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Charge super-selection rule:
physically allowed states and operations

Fermions Parity super-selection rule

_— }

Coherent superposition between even and odd parity

Spin-Statistics Theorem (even/odd # of fermions) is not physically allowed.

Restrictions on the physically allowed fermonic states and operations/maps!

P= I'XJ_V > quant-ph > arXiv:1610.00539

Quantum Physics

[Submitted on 3 Oct 2016]
Comment on 'Reasonable fermionic quantum information theories require relativity'

Markus Johansson

Connecting it to micro-causality.



Charge super-selection rule:
physically allowed states and operations

Fermions Parity super-selection rule

_— }

Coherent superposition between even and odd parity

Spin-Statistics Theorem (even/odd # of fermions) is not physically allowed.

Restrictions on the physically allowed fermonic states and operations/maps!
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Fermions Parity super-selection rule

_— }

Coherent superposition between even and odd parity

Spin-Statistics Theorem (even/odd # of fermions) is not physically allowed.

What about anyons?
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Charge super-selection rule:
physically allowed states and operations

Fermions Parity super-selection rule

_— }

Coherent superposition between even and odd parity

Spin-Statistics Theorem (even/odd # of fermions) is not physically allowed.

What about anyons?

Coherent superposition between
Charge super-selection rule (cSSR) states with different topological
charges is not physically allowed.

The cSSR also restricts the set of physically allowed operations/maps.

What are the ramifications of cSSR (together with the
fusion rules) in quantum information theory of anyons?
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Non-Abelian anyons: Fibonacci anyons

a b C
e \acuum 1
YA
T Quasi-excitation
C a b

Splitting Fusion

Fusion rules Dirac notation

exXe=e e,e;e)

TXe=T1 T,€,7)

eXT=1T e, T,7T)

TXT=e+7T 7,75e), |7,7,7)

Has distinctive Hilbert/state space

dim(Hy) # dN »  dim(H1) = 2, dim(H3) = 5, dim(Hs) = 13,...

In general dim(Hy) = Foni1



Non-Abelian anyons: Fibonacci anyons

Notation and change in bases

a, a, b1 b2

>  {|(a1,a2)(b1,b2);a,b;9)}



Non-Abelian anyons: Fibonacci anyons

Notation and change in bases

a, a, b1 b2

>  {|(a1,a2)(b1,b2);a,b;9)}

Not associative and bases transformation with F-moves

a b c a b c
\d<< :%:[F;bc]df fi I(a,b),C;d,C;g>:;[ngcldf a, (b;¢); a, £ 9)
g g

If g = e, I.e., trivial, then the F-moves become simpler and the components equal to 1.
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Restrictions on physical states?

All states with charge e
Hy =D, Hy

|¢6>AB = Qe |67 €, 6> + Be |TaT; 6)

All states with charge 7

Yr)ap =0 |T,€7) + Br e, 75 T) + 97 |7, T T)



Non-Abelian anyons: cSSR

Restrictions on physical states?

All states with charge e
Hy =D, Hy

|¢6>AB = Qe |€, €, 6> + Be |7-77-; 6)

All states with charge 7

Yr)ap =0 |T,€7) + Br e, 75 T) + 97 |7, T T)

Restrictions on physical operations/maps?

All those that respect cSSR, i.e., cannot create superpositions
between charges e and 7.

K=K ®K,



Non-Abelian anyons: Fibonacci anyons
Like, for qudit: [¢)(7| — D_. |tk)JK|
Extension: local to global operators, A|A, - A,A,B,B,

|a’170’2;a’><a'/17a,2;a’| — Z |(a’17a2)(b17b2);a7b;g><(a’,17a/2)(b17bQ);a’ab;g|
bl,b27bag

Example | Ua: = diag{e’?, €'} ——> Ua, 4, = diag{e'?, ', €', e'?, e}

A = AA, {le),|7)} » {le,e;e),|T,T5€),|Te57), |e, ), |T, T T) }




Non-Abelian anyons: Fibonacci anyons
Like, for qudit: [¢)(7| — D_. |tk)JK|
Extension: local to global operators, A|A, - A,A,B|B,

|a’17a2;a’><a,17af’2;a| — Z |(a’17a2)(b17b2);aab;g><(a’,17a/2)(b17b2);a’7b;g|
blab27bag

Example Ua, = diag{e’?, e} —— Ua, 4, = diag{e'?, ', €', e'?, e}

A = AA, {le),|7)} » {le,e;e),|T,T5€),|Te57), |e, ), |T, T T) }

Reduction: partial tracing, A,A,B,B, — A,A,

Trp(|(a1,a2)(b1,b2); a,b; gX(ay,a5)(by, b3);a’, b’ g|)
= b,/ Obyby, O Oaar |01, G2; a)ay, ag;al

ForAA, - A, Tra, (Ja1,a2; gXai, as; g|) = 5a2a’25_ala’1 |?1><a1|
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Anyonic states: marginal spectra ambiguity

Bipartite pure state Marginal states
1
1 pa = 3 (leXe| + |TX7|)
|¢>AB — T = (|677-;7-> T |7-77-;T>) >
V2
pB = |TXT|

Schmidt decomposition?

