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Higher fitness

Local optimum phenotype is determined 
by most common morph

1: Chouteau et al (2016 PNAS)

• When do organisms need to adapt by natural selection?  
Internal feedbacks: Some aspect of the evolving population generates a selective 

pressure on itself. 
- Ecological: Resource competition causing negative frequency dependence, 

mimicry of warning signals causing positive FD1
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Drivers of adaptive evolution
• When do organisms need to adapt by natural selection?  
Internal feedbacks: Some aspect of the evolving population generates a selective 

pressure on itself. 
- Ecological: Resource competition causing negative frequency dependence, 

mimicry of warning signals causing positive FD1

- Genomic: Meiotic drive, sexual antagonism, and other genetic conflicts2

External forcing: A changing environment modifies which phenotype is optimal
• Even when internal feedbacks exist, long-term evolutionary dynamics may be sustained by 

environmental variation3

1: Chouteau et al (2016 PNAS)
2: Burt & Trivers (2008)

3: Chevin et al (2022 Evolution Letters)



Patterns of environmental change
• Natural systems are characterized by different types of environmental changes
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Periodic cycle Random(-like) 
fluctuations



Evidence for moving optimum 
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• In evolutionary theory, adaptation to changing environments often modeled
as evolutionary tracking of a moving optimum for phenotypic traits1.  

• Makes logical sense, but how well supported emprically?



Evidence for moving optimum 
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• Direct evidence: (1) Phenotypic selection analysis.

Quadratic selection gradient1 𝛾𝛾 = Cov 𝑧𝑧 − ̅𝑧𝑧 2,𝑊𝑊�𝑊𝑊 /𝜎𝜎𝑧𝑧4

Mean curvature of fitness landscape, 𝛾𝛾 < 0 generally interpreted as stabilizing selection
Meta-analysis found as many 𝛾𝛾 > 0 as 𝛾𝛾 < 0, interpreted as lack of evidence for stab. selection2

1: Lande & Arnold (1983 Evolution); 
2: Kingsolver et al (2001 Am Nat)



Assuming a moving optimum 
with constant width

Evidence for moving optimum 
• Direct evidence: (1) Phenotypic selection analysis.

Quadratic selection gradient1 𝛾𝛾 = Cov 𝑧𝑧 − ̅𝑧𝑧 2,𝑊𝑊�𝑊𝑊 /𝜎𝜎𝑧𝑧4

Mean curvature of fitness landscape, 𝛾𝛾 < 0 generally interpreted as stabilizing selection
Meta-analysis found as many 𝛾𝛾 > 0 as 𝛾𝛾 < 0, interpreted as lack of evidence for stab. selection2

But with a Gaussian peak, 𝛾𝛾 > 0 when mean phenotype sufficiently deviates from optimum 

1: Lande & Arnold (1983 Evolution); 
2: Kingsolver et al (2001 Am Nat)

Measured directional and quadratic gradients
(Charmantier et al 2008 Science)
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• Direct evidence: (1) Phenotypic selection analysis.

Quadratic selection gradient1 𝛾𝛾 = Cov 𝑧𝑧 − ̅𝑧𝑧 2,𝑊𝑊�𝑊𝑊 /𝜎𝜎𝑧𝑧4

Mean curvature of fitness landscape, 𝛾𝛾 < 0 generally interpreted as stabilizing selection
Meta-analysis found as many 𝛾𝛾 > 0 as 𝛾𝛾 < 0, interpreted as lack of evidence for stab. selection2

But with a Gaussian peak, 𝛾𝛾 > 0 when mean phenotype sufficiently deviates from optimum 
What appears in theoretical predictions for changes in mean and variance under selection is the 

strength of stabilizing selection 𝑆𝑆 = 1
𝑉𝑉𝑠𝑠

not 𝛾𝛾 = 𝛽𝛽2−𝑆𝑆
𝜎𝜎𝑧𝑧4

= −𝑆𝑆 1−𝑆𝑆 𝑧𝑧−𝜃𝜃 2

𝜎𝜎𝑧𝑧4
So why not estimate that directly? 
Can be done using log link in GLM 3 (eg Poisson regression, relevant for fecundity selection) 

or directly fitting the Gaussian peak in explicit framework (eg Stan)4

1: Lande & Arnold (1983 Evolution); 
2: Kingsolver et al (2001 Am Nat)

