Matter fields
Matter fields: everything except Goldstone bosons.
Transform as representations of unbroken symmetry H. They do not form representations of broken group G.
look at baryons. Can easily generalize to other states.
SU(3)y octet of baryons

$$
\beta=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} \Sigma^{0}+\frac{1}{\sqrt{6}} & \Sigma^{+} & p \\
\Sigma^{-} & -\frac{\Sigma^{0}}{\sqrt{2}}+\frac{1}{\sqrt{6}} & n \\
\equiv- & \Xi^{0} & -\frac{21}{\sqrt{6}}
\end{array}\right]
$$

Transforms as an adjointunder $S U(3)$,

$$
B \rightarrow V B V^{+} \quad L=R=V
$$

Then for $g=(L, R) \in S \cup(B)_{L} \times S \cup(B)_{R}$

$$
B \rightarrow h B h^{+} \quad \xi \rightarrow L \xi h^{+}=h \xi R^{\dagger}
$$

one can pick other choices. eq $B_{L} \rightarrow L B_{L} L^{+} \quad B_{R} \rightarrow R B_{R} R^{+}$
Then

$$
\begin{aligned}
& \xi^{+} B_{L} \xi \rightarrow h\left(\xi^{+} B_{L} \xi\right) h^{+} \\
& \xi B_{R} \xi^{+} \rightarrow h\left(\xi B_{R} \xi^{+}\right) h^{+}
\end{aligned}
$$

which is a fold redefuition.
To wite Lagrangian, useful to introduce

$$
\begin{aligned}
& V_{\mu}=\frac{1}{2}\left(\xi \partial_{\mu} \xi^{t}+\xi^{t} \partial_{\mu} \xi\right)=\frac{1}{2 f^{2}}\left[\pi, \partial_{\mu} \pi\right]+\cdots \\
& A_{\mu}=\frac{i}{2}\left(\xi \partial_{\mu} \xi^{t}-\xi^{t} \partial_{\mu} \xi\right)=\frac{\partial_{\mu} \pi}{f}+\cdots
\end{aligned}
$$

A hermitian $\quad V_{r}$ antihermitian

$$
\begin{aligned}
& \partial \xi \rightarrow L \partial \xi h^{+}-L \xi h^{+} \partial h h^{\dagger} \\
& \xi^{\dagger} \partial \xi \rightarrow h \xi^{+} \partial \xi h^{\dagger}-\partial h h^{+} \\
& \xi \partial \xi^{+} \rightarrow h \xi \partial \xi^{+} h-\partial h h^{+} \\
& A_{\mu} \rightarrow h A_{\mu} h^{\dagger} \\
& v_{\mu} \rightarrow h v_{\mu} h^{f}-\partial h h^{f} \\
& D_{\mu}=\partial_{r}+V_{\mu}=\text { chiral covariant dinivative } \\
& \psi \rightarrow h \psi \text { then } D_{\mu} \psi=\partial_{r} \psi+X_{\mu} \psi \\
& \rightarrow h\left(D_{r} \psi\right) \\
& \Rightarrow D_{\mu} B=\partial_{\mu} B+\left[V_{r}, B\right] \\
& D_{r} B \rightarrow h D_{r} B h^{+} \\
& \mathcal{L}=\operatorname{tr} \bar{B}\left(i D-m_{B}\right) B+D \operatorname{tr} \bar{B} \gamma^{\mu} \gamma_{5}\left\{A_{\mu}, B\right\} \\
& +F \operatorname{tr} \bar{B} \gamma+\gamma_{5}[A r, B]+\mathcal{L}_{\text {meson }}
\end{aligned}
$$

\mathcal{L} baryon is order p.
$m_{B} \sim 1 \mathrm{GeV}$ and leads to a breakdown of the chiral power counting. The solution is to treat the baryon as in HQET, with an expansion in $1 / m_{B}$.

$$
B_{v}(x)=e^{i m_{B}(v \cdot x)} \frac{1+x}{2} B(x)
$$

We write the most general \mathcal{F} using $B_{v}(x)$. We do not have to frost use $B(x)$ and then convert. Can wite By Lagrangian directly.

$$
\begin{aligned}
\mathcal{L}_{v}= & \operatorname{tr} \bar{B}_{x}(i v \cdot D) B_{v}+D \operatorname{tr} \bar{B} \gamma^{\mu} \gamma_{5}\left\{A_{r}, B_{v}\right\} \\
& +F \operatorname{tr} \bar{B}_{r} \gamma^{\mu} \gamma_{5}\left[A_{v}, B_{v}\right]+0\left(\frac{1}{m_{B}}\right)+\mathcal{L}_{m e s o n}
\end{aligned}
$$

The baryon mans is not present in the leading order Lagrangian, and corrections are $1 / m_{B} \Rightarrow$ power counting valid.

