Reactor antineutrino anomaly

0.7 sin²20,

SBL Reactor Neutrino Experiments

Liquid Scintillator Neutrino Detector (LSND) : $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

- cylindrical tank 8.3 m long by 5.7 m in diameter.
- 1220 8-inch Hamamatsu PMTs covered 25% of the area with photocathode.
- Filled with 167 metric tons of liquid scintillator consisting of mineral oil and 0.031 g/l of b PBD.
- This low scintillator concentration allows the detection of both Cherenkov light and scintillation light and yields an attenuation length of more than 20 m for wavelengths greater than 400 nm.
- A typical 45 MeV electron → produced a total of ~1500 photoelectrons, of which ~280 photoelectrons were in the Cherenkov cone.
- Signal : both the e^+ and the 2.2 MeV γ from the reaction $np \rightarrow d\gamma$.
- PMT time and pulse-height signals $\rightarrow \sigma_{pos} \sim 14 \text{ cm}, \sigma_{pos} \sim 12^{\circ}, \sigma_E \sim 7\%$ at the Michel endpoint of 52.8 MeV.
- Cosmic veto → reduce rate 10kHz to 50Hz
- the visible energy was required to be greater than 15 MeV in order to eliminate ¹²B β decays from cosmic ray μ^- that stop and capture in the oil.

Accelerator based neutrino physics : LSND anomaly

Total data : 28896C of protons on the production target

MiniBooNE to verify LSND result

Different systematics. Same L/E baseline.

MiniBooNE support LSND result, but others do not → dedicated short baseline experiment at FNAL with three detector

LAr technology

- First proposed by Prof. C. Rubbia in 1977 just after the concept of TPC by Dave Nygren in 1970.
- MiniBooNE/LSNB anomaly is from electron signal, which is indistinguishable from photon backgrounds of different sources,
 - misidentification of π^0 as an electron-like event,
 - v_e from kaon and muon decays in the beamline,
 - single-photon production via the resonant process $\Delta\!\rightarrow\!N\gamma$, and
 - single-photon events from neutrino interactions in the dirt and material surrounding the detector.
- $\Delta \rightarrow N\gamma$ has attracted particular interest because it does not come directly from measurements but rather is based on nonperturbative theoretical calculations
- e- γ discrimination capability in LArTPC is important to understand the signal/background nature of the ν_e -like event excess observed by MiniBooNE
 - Identification in the gap between photon conversion vertex and the neutrino interaction vertex
 - Measuring the dE/dx in the first few cm of electron of photon EM shower

What can LArTPCs do that MiniBooNE couldn't?

Electron Cherenkov ring event in MiniBooNE

Electrons or Photons?

LArTPC's give us fully active calorimeter alongside high-resolution tracking

$CC \nu_e + 1 \text{ proton}$ candidate data event

Allows for strong photon ↔ electron separation and particle identification across whole SBN program!

NC single photon +1 proton candidate data event

e/γ separation in LAr detector

Development of LArTPC for Neutrino Experiments

Warm readout \rightarrow Cold Analog \rightarrow Cold Digitisation and Multiplexing

- Cold Electronics is the key technology for Large LArTPC
 - "The cold electronics that it remains an optimal solution for very large TPC"
 - Cited from Veljko Radeka, et al. Cold Electronics for "Giant" Liquid Argon Time Projection Chambers. 1st International Workshop towards the Giant Liquid Argon Charge Imaging Experiment (GLA2010)
 - Tremendous effort of many institutes in the DUNE collaboration towards LArTPC instrumented with cold electronics

FNAL Short Baseline Program (SBN)

•LArTPC detectors at different baselines from Booster neutrino beam searching for sterile neutrino oscillations measuring both appearance and disappearance channels with three detectors

- •
- Same detector technology and neutrino beamline: reducing system the % level A detection fact to the % level
 - A detection technique providing an excellent neutrino identi backgrounds
 - 3m concrete overburden to absorb >99% photon/hadron from

- Program aimed at definitely solving the "sterile neutrino puzzle" by exploiting: the well characterized Final States

DUNE Near detectors

- 3 components: 2 of which (ND-LAr, ND-GAr) move off-axis giving different flux
 - ND-LAr: Liquid Argon TPC with optically isolated modular pixelated readout (50t)
 - ND-GAr: High Pressure gas TPC (1t) + ECAL + magnet
 - SAND: 3D plastic scintillator target (8t) + trackers + ECAL + magnets

TDR Far Detector Strategy

- TDR describes 4 identically sized cryostats: 2 single phase (SP) + 1 dual phase (DP) + 1 "module of opportunity", each about 17 kt
- The full experiment, including Near Detector and 2.4 MW beam will be needed to reach the P5 physics goal.