3: Chevin et al (2015 Evolution); 
4: de Villemereuil et al (2020 PNAS)



Evidence for moving optimum 

Mean optimum SD of optimum Peak width

Models with optimum

1: de Villemereuil et al (2020 PNAS)

• Direct evidence: (1) Phenotypic selection analysis.
Estimating fluctuating selection as movements of Gaussian fitness peak for breeding time across
birds and mammals in the wild1 : 39 populations, 21 species, 9 to 63 yrs (average 33.2 years)



Evidence for moving optimum 

Farhadifar et al. (2015 Curr Biol)

• (Semi)-Direct evidence: (2) Comparison of mutational to standing genetic variance

• Comparing MA lines to natural isolates: 
Standing variation of all traits (y-axis) well
predicted by their mutational (co)variances (x-
axis), but only after accounting for stabilizing (& 
correlational) selection

• High-throughput
measurement of many spindle
traits in C. elegans embryos

MA lines
Gen 0
Gen 250



Evidence for moving optimum 
• Indirect evidence: (3) Distribution of fitness effects across environments

Increasing stress
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Evidence for moving optimum 
• Indirect evidence: (3) Distribution of fitness effects across environments
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+ high temperature

Experiment 1 (Trindade et al 2012 Evolution): Confirmed + estimated all parameters from DFE predicted by FGM 
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Evidence for moving optimum 
• Indirect evidence: (3) Distribution of fitness effects across environments

Increasing stress
Experiment 2 (Hietpas et al 2013 Evolution): Confirmed + estimated 𝑠𝑠0 from FGM 
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Evidence for moving optimum 
• Indirect evidence: (4) Paradox of stasis
Rates of evolution across timescales1: 

Fast over short times, stasis in the long run, then burst after 106 yrs. 
Compared to evolutionary QG theory1: Not consistent with drift, 

but consistent with stationary fluctuations of an optimum phenotype + rare strong shifts.

1: Estes & Arnold (2007 Am Nat);
Uyeda et al (2012 PNAS)

Fitness

Trait



Evidence for moving optimum 
• Indirect evidence: (5) Reversion of selection responses

1: Bolstad et al (2015 PNAS)

Strongly conserved allometric
relationship (111 species) + and - selection on allometric intercept and slope

(using correlational disruptive selection)



Evidence for moving optimum 
• Indirect evidence: (5) Reversion of selection responses

1: Bolstad et al (2015 PNAS)

Strongly conserved allometric
relationship (111 species)

Rapid response, but reverts after selection is relaxed

Could be due to break up of LD, 
but here could only account for 15-20% of response



Evidence for moving optimum 
• Indirect evidence: (6) Ecological speciation
F2 hybrids between forming species, in nascent adaptive radiation in pupfishes 

Original species lie on 
fitness peaks

Recombinants reveal
underlying fitness landscape

1: Martin & Wainwright (2013 Science)



Evidence for moving optimum 

Combining these converging lines of evidence:
(1) (Fluctuating) phenotypic selection analysis
(2) Comparison of mutational to standing genetic variance 
(3) Distribution of fitness effects across environments
(4) Paradox of stasis
(5) Reversion of selection responses
(6) Ecological speciation
+ others (eg fitness cost of artificial selection in natural environments1, …)

Stabilizing selection seems overall well supported. 

However specific shape of fitness peak may deviate from that usually assumed, 
especially far from optimum.