Baron number is conserved, so bar yon liner go through diagrams, and he are shifting their energies by m_{B}. When $S V(3)$ Symmetry breaking is included, m_{B} is an average baryon mass, and all baryon masses get shifted

$$
m \rightarrow m-m_{B} .
$$

\mathcal{L}_{v} is adder p. The bearyon propagation is $\frac{i}{R \cdot v}$
The power counting rule in the one-baryon sector is

$$
D-1=2 L+\sum V_{k}(k-2)+\sum W_{k}(k-1)
$$

$V_{k}=p^{k}$ vertices in purely mesonic Lagrangian
$W_{k}=p^{k}$ vertices in one-baryon sector L_{v}.
Note $V_{k} \neq 0$ for $k \geqslant 2 \quad W_{k} \neq 0$ for $k \geqslant 1$ so all terms on r.h.s. are non-negative.

The naive dimensionless estimate of coefficients is

$$
\mathcal{L} \sim \underbrace{\Lambda_{x}^{2} f^{2}}_{\frac{\Lambda_{x}^{2}}{16 \pi^{2}}}\left(\frac{\pi}{f}\right)^{a}\left(\frac{\partial}{\lambda x}\right)^{b}\left(\frac{B}{f \sqrt{\lambda_{x}}}\right)^{c} \text { since } B \text { is } \text { a fermion }
$$

IN scattering lengths
πN scattering at threshold. $\quad S V / 2) \quad B_{v}=\binom{P_{b}}{\eta_{v}}$

But B_{v} is a "heavy field" with $\quad * B=0$

$$
\begin{aligned}
\Rightarrow \bar{B}_{v} \gamma^{i} \gamma_{5} B_{r} & =0 \text { if } \mu=0 \\
\gamma^{i} \gamma_{5} & \rightarrow \sigma^{i}
\end{aligned}
$$

$\partial_{\mu} \pi \rightarrow P_{\pi}^{\mu}=\left(E_{\pi}, \overrightarrow{0}\right)$ so first two graphs vanish.
The 2π interaction is $\frac{i}{2 f^{2}} \bar{B}_{V}[\pi, \partial, \pi] v^{\mu} B v$ from (iv.D)

$$
\left[\pi, \partial_{\mu} \pi\right]=i f_{c g h} \pi^{g} \partial_{\mu} \pi^{h}
$$

π are in the adjoint rep so $\left(T_{\pi}^{c}\right)_{h g}=i$ fagh

$$
\begin{aligned}
& { }^{{ }^{a} g_{a^{a i}}} \text { interaction } \frac{i}{2 f^{2}}\left(T_{\pi}^{c}\right){ }_{h g} \bar{B}_{v} T^{c} B_{V}\left(\pi^{g} v \cdot \partial \pi^{h}\right) \\
& A=i \cdot \frac{i}{2 f^{2}}\left(T_{B}^{c}\right)\left(T_{\pi}^{c}\right)\left(i M_{\pi}\right) \cdot 2 \\
& =-\frac{i}{f^{2}} M_{\pi}\left(T_{\pi} \cdot T_{B}\right)\left(2 m_{N}\right) \quad \begin{array}{l}
\text { switching to relativistic } \\
\text { normalization of spinous. }
\end{array}
\end{aligned}
$$

Weinberg - Tomorawa formula.

$$
a \equiv-\frac{i A}{8\left(m_{\pi}+m_{N}\right)}=\text { scattering length }
$$

$$
\begin{aligned}
& a=-\frac{1}{8 \pi f^{2}}\left(T_{\pi} \cdot T_{B}\right) \frac{2 m_{N} m_{\pi}}{m_{\pi}+m_{N}} \quad L=\frac{m_{\pi}}{8 \pi f^{2}} \\
& =-L\left(2 T_{\pi} \cdot T_{B}\right) \frac{1}{\left(1+m_{\left.\pi / m_{N}\right)}\right)} \\
& 2 T_{A} \cdot T_{B}=\left(T_{A}+T_{B}\right)^{2}-T_{\pi}^{2}-T_{B}^{2} \\
& =\left(T_{\pi}+T_{B}\right)^{2}-2-\frac{3}{4}=\left\{\begin{array}{lc}
I=1 / 2 & -2 \\
I=3 / 2 & 1
\end{array}\right. \\
& a_{1 / 2}=2 L\left(1+\frac{m_{\pi}}{m_{N}}\right)^{-1} \\
& a_{3 / 2}=-L\left(1+\frac{m_{\pi}}{m_{N}}\right)^{-1} \\
& a_{1 / 2}+2 a_{3 / 2}=0
\end{aligned}
$$

