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A gentle introduction



What is machine learning?
• Wikipedia: study of “algorithms that improve automatically through 

experience”

• Q: What is “experience”?

• A: Seeing more data

• Q: “improve” what? 

• A: Ability to make predictions from data



What is machine learning?
Q: How does the computer “learn” to make predictions?
A: (Example) I buy a stock for $3 this year. What will be its price in the future?
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What is machine learning?
Q: How does the computer “learn” to make predictions?
A: (Example) I buy a stock for $3 this year. What will be its price in the future?
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What is machine learning?
Q: How does the computer “learn” to make predictions?
A: (Example) I buy a stock for $3 this year. What will be its price in the future?
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Line plot: 

y=mx+b

Stock 
price

Slope of the line

Machine learning can use the same idea of  “learning from data” with more 
complex functions than y=mx+b.

Year



What is machine learning?
• What sorts of predictions can be made?
• A: (Toy example) Price of a stock in a future year
• A: (Example) Gene expression in a cellular condition. 

– A gene’s expression may be predictable if you know the levels of all transcription factors. 

• A: (Example) Enzyme activity. 
– An enzyme’s ability to catalyze a reaction may be predictable from its sequence. 

• An algorithm may be able to make such predictions 
accurately.



What is machine learning?
Q: Do you need to teach the algorithm all about chemistry or biology?

A: No. Here’s how it’s done: 

The algorithm LEARNS A FUNCTION mapping input to output.

Predicted yield
What is the 
pathway yield 
at this level of 
the enzyme?Side note: Points are not exactly 

on the line, unlike our stock price 
example. This is more realistic.



What is machine learning?
Q: But that is too naïve. It won’t work in biology and medicine.

A: It’s not (too naïve). And it does work for many complex domains, 
including biology. Because the function learnt can be fairly complex:
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Two major types of “prediction” tasks

Regression: Goal is to predict something numeric
Example:

• Input: Transcription factor concentrations
• Question: What is the gene’s expression level?
• Output: Could be an expression level in TPM

Classification: Goal is to predict “yes” or “no”
Example:

• Input: Protein sequence
• Question: Is it a biocatalyst?
• Output: Yes or no



Part 1: Classification



Example Motivation

• Predicting the function of genes by using gene 
expression data

• A gene that is expressed in samples from yeast 
colonies in oxygen-deprived conditions and not in 
other colonies may have a stress-response function. 

• How can a Machine Learning program capture this 
intuition? 



Supervised Learning & Training Data

• You have an expression data set, i.e., measurements of all 
genes’ expression in a range of biological conditions or 
individuals/organisms.

• Begin with a set of genes that have a common function, say 
“stress response”. This is called the “positive set”.

• Also find a set of genes known not to be members of that 
functional class (the “negative set”)

• Such sets can be assembled from the literature on gene 
functions



“Features”

• Each gene (positive or negative) is described by a vector of its 
expression levels in different conditions/individuals. This is 
the “feature vector”.

• The positive and negative gene sets, along with the feature 
vectors of those genes, form the “training data”
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Classification
• A classification algorithm will learn to discriminate 

between the genes in the two classes, based on their 
expression profiles (feature vectors)

• Once learning is done, the classifier may be presented 
with the expression profile of a previously unseen gene 
(“test data”)

• Should be able to predict if the gene is a member or non-
member of the functional class



Formally
• Each sample (e.g., gene) is described by a “feature vector” xi

• This is a d-dimensional vector; i.e., xi = (xi1 , xi2 , … , xid), where d is the number 
of conditions for which expression data are available. 

• Samples corresponding to class “-1” are x1,… xn

• Samples corresponding to class “+1” are xn+1,… xn+m

• All samples (x1,… xn+m) with their class labels (+1/-1) form the training data
• The problem is to design a function f(x) that predicts the class label (+1 or -1) 

of any sample x. This is the classification problem.
• “Training the classifier” typically amounts to finding f(x) such that f(xi)=-1 for 

all i=1 … n and f(xi)=1 for all i=n+1 … n+m 



K-nearest neighbor (KNN) classification
• For any test sample x (gene to be classified), find the K 

nearest samples (genes) in the training data.

• Classify the sample according to the majority class label 
of these neighbors.