1: McGinnity et al (2003 Proc B)



Goal and overview of the lecture
How can moving optimum models help understand and predict

adaptation to changing environments? 
Foreword: Moving optimum model

1. Adaptation to directional environmental change
2. Adaptation to cycling environments

3. Adaptation to stochastic environmental fluctuations

Periodic cycle
Random(-like) 
fluctuations



Gaussian fitness peak
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• If trait 𝑧𝑧 is a normally distributed (polygenic+residual variation), 
then mean fitness is also Gaussian with respect to mean phenotype

�𝑊𝑊 = �
−∞

∞
𝑝𝑝(𝑧𝑧)𝑊𝑊 𝑧𝑧 𝑑𝑑𝑧𝑧 ∝ exp −

𝑆𝑆 ̅𝑧𝑧 − 𝜃𝜃 2

2
𝑆𝑆 = 1

𝑉𝑉𝑠𝑠
= 1

(𝜔𝜔2+𝜎𝜎𝑧𝑧2)
is the strength of stabilizing selection

• Any phenotype-fitness map with an optimum can be 
approximated as Gaussian (2nd order Taylor series on log sale)

𝑊𝑊 𝑧𝑧 = 𝑊𝑊max exp −
𝑧𝑧 − 𝜃𝜃 2

2 𝜔𝜔2

Optimum phenotype 𝜃𝜃, width of fitness peak 𝜔𝜔

Latter (1970 Genetics)
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• The mean mismatch with optimum 𝒙𝒙 = �𝒛𝒛 − 𝜽𝜽
drives evolutionary dynamics

Gaussian fitness peak

 Change in frequency p of a mutation with effect 𝛼𝛼 on the trait in haploid population:

∆ln 𝑝𝑝
1−𝑝𝑝

= ln 𝑊𝑊(�̅�𝑧+𝛼𝛼)
𝑊𝑊(�̅�𝑧)

= −𝑆𝑆
2

[ 𝒙𝒙 + 𝛼𝛼 2−𝒙𝒙2] = −𝑆𝑆
2

[𝛼𝛼2 + 2𝛼𝛼𝒙𝒙]
 linear in mismatch. 

 For a normally distributed trait, directional gradient (selection on mean phenotype) is1: 
β = 𝜕𝜕 ln �𝑊𝑊

𝜕𝜕�̅�𝑧
= −𝑆𝑆𝒙𝒙  linear in mismatch
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• Response to selection also depends on additive genetic variance:  
∆ ̅𝑧𝑧 = 𝐺𝐺β = −𝐺𝐺𝑆𝑆𝒙𝒙  Linear restoring force reducing deviations from optimum 𝒙𝒙

 For a given deviation 𝒙𝒙, faster evolution if larger adaptive potential 𝑺𝑺𝑺𝑺, 
i.e. narrow fitness peak x large additive genetic variance.

 When genetic variance can be approximated as constant, simple dynamical system 
allowing analytical progress under relevant types of environmental change.

Gaussian fitness peak



Directional environmental change
• Abrupt directional change (environmental shift) addressed in previous lectures

(in adaptive walk1 and polygenic2 regimes)
• More gradual tendencies (e.g. global warming) can be modeled as steady change at 

constant speed v, preceded by a constant environment

LM Chevin - Adaptation ICTS 2024 - Moving optimum
1: Orr (1998 Evolution)

2: Lande (1976), Hayward & Sella (2022)



Directional environmental change
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Rank of fixed effect size

• Low mutation regime (origin-fixation process): 
Adaptive walk by sequential fixation in otherwise monomorphic population.

• Reminder: Under sudden shift, populations start far from optimum 
 large effect mutations can fix in early steps1



Directional environmental change
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• Under gradual trend, selection coefficients change as optimum moves  
 A mutation first needs to become beneficial

Trait 

Fitness 

background ̅𝑧𝑧

Mutation effect α
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• Low mutation regime (origin-fixation process): 
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Directional environmental change
• Low mutation regime (origin-fixation process): 

Adaptive walk by sequential fixation in otherwise monomorphic population.
• Under gradual trend, selection coefficients change as optimum moves  
 A mutation first needs to become beneficial (duration 𝑇𝑇ℓ), 
then escape drift (𝑇𝑇𝓌𝓌), then reach high frequency (𝑇𝑇𝑓𝑓)1. 

1: Kopp & Hermisson (2007, 2009a,b Genetics)



Directional environmental change
• Low mutation regime (origin-fixation process): 

Adaptive walk by sequential fixation in otherwise monomorphic population.
• Under gradual trend, selection coefficients change as optimum moves  
 A mutation first needs to become beneficial (duration 𝑇𝑇ℓ), 
then escape drift (𝑇𝑇𝓌𝓌), then reach high frequency (𝑇𝑇𝑓𝑓)1. 