Baryon masoes E. Jenkins NPB 368 (1992) ${ }^{190}$

$$
\begin{aligned}
& M \rightarrow L M R^{\dagger} \quad \xi \rightarrow L \xi h^{+}=h \xi R^{+} \\
& \xi^{\dagger} M \xi^{+} \rightarrow h M h^{+} \quad \xi M^{\dagger} \xi \rightarrow h M^{\dagger} h^{+} \\
& L_{m}= b_{D}\left\langle\bar{B}_{v}\left\{\xi^{+} M \xi^{+}+\xi M^{\dagger} \xi, B_{v}\right\}\right\rangle \\
&+ b_{F}\left\langle\bar{B}_{v}\left\{\xi^{\dagger} M \xi^{+}+\xi M^{\dagger} \xi, B_{v}\right]\right\rangle \\
&+\sigma
\end{aligned}
$$

In limit $m_{n}=m_{d}=0 \quad m_{s} \neq 0$.

$$
\begin{aligned}
& m_{N}=m_{B}-2\left(b_{D}-b_{F}\right) m_{S}-2 \sigma m_{S} \\
& m_{1}=m_{B}-\frac{8}{3} b_{D} m_{S}-2 \sigma m_{S} \\
& m_{\Sigma}=m_{B}-2 \sigma m_{S} \\
& m_{E}=m_{B}-2\left(b_{B}+b_{F}\right) m_{S}-2 \sigma m_{S}
\end{aligned}
$$

σ : can be abswbed into m_{B} for masses. But σ leads to πB terms, but m_{B} does not.

Gell-Mann Okubo: $\quad \frac{1}{2}\left(m_{N}+m_{\Xi}\right)=\frac{3}{4} m_{\Lambda}+\frac{1}{4} m_{\Sigma}$

$$
1128 \mathrm{MeV}=1135 \mathrm{MeV} .
$$

1, Σ : ubs but they do not have same mass $3 \lambda+5$ not aug since $1 \wedge$ and 3Σ states
$B, B^{*}, D, D^{*} \times P T$

$$
\begin{aligned}
H= & \frac{1+\varnothing}{2}\left(B^{*} \gamma^{\mu}-B \gamma_{5}\right) \\
H & \rightarrow S_{Q} H \quad \text { spin transformation } \\
H & \left.\rightarrow H h^{+} \text {under } \operatorname{SU}(3) \times S U /_{3}\right)
\end{aligned}
$$

$H=4 \times 4$ spinor matrix $\sim Q \bar{q}$ light quark index on right, heavy quark on left.

$$
\begin{gathered}
\mathscr{L}=t_{v} \bar{H}\left(i_{v} \cdot D\right) H+g t_{r} \bar{H} H \gamma^{r} \gamma_{5} A_{\mu} \\
D_{\mu} H=\partial_{\mu} H-H V_{\mu}
\end{gathered}
$$

related by heavy quark spin symmetry.
$\left\langle\bar{H} \gamma^{r} \gamma_{5} H A_{r}\right\rangle \frac{1}{m_{Q}}$ since violates spin symmetry calculate loops, etc.
$\frac{f_{B S}}{f_{B}}$ etc.

Sources

$$
\begin{aligned}
& u=e^{i \pi / f} \quad U=u^{2}=e^{2 i \pi / f} \\
& u \rightarrow R u h^{+}=h u L^{+} \quad u \rightarrow R U L^{+}
\end{aligned}
$$

and $u \rightarrow \xi^{+} \quad U \rightarrow \Sigma^{+} \quad \pi \rightarrow-\pi$

To understand pion dynamics, including weak and EM interactions, treat masses and EW gauge feeds as weakly coupled background fields.