Example: 
• 2-dimensional feature vectors
• the red and blue points are the training samples, 

colored by class label (red = -, blue = +)
• Black point is the test sample
• K=3
• The K=3 nearest neighbors include two negatives and 

one positive; predict negative class



Naive Bayes Classifier

y

x(i+1)x(i)x(i-1)x(1) x(d)

Class label

features

𝑝𝑝 𝑦𝑦 𝒙𝒙 =
𝑝𝑝 𝑦𝑦 𝑝𝑝 𝒙𝒙 𝑦𝑦

𝑝𝑝 𝒙𝒙
Bayes rule

𝑝𝑝 𝒙𝒙 𝑦𝑦 = �
𝑖𝑖
𝑝𝑝(𝑥𝑥(𝑖𝑖)|𝑦𝑦) Assume features independent

𝑝𝑝(𝑦𝑦)�
𝑖𝑖
𝑝𝑝(𝑥𝑥(𝑖𝑖)|𝑦𝑦)Choose y such that is largest

Sample x



What is P(x(i) | y)?

• From training data, compile all observed values of x(i), 
i.e., the ith feature, within class y. 

• Fit a distribution to these values. Could be a Normal 
distribution, Poisson distribution, etc. This gives you 
P(x(i) | y) to use in the previous formula.

• This is how the computer “learns” from data



Linear Classifiers

• sign(z) is the “sign function”, = +1 if z is 
positive, = -1 if z is negative.

• w and w0 are things (a vector and a scalar 
resp.) we have to find out: “free 
parameters”



Linear Classifiers

• Recall goal of training step: make correct predictions 
on all training examples: f(xi) = -1 for all i=1 … n and 
f(xi) = +1 for all i=n+1 … n+m

• We want to find wT and w0 such that wTxi + w0  is < 0 
for i = 1 .. n and > 0 for i = n+1 … n+m 



Linear Classifiers

• L = {x | wTx + w0 = 0} is a “hyperplane”. 

• If input space is two-dimensional, the hyperplane is just a straight line; 
if input space is 3D, the hyperplane is a plane, etc.

• Points with wTx + w0 < 0 lie on one side of the hyperplane; points with 
wTx + w0 > 0 lie on the other side.

• Thus, L = {x | wTx + w0 = 0} separates the positive samples from the 
negative samples. “Separating hyperplane”



Linear Classifiers
Separating hyperplane in 2D space

Positive samples.
xi such that wTxi + w0  > 0 

Negative samples.
xi such that wTxi + w0  < 0 



Linear Classifiers

• Computer solves this system of inequalities to 
figure out values of w and w0. This is how it 
“learns” from training data.



Assessing classifier accuracy



Errors

• False positive: Predicted to be positive, but wrong! 
(Real label is negative)

• False negative: Predicted to be negative, but wrong! 
(Real label is positive)



Class confusion matrix

Predicted 
Positive

Predicted 
Negative

Real positive 12 3

Real Negative 0 15



Accuracy measures

• Accuracy: Percentage of labels 
correctly classified. (27/30)

• Sensitivity: Percentage of real positives 
correctly classified. (12/15)

• Recall = Sensitivity

• Precision: Percentage of predicted 
positives correctly classified. (12/12)



Cross validation
• A classifier is supposed to be trained on the training 

samples (e.g., genes with known functions) and used 
to make predictions on test data (genes with unknown 
function). 

• How can we assess its predictions on the test data if 
we don’t know the truth about those genes? 

• Solution: hide some of the labeled samples (genes 
with known functions) and make the classifier predict 
on those. 



K-fold cross validation

Classification Error = Average classification error on K folds



Part 2: Regression



Classification vs Regression
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Classification vs Regression
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Formally

• Each sample is “feature vector” xi . 

• This is a d-dimensional vector, i.e., xi = (xi1 , xi2 , … , xid) 

• The features also go by other names: “independent variables”, 
“predictor variables”, “covariates”, etc.

• Each sample also has a continuous valued “label” yi . This 
sometimes goes by the name “response variable” or 
“dependent variable”. 

• Regression problem is to find a function f(x) s.t. f(xi) ≈ yi for all i



Nearest Neighbor Regression

• Let x be a test sample. 

• Collect the K nearest neighbors of x in the training data. 
Let the ith of these be xi , with label yi. 

• One option is to define 

• But some of the neighbors may be quite far from the 
test sample. We don’t want them to contribute as much 
as the nearby samples. Hence, define

𝑓𝑓 𝒙𝒙 =
∑𝑖𝑖 𝑦𝑦𝑖𝑖
𝐾𝐾

𝑓𝑓 𝒙𝒙 =
∑𝑖𝑖 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖
∑𝑖𝑖 𝑤𝑤𝑖𝑖

𝑤𝑤𝑖𝑖 chosen to give greater weight 
to nearby samples. For instance, it 
could be set to inverse of distance 
from test sample.