• Slower environmental changes are dominated by 𝑇𝑇ℓ, favoring small steps because 
they become beneficial earlier

Slow change

Fast change

1: Kopp & Hermisson (2007, 2009a,b Genetics)



Directional environmental change
• Low mutation regime (origin-fixation process): 

Adaptive walk by sequential fixation in otherwise monomorphic population.
• Under gradual trend, selection coefficients change as optimum moves  
• A single composite parameter determines the genetics of adaptation1: 

𝛾𝛾 = 𝑣𝑣
𝑁𝑁𝑁𝑁𝑆𝑆𝜎𝜎𝛼𝛼3

 Large 𝜸𝜸: Environment changes fast relative the adaptive potential. 
Adaptation is genetically limited, mutations of large effects can fix (cf Orr 1998)

 Small 𝜸𝜸: Environment changes slowly relative the adaptive potential. 
Adaptation is environmentally limited, mutations of small effects mostly fix 

𝑣𝑣: Speed of environmental change
𝑁𝑁: population size
𝑈𝑈: genomic mutation rate
𝑆𝑆: Strength of stabilizing selection
𝜎𝜎𝛼𝛼 : SD of mutation phenotypic effects

Ecology

Adaptive potential 

1: Kopp & Hermisson (2007, 2009a,b Genetics)



Directional environmental change
• Highly polymorphic regime:

• Distance to optimum 𝑥𝑥 = ̅𝑧𝑧 − 𝜃𝜃 initially 
increases as phenotype lags behind optimum.

• This increases the strength of directional 
selection and response.  

Figure: Chevin et al (2013)

1: Pease et al 1989; Lynch et al 1991; Lynch & Lande 1993



Directional environmental change
• Highly polymorphic regime:

• Distance to optimum 𝑥𝑥 = ̅𝑧𝑧 − 𝜃𝜃 initially 
increases as phenotype lags behind optimum.

• This increases the strength of directional 
selection and response.  

• Lag eventually equilibrates, 
with mean phenotype evolving at same speed 
as optimum: ∆ ̅𝑧𝑧 = −𝐺𝐺𝑆𝑆𝑥𝑥eq = 𝑣𝑣

• Equilibrium lag is thus 𝑥𝑥eq = − 𝑣𝑣
𝑆𝑆𝑆𝑆

 larger with fast environmental change 
and low adaptive potential

Figure: Chevin et al (2013)

𝑥𝑥
=

̅𝑧𝑧
−
𝜃𝜃

1: Pease et al 1989; Lynch et al 1991; Lynch & Lande 1993



Directional environmental change
• Highly polymorphic regime:

• Distance to optimum 𝑥𝑥 = ̅𝑧𝑧 − 𝜃𝜃 initially 
increases as phenotype lags behind optimum.

• This increases the strength of directional 
selection and response.  

• Lag eventually equilibrates, 
with mean phenotype evolving at same speed 
as optimum: ∆ ̅𝑧𝑧 = −𝐺𝐺𝑆𝑆𝑥𝑥eq = 𝑣𝑣

• Equilibrium lag is thus 𝑥𝑥eq = − 𝑣𝑣
𝑆𝑆𝑆𝑆

 larger with fast environmental change 
and low adaptive potential

• Reciprocal dynamics to sudden shift
1: Pease et al 1989; Lynch et al 1991; Lynch & Lande 1993

𝑥𝑥
=

̅𝑧𝑧
−
𝜃𝜃

𝑥𝑥
=

̅𝑧𝑧
−
𝜃𝜃

sudden shift



Directional environmental change
• Highly polymorphic regime:

• Distance to optimum 𝑥𝑥 = ̅𝑧𝑧 − 𝜃𝜃 initially 
increases as phenotype lags behind optimum.

• This increases the strength of directional 
selection and response.  