Questioning traditional methods to characterise entanglement!




Anyonic states: marginal spectra ambiguity

Bipartite pure state Marginal states
1
1 pa = 3 (leXe| + |TX7|)
|¢>AB — T = (|677-;7-> T |Ta7-;7->) >
V2
pB = |TXT|

Schmidt decomposition?

Questioning traditional methods to characterise entanglement!

Classically correlated state Marginal states
pa = |TXT|
pap = 5 (|1, efT, 75€| + |7, 73 TN, 75 7)) >
pB = |TXT]

Questioning traditional approach to characterise information!



Correlated anyonic states

Uncorrelated states Ir (éA Op PAB) =Tr (OA pA) Ir (@B PB)

All states with charge e Uncorrelated states

|¢6>AB=(16|6,6;6>+B6|7‘,T;6> o, =0 or ,3620




Correlated anyonic states

Uncorrelated states Ir (@A Op PAB) =Tr (OA pA) Ir (OAB pB)

All states with charge e Uncorrelated states

|¢6>AB=(16|6,6;6>—|—B6|T,T;6> o, =0 or ,Be:()

All states with charge 7

Yr)ap = 0z |T,6T) + Br e, T3 7) + 7 |7, 75 T)

Uncorrelated states one with o, = 0 and the other with 5, =0

o le, ;1) + v |7, 7;7) and B, |T,e;T) + v, |T, T T)




Correlated anyonic states

Uncorrelated states Ir (@A Op PAB) =Tr (OA PA) Ir (@B PB)

All states with charge e Uncorrelated states

|¢6>AB:ae|eae;6>+/86|7-77-;e> ae:Oor IBGZO

All states with charge 7

Yr)ap = 0z |T,6T) + Br e, T3 7) + 7 |7, 75 T)

Uncorrelated states one with o, = 0 and the other with 5, =0

o le, ;1) + v |7, 7;7) and B, |T,e;T) + v, |T, T T)

Maximally entangled states with charge e e, e;e) + €' |7,75€))

with maximally mixed marginals

w

S Sk

with charge 7 (le,7;7) + € |7,e;7))

Do not have a complete set maximally entangled states spanning the entire state space.
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Quantum teleportation: Asymmetric entanglement

lom) = alr,e; )+ Ble, T3 7) Quantum message (a, )

Rag) = 5 (I(e.€), (.7 e,737) + (7€), (r,€)i 7,73 7) )

Alice to Bob teleportation: the global state

|¢M(AB)> — % (a |(Tv 6), (6,6), (67 T);Ta (67 T);Ta T, 6> + o |(7-7 6)7 (7-7 6), (7-7 6);7‘, (7-7 7');7',7‘;6)

+B1(e,7)s (es€), (e, 7 7, (e, )iy s €) + Bl(e, 7), (7€), (7€) 7, (1, 7)i T ) )




Quantum teleportation: Asymmetric entanglement

lom) = alr,e; )+ Ble, T3 7) Quantum message (a, )

Rag) = 5 (I(e.€), (.7 e,737) + (7€), (r,€)i 7,73 7) )

Alice to Bob teleportation: the global state

|¢M(AB)> — % (a |(Tv 6), (67 6), (6, T);Ta (6, T);Ta T, 6) T« |(Ta 6)7 (7-7 6), (Ta 6);7-7 (Ta 7');7',7';€>

+Bl(e,7), (e,€), (e 7)i 7 (e,7); 7,73 €) + Bl(e,7), (1), (7, )5, (7, 7); 7, s €) )

Bases transformation |(a,b),c;d,c;9) = Y [Fy*laf |a, (b, ¢);a, f; g)
f

|¢(MA)B> — % (Oé |(T7 6)7 (67 6)7 (67 T); (7-7 6)7 T,T, T, 6> t |(7-7 6), (T7 6)7 (Ta 6); (T7 T)a T, T, T, €>

+ B|(e,7), (e, e), (e, 7); (1,€),7;7,75€) + B|(e,7),(T,€), (T,€); (T, 7), 757, T; 6))




Quantum teleportation: Asymmetric entanglement

Global state, again
1
b)) =, ( M) (ale,757) + Blm e 7)) +1A2) (ale, 737) — BT, ;7))

+lne) (lr,e;m) + Ble,msm)) +1n-) (lr e 7) — Ble,mi7)))

For MA |>‘:t> = (|(7-7 6), (6a 6);7'7 €, T) + |(677-)v (Ta 6);7‘,7‘;T>)

n+) = (1,e),(T,e);7,7;7) £ |(e,T), (e, €); T, €;T)

Sl Sl



Quantum teleportation: Asymmetric entanglement

Global state, again
1
b)) =, ( M) (ale,757) + Blm e 7)) +1A2) (ale, 737) — BT, ;7))

) (alres7) + Ble,mi7)) + In-) (alm e 7) — Ble,737) )

For MA |)‘:t> = (|(7-7 6)7 (67 6);7‘, €, T) + |(677-)7 (Ta 6);T7T;T>)

n+) = (1,e),(T,e);7,7;7) £ |(e,T), (e, €); T, €;T)

Sl Sl

Measurements by Alice Local OPs by Bob

(AL A I X | In= X1} {X,Y, 1,2}

Z = |r,e; 7T, e 7] — |e,T;7Xe, T3 7]

Bob can recover the message («, )

Perfect teleportation from Alice to Bob.