$$
\begin{aligned}
L= & \bar{q}_{L}(i \not D+\not \subset) q_{L}+\bar{q}_{R}(i \not \varnothing+\ngtr) q_{R} \\
& -\bar{q}_{R} m q_{L}-\bar{q}_{L} m^{-t} q_{R} \\
l_{\mu} & \left.=l_{\mu}^{a} T^{a}\right\} 3 \times 3 \text { hermitian gauge field } \\
r_{\mu} & \left.=r_{\mu}^{a} T^{a}\right\}
\end{aligned}
$$

can include a $V(I)_{v}$ gauge field coupled t bargon number, but not one coupled to $V(1)_{A}$.
w, z, γ are included in ℓ, r.
L still has $\operatorname{sU}(3)_{L} \times S U(3)_{R}$ chiral syonmetry provided

$$
\begin{aligned}
& l_{r} \rightarrow L l_{\mu} L^{+}-i \partial_{\mu} L L^{+} \\
& r_{r} \rightarrow R r_{r} R^{+}-i \partial_{\mu} R R^{t} \\
& m \rightarrow R \mathrm{~m}^{+}
\end{aligned}
$$

With background gauge fields, it is a local symmetry.

$$
\begin{aligned}
& F_{L}^{\mu^{2}}=\partial^{r} l^{2}-\partial^{\nu} l^{\mu}-i\left[l^{\mu}, l^{\nu}\right] \quad \sim 0\left(p^{2}\right) \\
& F_{R}^{\mu \nu}=\partial^{\mu} r^{2}-\partial^{2} r^{r}-i\left[r^{\mu}, r^{\nu}\right]
\end{aligned}
$$

$$
\begin{aligned}
& L=\bar{q}(i \not \phi+K) p_{L} q+\bar{q}(i \not \phi+\not \subset) p_{R} q \\
& -\bar{q} m p_{L} q-\bar{q} m^{-1} p_{R} q \\
& =\bar{q} i \phi \phi q+\bar{q} \frac{1}{2}(x+\not x) q+\bar{q} \frac{1}{2}(\phi-x) \gamma_{5} q \\
& -\bar{q} \frac{1}{2}\left(m+m^{+}\right) q-\bar{q} \frac{1}{2}\left(m^{+}-m\right) \gamma_{5} q \\
& =\bar{q} i \not p q+\bar{q}\left(x+d \gamma_{5}\right) q-\bar{q}\left(s-i p \gamma_{5}\right) q \\
& v_{\mu}=\frac{1}{2}\left(r_{\mu}+l_{r}\right) \quad a_{r}=\frac{1}{2}\left(r_{r}-l_{\mu}\right) \text { hermitian } \\
& s=\frac{1}{2}\left(m+m^{+}\right) \quad \phi=\frac{\dot{n}}{2}\left(m^{+}-m\right) / \\
& s+i p=m \quad X=2 B / s+i p)=2 B m \\
& u_{r} \equiv i\left\{u^{+}\left(\partial_{\mu}-i r_{\mu}\right) u-u\left(\partial_{\mu}-i l_{\mu}\right) u^{\dagger}\right\} \sim O(p) \\
& \sim-2 \frac{\partial \pi}{f}+\cdots=2 A_{\mu} \\
& x_{ \pm}=u^{+} x u^{+} \pm u X^{+} u \quad \sim O\left(p^{2}\right)
\end{aligned}
$$

Transform as $h u_{r} h^{+} \quad h X_{ \pm} h^{+}$.
Choose building blocks that transform under h. Can alunulys convert L or R to h using u to a^{\dagger}.

$$
x_{+}^{f}=x_{+} \quad x_{-}^{+}=-x_{-}
$$

$$
\begin{aligned}
u_{\mu}^{t} & =-i\left\{\partial_{\mu} u^{t} u+i n^{+} r_{\mu} u-\partial_{\mu} u u^{t}-i u l_{\mu} u^{t}\right\} \\
& =-i\left\{-u^{+} \partial_{\mu} u+i u^{t} r_{\mu} u+n \partial_{\mu} u^{t}-i u l_{\mu} u^{t}\right\} \\
& =u_{\mu}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}_{2} & =\frac{f_{4}^{2}}{4}
\end{aligned} \begin{aligned}
\left\langle x_{+}\right\rangle & =\left\langle u^{n}+x_{+}\right\rangle \\
& =\left\langle u^{+} x u^{+}+u x^{+} u\right\rangle \\
& =\left\langle x\left(u^{+}\right)^{+}+x^{+} u^{2}\right\rangle=\left\langle x v^{+}+x^{+} u\right\rangle
\end{aligned}
$$

had $\frac{B f^{2}}{2}$ previously now $\frac{f^{2}}{4}$ so $2 B$ is
absorbed into definition of x.