• Lag eventually equilibrates, 
with mean phenotype evolving at same speed 
as optimum: ∆ ̅𝑧𝑧 = −𝐺𝐺𝑆𝑆𝑥𝑥eq = 𝑣𝑣

• Equilibrium lag is thus 𝑥𝑥eq = − 𝑣𝑣
𝑆𝑆𝑆𝑆

 larger with fast environmental change 
and low adaptive potential

• Analog to adaptive walk regime: 𝛾𝛾 = 𝑣𝑣
𝑁𝑁𝑁𝑁𝑆𝑆𝜎𝜎𝛼𝛼3

Figure: Chevin et al (2013)

1: Pease et al 1989; Lynch et al 1991; Lynch & Lande 1993



Directional environmental change
• Highly polymorphic regime:

• Maximum reduction in population growth rate 
caused by maladaptation:
Lag load 𝐿𝐿 = 𝑆𝑆

2
𝑥𝑥eq2 = 𝑣𝑣2

2𝑆𝑆𝑆𝑆2

• The critical rate of environmental change 
at which 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 − 𝐿𝐿 = 0 is 𝑣𝑣𝑐𝑐 = 2𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆𝐺𝐺

• Narrower fitness peak (larger 𝑆𝑆) causes 
larger fitness drop for a given mismatch 𝑥𝑥, 
but also faster evolutionary reduction of 𝑥𝑥.
The latter dominates, increasing 𝑣𝑣𝑐𝑐.

• But may be violated with other fitness function2

1: Pease et al 1989; Lynch et al 1991; Lynch & Lande 1993
2: Osmond et al (2017); Klausmeier et al (2020)

Phenotypic range with 
positive intrinsic growth rate

Figure: Chevin et al (2013)



Directional environmental change

Osmond et al (2017); Klausmeier et al (2020)

 Fitness function where strength of 
selection β does not increase 
monotonically with maladaptation

 Maximum selection gradient 
= Tipping point for rate of evolution

 Larger lags lead to ever-increasing 
maladaptation: Extinction vortex 

 Even transient increase in lag may 
be impossible to recover from: 
hysteresis



Cycling environment
• Seasonality occurs on evolutionary timescales for short lived species. 
• Such organisms usually have large population sizes, thus high adaptive potential.
• Other cycles occur with larger periods (El Niño, North Atlantic oscillation…), 

and could be tracked by more long-lived organisms

LM Chevin - Adaptation ICTS 2024 - Moving optimum



Cycling environment
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Chromosomal inversions in Drososophila
(Dobzhanksy 1943 Genetics) 

1750 SNPs throughout genome
(Bergland et al 2017 PLoS Genetics) 



Cycling environment



Cycling environment
Parallel phenotypic changes

Largely repetable genetic differentiation over time



Cycling environment

Largely repetable genetic differentiation over time

Parallel phenotypic changes

« Overall, our results show that strong and 
temporally variable natural selection can 
consistently drive rapid and polygenic 
adaptation of multiple fitness-
associated phenotypes on the same time 
scale as the environmental change »



Cycling environment
• Model1: 𝜃𝜃 = 𝐴𝐴 sin 2π𝑡𝑡

𝑇𝑇
, amplitude 𝐴𝐴 and period 𝑇𝑇

• Polygenic trait with constant 𝐺𝐺

• After ~ 1
𝑆𝑆𝑆𝑆

generations, mean phenotype settles into 
sine wave with same period as optimum, but:

- amplitude multiplied by 𝜁𝜁 = 𝑆𝑆𝑆𝑆𝑇𝑇
(𝑆𝑆𝑆𝑆𝑇𝑇)2+(2π)2

≤ 1

- phase shifted (delayed) by 𝜑𝜑 = −arcTan 2π
𝑆𝑆𝑆𝑆𝑇𝑇

• Higher adaptive potential 𝑺𝑺𝑺𝑺 and slower oscillations 
(larger 𝑇𝑇) lead to closer adaptive tracking of optimum 
(𝜁𝜁 → 1 and 𝜑𝜑 → 0) 

