1. Show that a $2 \times 2 S U(2)$ matrix $U(\operatorname{det} U=1)$ can be written as

$$
U=u^{0} \mathbb{1}+i \boldsymbol{u} \cdot \boldsymbol{\tau}
$$

in terms of 4 parameters u^{0} and \boldsymbol{u} which are real, and $\left(u^{0}\right)^{2}+\boldsymbol{u} \cdot \boldsymbol{u}=1$. Thus $S U(2)$ is isomorphic to S^{3}. This construction does not generalize to $S U(n), n>2$ because the d-symbol does not vanish. Show that
(a) Under a $S U(2)_{L}$ transformation $L=e^{i \epsilon_{L}^{a} T^{a}}, T^{a}=\tau^{a} / 2$, the infinitesimal transformation $U \rightarrow L U$ is

$$
\begin{aligned}
& \delta u^{0}=-\frac{1}{2} \boldsymbol{\epsilon}_{L} \cdot \boldsymbol{u} \\
& \delta u^{a}=\frac{1}{2} u^{0} \epsilon_{L}^{a}-\frac{1}{2} \epsilon^{a b c} \epsilon_{L}^{b} u^{c}
\end{aligned}
$$

(b) Under a $S U(2)_{R}$ transformation $R=e^{i \epsilon_{R}^{a} T^{a}}, T^{a}=\tau^{a} / 2$, the infinitesimal transformation $U \rightarrow U R^{\dagger}$ is

$$
\begin{aligned}
& \delta u^{0}=\frac{1}{2} \boldsymbol{\epsilon}_{R} \cdot \boldsymbol{u} \\
& \delta u^{a}=-\frac{1}{2} u^{0} \epsilon_{R}^{a}-\frac{1}{2} \epsilon^{a b c} \epsilon_{R}^{b} u^{c}
\end{aligned}
$$

(c) Under a $S U(2)_{V}$ transformation $h=e^{i \epsilon^{a} T^{a}}, T^{a}=\tau^{a} / 2$, the infinitesimal transformation $U \rightarrow h U h^{\dagger}$ is

$$
\begin{aligned}
& \delta u^{0}=0 \\
& \delta u^{a}=-\epsilon^{a b c} \epsilon^{b} u^{c}
\end{aligned}
$$

2. Show for a 2×2 matrix A that

$$
\langle A\rangle^{3}-3\langle A\rangle\left\langle A^{2}\right\rangle+2\left\langle A^{3}\right\rangle=0
$$

(a) Differentiate w.r.t. A to get

$$
\langle A\rangle^{2} \mathbb{1}-\left\langle A^{2}\right\rangle \mathbb{1}-2\langle A\rangle A+2 A^{2}=0
$$

(b) Let $A \rightarrow A+B$ and pick out the $A B$ terms to get the identity

$$
\langle A\rangle\langle B\rangle \mathbb{1}-\langle A B\rangle \mathbb{1}-\langle A\rangle B-\langle B\rangle A+A B+B A=0
$$

3. Show for a 3×3 matrix A that

$$
6\left\langle A^{4}\right\rangle-8\langle A\rangle\left\langle A^{3}\right\rangle-3\left\langle A^{2}\right\rangle^{2}+6\left\langle A^{2}\right\rangle\langle A\rangle^{2}-\langle A\rangle^{4}=0
$$

(a) Differentiate w.r.t. A to get

$$
6 A^{3}-2\left\langle A^{3}\right\rangle \mathbb{1}-6\langle A\rangle A^{2}-3\left\langle A^{2}\right\rangle A+3\langle A\rangle^{2} A+3\left\langle A^{2}\right\rangle\langle A\rangle \mathbb{1}-\langle A\rangle^{3} \mathbb{1}=0
$$

(b) Let $A \rightarrow A+B+C$ and pick out the $A B C$ terms to get the identity in Bijnens, Colangelo and Ecker, JHEP 02 (1999) 020 Eq. (3.1).
4. See if you can find the analog of the first trace relation for 4×4 matrices, etc.
5. Show that if X and Y are $n \times n$ matrices,

$$
e^{X} Y e^{-X}=Y+[X, Y]+\frac{1}{2!}[X,[X, Y]]+\ldots=e^{\operatorname{Ad}_{X}} Y
$$

where $\operatorname{Ad}_{X} Y \equiv[X, Y]$.
6. Show that

$$
\begin{aligned}
e^{-X} \partial_{\mu} e^{X} & =\int_{0}^{1} \mathrm{~d} t e^{-t X} \partial_{\mu} X e^{t X}=\frac{1-e^{-\operatorname{Ad}_{X}}}{\operatorname{Ad}_{X}} \partial_{\mu} X \\
& =\partial_{\mu} X-\frac{1}{2}\left[X, \partial_{\mu} X\right]+\frac{1}{6}\left[X,\left[X, \partial_{\mu} X\right]\right] \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k+1)!} \operatorname{Ad}_{X}^{k} \partial_{\mu} X
\end{aligned}
$$

7. Work out the $S U(2)_{R}$ current from the leading order chiral Lagrangian to order π^{3}.
8. Work out the decay rate for $\pi \rightarrow \ell \bar{\nu}$ including the phase space.
9. Expand the $S U(3)$ chiral Lagrangian mass term to order π^{2}, and verify the mass results, Weinberg's formula for the quark mass ratios, and the Gell-Mann-Okubo formula.
10. Show that the chiral Lagrangian term

$$
L=c\left\langle[Q, \Sigma]\left[Q, \Sigma^{\dagger}\right]\right\rangle
$$

leads to a mass term for the π^{+}and K^{+}

$$
L=-\frac{4 c}{f^{2}}\left(\pi^{+} \pi^{-}+K^{+} K^{-}\right)
$$

11. Work out the $\mathcal{O}\left(p^{2}\right) S U(2)$ chiral Lagrangian up to 4 pions for both the kinetic and mass term.
12. From the previous result, work out the $\pi \pi \rightarrow \pi \pi$ scattering amplitude to order p^{2}.
13. Work out the baryon masses from the order M symmetry breaking term and verify the Gell-Mann-Okubo formula for baryons.
14. Find the $B B^{*} \pi$ and $B^{*} B^{*} \pi$ couplings from

$$
L=g \operatorname{Tr} \bar{H}_{v} H_{v} \gamma^{\mu} \gamma_{5} A_{\mu}
$$

15. Define

$$
u_{R \mu}=u^{\dagger}\left(\partial_{\mu}-i r_{\mu}\right) u \quad u_{L \mu}=u\left(\partial_{\mu}-i l_{\mu}\right) u^{\dagger}
$$

and find their transformations under a local $S U(3)_{L} \times S U(3)_{R}$ transformation. From this, get the transformations for $u_{\mu}=i\left[u_{R \mu}-u_{L \mu}\right]$ and $\Gamma_{\mu}=\frac{1}{2}\left[u_{R \mu}+u_{L \mu}\right]$. Show that $u_{R \mu}$ and $u_{L \mu}$ are anti-hermitian.
16. Show that

$$
\nabla^{\mu} u^{\nu}-\nabla^{\nu} u^{\mu}=f_{-}^{\mu \nu}
$$

17. Show that

$$
\left[\nabla_{\mu}, \nabla_{\nu}\right] \equiv \Gamma_{\mu \nu}=\frac{1}{4}\left[u_{\mu}, u_{\nu}\right]-\frac{i}{2} f_{+\mu \nu}
$$