Nearest neighbor regression

Source: wikipedia

• In this example, X is one-dimensional. 
• Green curve shows the true relationship between X and Y.
• Blue points show the samples (X,Y). Note that data is noisy
• Red curve shows the nearest neighbor regression with K=16



Linear Regression

• Recall that we wish to find a function f(x) s.t. f(xi) ≈ yi for all i in 
the given data set. 

• Let’s say our function f(x) must be of the form 𝑓𝑓 𝒙𝒙 = 𝒙𝒙𝑇𝑇𝜷𝜷, 
where 𝜷𝜷 is a vector of numbers, of the same dimensionality as 
x, and xT 𝜷𝜷 refers to the dot product of x and 𝜷𝜷. The 𝜷𝜷 vector is 
also called the vector of “coefficients”. 

• Note that if 𝑥𝑥 = 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑑𝑑  and 𝛽𝛽 = 𝛽𝛽1,𝛽𝛽2, … ,𝛽𝛽𝑑𝑑  then

• So f(x) is just the weighed sum of features, with 𝜷𝜷 being the 
weights



Linear Regression

• Recall that we wish to find a function f(x) s.t. f(xi) ≈ yi for all i in 
the given data set. 

• Let’s say our function f(x) must be of the form 𝑓𝑓 𝒙𝒙 = 𝒙𝒙𝑇𝑇𝜷𝜷, 
where 𝜷𝜷 is a vector of numbers, of the same dimensionality as 
x , and xT 𝜷𝜷 refers to the dot product of x and 𝜷𝜷. The 𝜷𝜷 vector is 
also called the vector of “coefficients”. 

• One little problem though: This will force the zero vector 𝒙𝒙 =
0,0, … 0  to necessarily map to 𝑦𝑦 = 0. We may not want that.

• So, we say that f(x) must be of the form 𝑓𝑓 𝒙𝒙 = 𝛽𝛽0 + 𝒙𝒙𝑇𝑇𝜷𝜷, 
where 𝛽𝛽0 is a scalar. 



Linear Regression
• 𝑓𝑓 𝒙𝒙 = 𝛽𝛽0 + 𝒙𝒙𝑇𝑇𝜷𝜷 . How do we decide on values of 𝜷𝜷 and 𝛽𝛽0? 

• We will set 𝜷𝜷 and 𝛽𝛽0 so that  𝑓𝑓 𝒙𝒙𝒊𝒊 ≈ 𝑦𝑦𝑖𝑖  for all 𝑖𝑖 in the given 
data set of (𝒙𝒙𝒊𝒊, 𝑦𝑦𝑖𝑖). How to make this precise? 

• We will make sure ∑𝑖𝑖 𝑓𝑓 𝒙𝒙𝒊𝒊 − 𝑦𝑦𝑖𝑖
2 is small. (This will be sort 

of like having 𝑓𝑓 𝒙𝒙𝒊𝒊 ≈ 𝑦𝑦𝑖𝑖.)

• So we need to find values of 𝜷𝜷 and 𝛽𝛽0  that minimize 
∑𝑖𝑖 𝑓𝑓 𝒙𝒙𝒊𝒊 − 𝑦𝑦𝑖𝑖

2 . This is called “Least squares regression”.



Residuals

• Note that for each sample 𝒙𝒙𝒊𝒊, the model predicts the 
response variable (y) to be 𝑓𝑓 𝒙𝒙𝒊𝒊 , while the true value 
of y is 𝑦𝑦𝑖𝑖. That is, it makes an error of 𝑓𝑓 𝒙𝒙𝒊𝒊 − 𝑦𝑦𝑖𝑖. 

• This is called the “residual”. It’s the portion of 𝑦𝑦𝑖𝑖 that 
the model couldn’t explain!

• In particular, the residual 𝒆𝒆 is the vector of errors 
made on every sample, i.e., 𝒆𝒆 = {𝑦𝑦𝑖𝑖 − 𝑓𝑓 𝑥𝑥𝑖𝑖 }𝑖𝑖.