LM Chevin - Adaptation ICTS 2024 - Moving optimum

𝜃𝜃 ̅𝑧𝑧

Lynch et al 1991; Lande & Shannon 1996

𝑇𝑇 = 100

𝑇𝑇 = 40



Cycling environment
• Single locus with selection coefficient  𝑠𝑠 = 𝐴𝐴 sin 2𝜋𝜋𝑡𝑡

𝑇𝑇

 Quarter-period lag between frequency 𝑝𝑝 and 𝑠𝑠 (max(𝑝𝑝) when 𝑠𝑠 = 0)

 Amplitude of 𝑝𝑝 is 𝐴𝐴𝑝𝑝 ≈ 𝐴𝐴 𝑇𝑇
8𝜋𝜋
 larger under larger period and maximum 𝑠𝑠

LM Chevin - Adaptation ICTS 2024 - Moving optimum Adapted from Chevin et al (2022)

𝑇𝑇 = 10 A = 0.1

𝑝𝑝 𝑠𝑠

𝑡𝑡

𝑇𝑇 = 20 A = 0.1 𝑇𝑇 = 20 A = 0.05



Randomly fluctuating environment
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Random(-like) fluctuations

• Most environments exhibit residual noise, after removing any trend



Randomly fluctuating environment
• Most environments exhibit residual noise, after removing any trend

• These fluctuations may well have deterministic causes, but if the latter are 
(i) unknown
(ii) external to the system (and potentially complex)
(iii) beyond reach of measurement precision, 

then fluctuations are effectively random, both to scientists analyzing them
and to organisms experiencing them.
 Treated as stochastic processes = random variable with time dependence

LM Chevin - Adaptation ICTS 2024 - Moving optimum



• Randomness matters when making predictions
Deterministic time series:

Measured

LM Chevin - Adaptation ICTS 2024 - Moving optimum

Prediction in stochastic environment



• Randomness matters when making predictions
Deterministic time series:

Measured Projected

The future is certain 
provided accurate
measurement of the past, 
and perfect knowledge
of causal factors.

𝜕𝜕𝑥𝑥
𝜕𝜕𝑡𝑡

= 𝑓𝑓(𝑥𝑥, 𝑡𝑡)
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Prediction in stochastic environment



Measured Projected

• Randomness matters when making predictions
Stochastic time series:
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Prediction in stochastic environment



Measured Projected

The future is probabilistic
even with perfect
measurement

Variance of the process
matters, not just
expectation

• Randomness matters when making predictions
Stochastic time series:

Pr 𝑥𝑥𝑡𝑡+𝜏𝜏
= 𝑓𝑓(𝑥𝑥𝑡𝑡)

LM Chevin - Adaptation ICTS 2024 - Moving optimum

Prediction in stochastic environment



• Temporal autocorrelation ρ determines timescale of predictability

• Related to “colour » of environmental noise1 Fig. from Leung et al (2020 Ecol Lett) 
1: Vasseur & Yodzis (2004 Ecology)

ρ = 0.9

ρ = 0

Prediction in stochastic environment
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• Selection on mutation with phenotypic effect 𝜶𝜶 in background phenotype 𝑚𝑚, 
in haploid population1. 

Denoting 𝜓𝜓 = ln 𝑝𝑝
𝑞𝑞

, ie the logit frequency, 

Δ𝜓𝜓 = ln𝑊𝑊𝑚𝑚+𝛼𝛼 − ln𝑊𝑊𝑚𝑚 = −𝑆𝑆𝛼𝛼
2
𝛼𝛼 + 2 𝑚𝑚− 𝜃𝜃

⟹ 𝜓𝜓𝑡𝑡 = 𝜓𝜓0 −
𝑆𝑆𝛼𝛼
2

𝛼𝛼 𝑡𝑡 + 2�
𝑖𝑖=0

𝑡𝑡−1

𝑚𝑚𝑖𝑖 − 𝜃𝜃𝑖𝑖

Additive in mismatch  If optimum 𝜽𝜽 follows a Gaussian process, so does 𝝍𝝍.
If changes in background mean phenotype 𝑚𝑚 can be neglected, 
then 𝜓𝜓 simply integrates all past optimas, with equal weight on all times

Evolutionary responses to fluctuating optimum

1: Kimura (1954 Genetics), Gillespie (1991),
Chevin (2019 Genetics)
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• Assume the optimum follows a stationary autocorrelated Gaussian process (AR1)