• 40 kT LAr TPC:

- Modular approach: 4 caverns, 4 independent 10 kT (fiducial) modules
- Approach allows: Staged build & Flexibility to exploit advancements in LAr TPC technique

Xe doped LAr to enhance λ_{att}

• In the large scale LAr detector (neutrino experiment), scintillating photon moves more than 5-6m, whereas λ_{att} in pure LAr is only ~1m.

- Xenon absorbes the 128 nm photons during propagation, no absorption at 178 nm and 150 nm photons [3].
- Larger Rayleigh scattering length for 178 nm photons (~9m vs 1m for 128 nm photons) → More collection at large distances [4].
 [4] M. Babicz et al 2020 JINST 15 P09009

Argon R&D Advanced Program at UniCAmp (ARAPUCA)

FD#1: Horizontal Drift LArTPC

• $12 \text{ m} \times 14 \text{ m} \times 58 \text{ m}$ active volume

JINST 15 T08010 (2020)

- Each Anode-Cathode chamber has 3.5 m drift
- Cathode at -180 kV
- 150 Anode Plane Assemblies (APAs) with 384,000 readout wires
- Anode planes have wrapped wires (readout on both sides)
- 6000 photon detection system (PDS) channels for light readout

FD#2: Vertical Drift LArTPC

12

(Neutrino less) Double beta decay experiments

0v2β decay candidates

Experimental requirements:

- Isotopic abundance and/or large scale enrichment
- High $Q_{\beta\beta} \rightarrow$ lower background level in ROI and higher $0\nu 2\beta$ decay rate

Minimum two isotopes should be measured: for observation and confirmation

$$T_{1/2}^{0\nu 2\beta} \propto a \cdot \epsilon \cdot \sqrt{\frac{M \cdot t}{b \cdot \delta E}}$$

Bolometric detectors technology applicable for most of candidates!

Neutrinoless double beta decay

Nuclides

⁴⁸Ca $(Q_{\beta\beta} = 4.271 \text{ MeV})$ ⁷⁶Ge $(Q_{\beta\beta} = 2.040 \text{ MeV})$ ⁸²Se $(Q_{\beta\beta} = 2.995 \text{ MeV})$ ⁹⁶Zr $(Q_{\beta\beta} = 3.350 \text{ MeV})$ ¹⁰⁰Mo $(Q_{\beta\beta} = 3.034 \text{ MeV})$ ¹¹⁶Cd $(Q_{\beta\beta} = 2.802 \text{ MeV})$ ¹³⁰Te $(Q_{\beta\beta} = 2.533 \text{ MeV})$ ¹³⁶Xe $(Q_{\beta\beta} = 2.479 \text{ MeV})$ ¹⁵⁰Nd $(Q_{\beta\beta} = 3.667 \text{ MeV})$ Detector technologies (scintillating) crystal at low T (scintillating) crystal at low T Semiconductor Semiconductor Ioaded scintillating liquid time projection chamber tracking detectors Solid scintillators MEXT (HPXe)

NEXT

GERDA

Experiments ELEGANT CUORE **AMoRE CUPID GERDA/Majora** na/LEGEND **COBRA nEXO NEXT (HPXe) PANDA-X** (HPXe) **XENONnT/DAR WIN** SNO+ KamLAND-ZEN ZICOS (Super)NEMO

Classification by experimental technique

Bolometers

CUORE (¹³⁰Te) CUPID (⁸²Se|¹⁰⁰ Mo|¹³⁰Te) AMORE ¹⁰⁰ Mo

Semiconductors

GERDA (⁷⁶Ge) Majorana Demonstrator (⁷⁶Ge) LEGEND (⁷⁶Ge)

Scintillators

KamLAND-Zen (¹³⁶Xe) SNO+ (¹³⁰Te)

Time – Projection Chambers

EXO-200 (¹³⁶Xe) nEXO (¹³⁶Xe) NEXT (¹³⁶Xe) **Tracking Calorimeters**

NEMO -3 (¹⁰⁰Mo) SuperNEMO (⁸²Se)

Not exhaustive list of experiments

General NDBD experiment strategies

CUPID: CUORE Upgrade With Particle IDentification

- Next generation decay 0vββ: replace the CUORE TeO₂ detector with 1596 Li₂MoO₄ scintillating bolometers:
- 450 kg of $Li_2^{100}MoO_4$ (high Q 240 kg of ^{100}Mo)
- 57 towers of 28 crystals (45×45×45 mm³ & mass ~280 gm), each instrumented with a Light Detector