$$
\begin{aligned}
u & =u^{2} \\
D_{\mu} u & =\partial_{\mu} u-i r_{\mu} v+i u l_{\mu} \\
& =\partial_{\mu} u u+u \partial_{\mu} u-i r_{\mu} u^{2}+i u^{2} l_{\mu} \\
u^{+} D_{\mu} u u^{+} & =u^{+} \partial_{\mu} u+\partial_{\mu} u u^{+}-i u^{t} r_{u} u+i u l_{\mu} u^{t} \\
\partial_{\mu} u & =-u \partial_{\mu} u^{+} u \\
u^{+} D_{\mu} u u^{\dagger} & =u^{+} \partial_{\mu} u-u \partial_{\mu} u^{+}-i u^{t} r_{\mu} u+i u l_{\mu} u^{\dagger} \\
& =u^{+}\left(\partial_{\mu}-i r_{\mu} u\right)-u\left(\partial_{\mu} u^{+}-i l_{\mu} u^{f}\right) \\
& =-i u_{\mu} . \\
n D_{\mu} u^{f} u & =i u_{\mu}
\end{aligned}
$$

$$
\left\langle u_{\mu} u^{n}\right\rangle=\left\langle u D_{\mu} u^{+} u u^{+} D^{\mu} v_{u}^{+}\right\rangle=\left\langle D_{\mu} u^{\dagger} D^{r} u\right\rangle
$$

so tins is the usual L_{2} Lagrangian.

$$
\begin{aligned}
& \left.f_{ \pm}^{\mu v} \equiv u F_{L}^{\mu v} u^{+} \pm u^{+} F_{R}^{r v} u \quad 0 p^{2}\right) \\
& \Gamma_{\mu}=\frac{1}{2}\left\{u^{\dagger}\left(\partial_{\mu}-i r_{\mu}\right) u+u\left(\partial_{\mu}-i l_{\mu}\right) u^{\dagger}\right\} \\
& =v_{\mu} \quad \Gamma_{\mu}^{f}=-T_{\mu} \\
& \sigma_{\mu} \rightarrow h \Gamma_{\mu} h^{+}-\partial_{\mu} h h^{+} \\
& \nabla_{\mu}=\partial_{\mu}+V_{\mu} \text { covenant denvatue for } h \\
& D_{\mu}=\partial_{\mu}-i r_{\mu} \quad \text { for } R \\
& D_{\mu}=\partial_{\mu}-i l_{r} \quad \text { for } L \\
& h_{\mu \nu} \equiv \nabla_{\mu} u_{\nu}+\nabla_{r} u_{\mu} \quad O\left(\rho^{2}\right) \\
& X_{ \pm \mu} \equiv u^{+} D_{\mu} X u^{\dagger} \pm u D_{\mu} X^{\dagger} u \quad o\left(p^{3}\right) \\
& \text { verify }\left\{\nabla^{v} u^{r}-\nabla^{r} u^{v}=f_{-}^{r v}\right. \text { is not independent } \\
& {\left[\nabla_{\mu}, \bar{v}_{v}\right]=T_{\mu v}=\frac{1}{4}\left[u_{\mu}, u_{v}\right]-\frac{i}{2} f_{+\mu \nu}} \\
& \nabla_{\mu} \Gamma_{v e}+\text { cyclic }=0 \quad(\text { Bianchi identify) }
\end{aligned}
$$

$$
\text { exchange } S U(3)_{R}: \quad\left\langle T_{a} U u^{+} T^{a}\right\rangle \rightarrow \text { cmstant }
$$

$$
\begin{aligned}
& \left.L_{4}=L_{0}^{\hat{1}}<u_{\mu} u_{r} u_{r} u_{r}^{\prime}\right\rangle+\cdots \\
& \left.\hat{L}_{5}<u \cdot u x+\right\rangle \\
& \hat{L}_{b}\left\langle x_{t}^{2}\right\rangle \text {. } \\
& i \hat{L}_{q}\left\langle{f+r^{2}} u_{r} u_{v}\right\rangle \\
& +\frac{L_{10}}{4}\left\langle f f^{2}-f^{2}-f^{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& Q=\left(\begin{array}{lll}
2 / 3 / 3 & \\
& -1 / 3 & -1 / 3
\end{array}\right) \in \operatorname{sv}(3) \\
& \Delta m^{2} \sim \frac{\alpha}{4 \pi} \Lambda_{x}^{2} \\
& 1000 \mathrm{MeV} \sim 800 \mathrm{MeV}
\end{aligned}
$$