Evolutionary responses to fluctuating optimum

• Fluctuation pattern has no influence on 
expected change in (logit) frequency

• Stochastic variance of 𝜓𝜓 is
σ𝜓𝜓,𝑡𝑡
2 ≈ σ𝑠𝑠2

1+𝜌𝜌
1−𝜌𝜌

𝑡𝑡, with σ𝑠𝑠2 = 𝑆𝑆𝛼𝛼𝜎𝜎𝜃𝜃 2

 Increases linearly, faster under higher 
autocorrelation
• On p scale, variance of 𝜓𝜓 translates into 

variance in the timing of selective sweeps 

Chevin (2019 Genetics)



• If background genetic variance for the trait is normally distributed, 
then mean background  also evolves in response to fluctuating optimum.

• The process for 𝜓𝜓 = logit 𝑝𝑝 becomes stationary, with variance that plateaus
 Other polymorphic loci buffer the stochasticity perceived by major gene

Evolutionary responses to fluctuating optimum

No background genetic variation

Increasing ρ

Chevin (2019 Genetics)

Background genetic variation
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• For polygenic trait with constant variance, the mean phenotype1 is

̅𝑧𝑧𝑡𝑡 = ̅𝑧𝑧0 1 − 𝐺𝐺𝑆𝑆 𝑡𝑡 + 𝐺𝐺𝑆𝑆�
𝑗𝑗=1

𝑡𝑡

1 − 𝐺𝐺𝑆𝑆 𝑗𝑗−1𝜃𝜃𝑡𝑡−𝑗𝑗 →
𝑡𝑡→∞

𝐺𝐺𝑆𝑆�
𝑗𝑗=1

∞

1 − 𝐺𝐺𝑆𝑆 𝑗𝑗−1𝜃𝜃𝑡𝑡−𝑗𝑗

Weighted average of past optima, with more weight on more recent ones.
Smoothes environmental “signal”, all the more as adaptive potential 𝑆𝑆𝐺𝐺 is small

Evolutionary responses to fluctuating optimum

1 : Charlesworth et al (1993 Genet Res); 
Figure from Chevin (2013 Evolution)     
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Evolutionary responses to fluctuating optimum

1 : Charlesworth et al (1993 Genet Res); 

• For polygenic trait with constant variance, the mean phenotype1 is

̅𝑧𝑧𝑡𝑡 = ̅𝑧𝑧0 1 − 𝐺𝐺𝑆𝑆 𝑡𝑡 + 𝐺𝐺𝑆𝑆�
𝑗𝑗=1

𝑡𝑡

1 − 𝐺𝐺𝑆𝑆 𝑗𝑗−1𝜃𝜃𝑡𝑡−𝑗𝑗 →
𝑡𝑡→∞

𝐺𝐺𝑆𝑆�
𝑗𝑗=1

∞

1 − 𝐺𝐺𝑆𝑆 𝑗𝑗−1𝜃𝜃𝑡𝑡−𝑗𝑗

• If optimum undergoes Gaussian process, so do:
- the mean phenotype ̅𝑧𝑧 (linear combination of Gaussians)
- the mismatch with optimum 𝑥𝑥 = ̅𝑧𝑧 − 𝜃𝜃

The distribution of maladaptation can be summarized by its mean and variance.
• At stationarity:
The expected mean phenotype matches the expected optimum
But the variance and autocorrelation of mismatch play important roles.



Random 
genetic drift

Selection
gradients
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Fluctuations of selection gradient
• Directional selection gradient is proportional to phenotypic mismatch, β = −𝑆𝑆( ̅𝑧𝑧 − 𝜃𝜃)
• Even with a constant optimum, drift causes temporal variation in mismatch ( ̅𝑧𝑧 − 𝜃𝜃)

• The variance of directional selection caused b drift 
aroung the constant optimum is V(β) = 𝑆𝑆

(2−𝑆𝑆𝑆𝑆)𝑁𝑁𝑒𝑒
Lower bound for fluctuations in directional selection, 

larger for lower 𝑁𝑁𝑒𝑒 and larger 𝑆𝑆. 
• The autocorrelation function of selection gradients is