Assessing accuracy: “R-squared”

• We can show that 𝑉𝑉𝑉𝑉𝑉𝑉 𝑦𝑦 = 𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥𝑇𝑇𝛽𝛽 + 𝑉𝑉𝑉𝑉𝑉𝑉(𝑒𝑒)

• The closer 𝒆𝒆 is to the zero vector, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑒𝑒) is smaller, and 
𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥𝑇𝑇𝛽𝛽  is closer to 𝑉𝑉𝑉𝑉𝑉𝑉 𝑦𝑦 . That is, our function 𝑓𝑓 𝑥𝑥 = 𝑥𝑥𝑇𝑇𝛽𝛽 
“explains” more of the variance in y.

• This means we can think of regression as “explaining the 
variance of y”. 

• We can formalize this idea by measuring the “goodness” of our 
regression model by 𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥𝑇𝑇𝛽𝛽

𝑉𝑉𝑉𝑉𝑉𝑉 𝑦𝑦

• This is called the “R2” of the regression model. It is the fraction of 
the variance of y that is explained by the model 𝑓𝑓 𝑥𝑥 = 𝑥𝑥𝑇𝑇𝛽𝛽 



R squared

How much of the variance in y can be explained

𝑅𝑅2 =
𝑉𝑉𝑉𝑉𝑉𝑉 𝑥𝑥𝑇𝑇𝛽𝛽
𝑉𝑉𝑉𝑉𝑉𝑉 𝑦𝑦



Overfitting
• In least squares regression, we need to find values of 𝜷𝜷 and 
𝛽𝛽0  that minimize ∑𝑖𝑖 𝑓𝑓 𝒙𝒙𝒊𝒊 − 𝑦𝑦𝑖𝑖

2 = ∑𝑖𝑖 𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽
2

• Note that the prediction 𝑓𝑓 𝒙𝒙𝒊𝒊  includes the term 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽, 
which is a weighted sum of the features describing 𝒙𝒙𝒊𝒊

• If 𝒙𝒙𝒊𝒊 is high dimensional, then there are a large number of 
weights 𝛽𝛽 to be tuned. This often becomes a problem. 

• Not just because there’s more tuning to do, but also 
because the result of such extensive tuning of weights 
often end up being useless in practice. 



Intuition

Source: https://en.wikipedia.org/wiki/Overfitting#/media/File:Overfitted_Data.png

• Tuning weights 𝛽𝛽 in regression is akin to fitting a curve to a given set of points. 
• Given the 11 points shown above, you could “fit” a straight line (black) that does not 

exactly go through all points but seems to get the “trend” right.
• Or you could fit a high-degree polynomial (blue) that does go through all the points.
• The straight line is a more robust fit, and is likely to be closer to the underlying truth.
• In fitting an unnecessarily complex model (high degree polynomial, blue), you 

probably overdid the fitting. Overfitting!



Addressing overfitting: Ridge regression

• In least squares regression, we need to find values of 𝜷𝜷 and 
𝛽𝛽0  that minimize ∑𝑖𝑖 𝑓𝑓 𝒙𝒙𝒊𝒊 − 𝑦𝑦𝑖𝑖

2 = ∑𝑖𝑖 𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽
2

• We want not to do extensive tuning of 𝜷𝜷. One way to 
achieve this is to tie our hands when tuning 𝜷𝜷. 

• In particular, we decide to favor 𝜷𝜷 with small weights and 
penalize 𝜷𝜷 with large weights. 

• For this, we find values of 𝜷𝜷 and 𝛽𝛽0  that minimize

The usual “least squares” term A penalty term that favors small weights



Addressing overfitting: LASSO

• In least squares regression, we need to find values of 𝜷𝜷 and 
𝛽𝛽0  that minimize ∑𝑖𝑖 𝑓𝑓 𝒙𝒙𝒊𝒊 − 𝑦𝑦𝑖𝑖

2 = ∑𝑖𝑖 𝑦𝑦𝑖𝑖 − 𝛽𝛽0 − 𝑥𝑥𝑖𝑖𝑇𝑇𝛽𝛽
2

• We want not to do extensive tuning of 𝜷𝜷. One way to 
achieve this is to tie our hands when tuning 𝜷𝜷. 

• In particular, we decide to favor 𝜷𝜷 with few non-zero 
weights and penalize 𝜷𝜷 with many non-zero weights. 

• For this, we find values of 𝜷𝜷 and 𝛽𝛽0  that minimize

The usual “least squares” term A penalty term that favors setting 
most weights to zero



Some next steps
• Classification: 

• Support Vector Machines (linear classifier with some 
additional good properties)

• Decision Trees and Random Forests (non-linear)
• Artificial Neural Networks (non-linear)

• Regression:
• All of the above classification methods have regression 

counterparts too.
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