Scintillating bolometer technology : enable:

LEGEND-200 at LNGS (2107.11462)

- Based on Majorana + GERDA technologies
- Enriched ⁷⁶Ge, P-type Point Contact /Broad Energy Ge /Inverted Coaxial Point Contact detectors (→event topology) & active veto
- LEGEND-200: commissioning & start data taking with 10 strings in 2022
- (≈ 150 kg), goal: 12 strings, goals: $B = 1.0 \times 10^{-4}$ cts/(keV kg yr), $T_{1/2}^{0\nu}$ sens.: 10^{27} yr

KamLAND-ZEN

- Liquid scintillator detector KamLAND (1kTon) in Kamioka with a nylon balloon with LS and DBD isotope ¹³⁶Xe
- Q-value 2.458 MeV, dissolved into LS ~3% by weight, enrichment ~90%

KamLAND-Zen 400: past

320-380 kg of Xe Data taking 2011-2015

KamLAND-Zen 800: present

750 kg of Xe, cleaner DAQ started in 2019

Event/0.05 MeV

10

nEXO: a single phase ¹³⁶Xe-enriched LXe TPC

- nEXO: LXe TPC
- Both the scintillation light and drifting ionization signals to obtain 3D images of the energy depositions.
- enriched 136Xe: 5 t
- energy resolution: ≈ 46 keV (FWHM)
- background index: *B* = 7) 10,; counts/(FWHM kg yr)
- \rightarrow expected sensitivity (10 yr): $T_{1/2}^{0\nu} > 1.35 \times 10^{28}$ yr (90% C.L.)

The @next detector concept

- TPC allows 3D event reconstruction
 - improvement signal over background
- Search for 0vββ requires:
 - Great energy resolution
 - Extremely low background
 - Scalability

NEMO [Neutrino Ettore Majorana Observatory, PRD 92 (2015) 072011]

Electron neutrino mass measurements

 $dN/dE = K F(E_e,Z) p E_e(Q-E_e) \Sigma_i |U_{ei}|^2 [(Q-E_e)^2 - m^2(v_i)]^{1/2}$

where $F(E_e,Z)$ is the Fermi function (Coulomb distortion of electron wave-function in final state)

 $\mathbf{Q} = \mathbf{max.}$ energy of electron for $\mathbf{m}_v = \mathbf{0}$

 U_{ei} is amplitude for v_e to be in ith mass eigenstate

 $m(v_i)$ is the ith neutrino mass eigenstate

Much more details in Michelle Doniski's presentation in next week

Direct v mass determination

Nuclides	Detector technologies	
$^{3}\text{H}(O_{B}\cong 18\ 590\ \text{eV})$	→MAC-E filter	Exper
$(2p)^{-187}$ Re (<i>Q</i> e ≈ 2470 eV)	Cyclotron radiation (CRES)	KATRIN
$163 H_0 (O_{EG} \simeq 2840 \text{ eV})$	(MAC-E) filter + CRES + LT	Project 8
$155 \text{In} \left(O^{EX} \sim 155 \text{ eV} + F \sim 407 \right)$	microcal	PTOLEMY
$\frac{\ln (Q_{\beta})}{\text{keV (11ps)}} = 133 \text{ eV} + E_{\gamma} = 497$	Low temperature	(MARE)
$^{135}Cs (O_{c}^{EX} \simeq 130 \text{ eV} + E \simeq 270$	microcalorimeters Low	ECHo
$(q_{\beta} = 100 \text{ eV} + 2\gamma = 270$ keV (28 h))	temperature microcal. + other	HOLMES
Lantanoides (Emission neutrino		
pairs)		

- Main backgrounds
 - Electron from spectrometer wall
 - Decay of Radon atom in the column
 - Magnetic trapping conditions
 - Ionisation of Rydberg atoms (dominant one due to residual gas predominantly H₂)
- Main Spectrometer : 23.23m long & ϕ =9.8m

KATRIN : 2103.04755

$^{3}H \rightarrow ^{3}He + e^{-} + \overline{\nu}_{e} + 18.57 \ KeV$ Half-life 12.32 year

- Goal to have neutrino mass sensitivity upto 0.2 eV
- Key requirements
- Vacuum quality (<10⁻¹¹mbar)
- High voltage (ppm (10^{-6}) range for voltage range of down to -35kV
- magnetic field stability
- Optimal electron transport from source to detector
- Main Spectrometer : 23.23m long & ϕ =9.8m

KATRIN project

KARlsruhe TRItium Neutrino experimentKATRIN Experiment Improved β energy resolution requires a *BIG* β spectrometer.

