_n . Then the Weyl group W_{C_n} is regarded as the group

$$\{\sigma \in S_{\{-n,\dots,-1,1,\dots,n\}} \mid \sigma(-i) = -\sigma(i), \ 1 \le i \le n\}$$

of signed permutations. Consider a reduced word

$$i_C \coloneqq (1, \underbrace{2, 1, 2}_{3}, \dots, \underbrace{n, n-1, \dots, 1, \dots, n-1, n}_{2n-1})$$

for $w_0 \in W_{C_n}$.

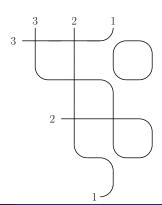
Theorem (F.-Nishiyama 2024)

Let $\lambda \in P_{++}$, and $w \in W_{C_n}$. Then the maximal faces of Morier-Genoud's semi-toric limit $\Delta_{i_C}(\lambda, X_w)$ of X_w bijectively correspond to **reduced** skew pipe dreams for w, which can be constructed using (transposed) mitosis operators for skew pipe dreams introduced by Kiritchenko (2016).

Generalization to type C case

Let n=3. Then the following diagram is an example of a reduced skew pipe dream for

$$w = \begin{pmatrix} -3 & -2 & -1 & 1 & 2 & 3 \\ -2 & 1 & 3 & -3 & -1 & 2 \end{pmatrix} \in W_{C_3}.$$



Generalization to type C case

- Billey-Haimann (1995) and Fomin-Kirillov (1996) introduced several kinds of Schubert polynomials for types B, C, D.
- Type C pipe dreams were already considered in this context by Kirillov–Naruse (2017).
- ullet Our reduced skew pipe dreams have different combinatorics from such type C pipe dreams. The former inherits information on a semi-toric degeneration of X_w while the latter corresponds to a semi-toric degeneration of X^w .

Introduction

- 2 Schubert polynomials and reduced pipe dreams
- 3 Toric degenerations to string polytopes
- Semi-toric degenerations arising from cluster structures

Toric degenerations arising from cluster structures

Let $\lambda \in P_{++}$. Using a cluster variety structure of (a unipotent cell in) G/B, we obtain a family of toric degenerations of G/B.

Theorem (Gross-Hacking-Keel-Kontsevich 2018, F.-Oya 2025)

- (1) There exists a family of toric degenerations of G/B to toric varieties $Z(\Delta_{\mathbf{s}}(\lambda))$ associated with g-vector polytopes $\Delta_{\mathbf{s}}(\lambda)$, which are parametrized by seeds \mathbf{s} for the cluster structure, and the lattice points in $\Delta_{\mathbf{s}}(\lambda)$ parametrize some extended g-vectors in cluster theory.
- (2) The g-vector polytopes $\Delta_{\mathbf{s}}(\lambda)$ are realized as Newton–Okounkov polytopes of G/B.

Toric degenerations arising from cluster structures

- The Newton–Okounkov body $\Delta_{\mathbf{s}}(\lambda)$ and the associated toric degeneration of G/B can be naturally extended to flag varieties in general Lie type.
- In the case $G = GL_{n+1}(\mathbb{C})$, the polytope $\Delta_s(\lambda)$ coincides with Gross–Hacking–Keel–Kontsevich's superpotential polytope.

Theorem (F.-Oya 2025)

For each $i \in R(w_0)$, there exists a seed \mathbf{s}_i such that $\Delta_{\mathbf{s}_i}(\lambda)$ is unimodularly equivalent to the string polytope $\Delta_i(\lambda)$. In addition, the toric degeneration to $Z(\Delta_{\mathbf{s}_i}(\lambda))$ coincides with Caldero's toric degeneration to $Z(\Delta_i(\lambda))$ up to $\Delta_{\mathbf{s}_i}(\lambda) \simeq \Delta_i(\lambda)$.

Semi-toric degenerations arising from cluster structures

Theorem (F. preprint 2021)

Let $\lambda \in P_{++}$, and s a seed for the cluster structure. Then the toric degeneration of G/B to $Z(\Delta_{\mathbf{s}}(\lambda))$ induces semi-toric degenerations of X_w and X^w , which generalize Morier-Genoud's semi-toric degenerations.

```
(Kogan-Miller's semi-toric degeneration)
∈ {Morier-Genoud's semi-toric degenerations}
```

- E {Worler-Genoud's semi-toric degenerations}
- \subseteq {semi-toric degenerations arising from cluster structures}.

Problem

Describe the limits of X_w and X^w explicitly for semi-toric degenerations arising from cluster structures.