Quantum teleportation: Asymmetric entanglement
lom) = alr,e; )+ Ble, 3 7) Quantum message («, )

Rag) = 5 (I(e.), (e,7)ie,757) + |(7,€), (7, )i 7, m37) )

Teleportation from Bob to Alice



Quantum teleportation: Asymmetric entanglement
lom) = alr,e; )+ Ble, 3 7) Quantum message (o, )

IRap) = %(Ka, e), (e, 7);e, ;1) + |(1,e), (1,€); T, T; 7'))

Teleportation from Bob to Alice

|€(AB)M> — % (a |(6, 6), (677-)7 (Ta 6); (67 T)aT; T, T, 6) + o |(T, 6), (7', 6), (7', 6); (7‘, 7'),7‘;7', T; e>

+B(e,0), (e,7), (e,7); (e,7), 77 7€) + Bl(ms€), (7€), (6,7 (7,7), 57 T ) )

Bases transformation by F-moves

|‘$A(BM)> — %(OA |(67 6)7 (677-)7 (7-7 6);6, (Tv T);6,6;€> T |(Ta 6), (Ta 6), (7-7 6)57-7 (Ta T);Ta T, 6>




Quantum teleportation: Asymmetric entanglement

Rag) = 5 (I(e.€), (.7, 7) + (7€), (1, €)i 7,73 7) )

lopm) = alr,e; )+ Ble, 73 7) Quantum message (o, )

Teleportation from Bob to Alice
1

€amym) = NG (04 (e, e), (e,7), (T,e); (e, ), ;7,T;€) + a|(T, €), (7, €), (T, €); (1,7), T; T, T; €)

+B(e,0), (e,7), (e,7); (e,7), 77 7€) + Bl(ms€), (7€), (6,7 (7,7), 57 T ) )

Bases transformation by F-moves
1

|€A(BM)> = E (O‘ (e, e), (e, ), (T,e);e,(T,7);€,€5€) + |(T,€), (T, €), (T, €); 7, (T, T); T, 5 €)

+ IB |(e) 6)7 (67 T)’ (67 7—); 67 (T’ T); 67 e; e) + IB |(T7 6)7 (7-7 e)’ (67 7—); 7-7 (T’ T); T’ T; e>)

cSSR in action! {I(e;7), (T,€);7,T5€),

Cannot perform all measurements. {|(r,e), (1,e);7,7;7),

(e,7),(e,7);7,7;€)}

(1,¢€), (e,7); 7, T3 7)}

Regardless, the local state of Alice would be probabilistic mixture of

e, e;eXe, e;e| and |7, e; 7T, €; 7|



Quantum teleportation: Asymmetric entanglement
lopm) = alr,e; )+ Ble, 73 7) Quantum message (a, )

IRap) = %(Ka, e), (e, 7);e, ;1) + |(1,e), (1,€); T, T; 7'))

Teleportation from Bob to Alice

|€(AB)M> — % (a |(6, 6), (677-)7 (Ta 6); (67 T)aT; T, T, 6> + o |(T, 6), (7', 6), (7', 6); (7‘, 7'),7‘;7', T; e>

+B(e,0), (e,7), (e,7); (e,7), 77 7€) + Bl(ms€), (7€), (6,7 (7,7), 57 T ) )

Bases transformation by F-moves

eaman) = —5(alle.e). e.). (r.e)ie, (r. )i ereie) +al(r,e). (r.e), () m ()i mie)

No (perfect) guantum teleportation is possible from Bob to Alice!

The asymmetry in entanglement sharing is not due to unequal marginal spectra.



Conclusions

¢SSR and the fusion rules deep implications in anyonic quantum
information theory.

Marginal spectra ambiguity and ambiguity in global vs local spectra:
warrants a radically new approach to understand and characterise
information and correlation.

In a bipartite pure entangled state, the parties do not have uniform
access to entanglement. This asymmetric nature is manifested in
teleportation.

Possibilities of quantum tasks such as communication or cryptographic

protocols where one party has the superiority in accessing correlation
and manipulation of information over the other.

For more details, see arXiv:2406.03546
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The International Union of Scientists (IUS), Scientists
Against Militarism and the Destructive Use of Science and
Technology.

IUS brings together scientists from around the world who refuse to stay silent in the
face of atrocities like the genocide in Palestine. We stand united against the
weaponization of science and technology for war, authoritarianism, and the
dehumanization of life. As scientists, we recognize that our scientific and
technological research holds power and influence. We believe science is not morally
neutral. It is inseparable from the social and political contexts in which it operates.
Our work can either serve humanity or contribute to its downfall—and we choose to
stand for humanity.
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An appeal...

A photographer came to take her picture and this little refugee toddler
offered him food, thinking he is hungry. Its such a beautiful picture yet so
thought provoking!!! What’s been done to these angels in the name of War...

Thank you