ACF(β, 𝜏𝜏) = (1 − 𝑆𝑆𝐺𝐺)𝜏𝜏

 Evolutionary inertia over timescale 1/(𝑆𝑆𝐺𝐺)
longer with lower evolutionary potential

Chevin & Haller (2014 Evolution)
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Fluctuations of selection gradient

Chevin & Haller (2014 Evolution)

• Autocorrelated fluctuating optimum (AR1), 
with 𝑇𝑇 the characteristic time over which optimum is autocorrelated

small 𝑇𝑇

large 𝑇𝑇
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Fluctuations of selection gradient

Unpredictable optimum Predictable optimum
Chevin & Haller (2014 Evolution)

 Higher autocorrelation leads 
to better adaptive tracking, 
thus smaller fluctuations in β

 The variance due to drift 
around optimum adds up to 
that of optimum fluctuations

• Autocorrelated fluctuating optimum (AR1), 
with 𝑇𝑇 the characteristic time over which optimum is autocorrelated

• Without drift: V β ≈ 𝑆𝑆 𝜎𝜎𝜃𝜃
2

1+𝑆𝑆𝑆𝑆𝑇𝑇

small 𝑇𝑇

large 𝑇𝑇
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Fluctuations of selection gradient
• Autocorrelated fluctuating optimum (AR1), 

with 𝑇𝑇 the characteristic time over which optimum is autocorrelated

• Without drift: V β ≈ 𝑆𝑆 𝜎𝜎𝜃𝜃
2

1+𝑆𝑆𝑆𝑆𝑇𝑇

ACF(β, 𝜏𝜏) = 𝑒𝑒−
𝜏𝜏
𝑇𝑇−𝑆𝑆𝑆𝑆𝑇𝑇𝑒𝑒−𝑆𝑆𝑆𝑆𝜏𝜏

1−𝑆𝑆𝑆𝑆𝑇𝑇

(Weighted) difference between
autocorrelation of optimum 
and evolutionary inertia
 Fluctuations in β do not tell 
the whole story about fluctuating
selection!

Chevin & Haller (2014 Evolution)

Limit of drift around
constant optimum

≈White noise

≈Random walk
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Fluctuations of selection gradient
• Analytical predictions assuming constant genetic variance work well on individual-

based simulations with high mutation rates 

Chevin & Haller (2014 Evolution)



• Evolution and demography are connected through the fitness landscape1

relating population mean fitness �𝑊𝑊 to the mean phenotype ̅𝑧𝑧
• Simple discrete-time model:

Demography: ln𝑁𝑁𝑡𝑡+1 = ln𝑁𝑁𝑡𝑡 + ln �𝑊𝑊𝑡𝑡

Evolution: ∆ ̅𝑧𝑧 = 𝐺𝐺 𝜕𝜕𝜕𝜕𝜕𝜕 �𝑊𝑊
𝜕𝜕�̅�𝑧

• With Gaussian fitness peak, mean mismatch with optimum drives eco-evo dynamics

Demography: ln𝑁𝑁𝑡𝑡+1 = ln𝑁𝑁𝑡𝑡 + 𝑟𝑟max − 𝑔𝑔 𝑁𝑁𝑡𝑡 − 𝑆𝑆
2

̅𝑧𝑧𝑡𝑡 − 𝜃𝜃t 2

Evolution: ∆ ̅𝑧𝑧 = −𝐺𝐺𝑆𝑆 ̅𝑧𝑧𝑡𝑡 − 𝜃𝜃𝑡𝑡

1 : Wright (1937 PNAS) 
Crow & Kimura (1970)

Lande (1976 Evolution, 1982 Ecology)

Population dynamics under moving optimum

LM Chevin - Adaptation ICTS 2024 - Moving optimum



Population dynamics under moving optimum

• Neglecting density dependence (eg under severe stress):
𝑛𝑛𝑡𝑡 = ln𝑁𝑁𝑡𝑡 = 𝑛𝑛0 + 𝑟𝑟max𝑡𝑡 −

𝑆𝑆
2
�𝑘𝑘=0

𝑡𝑡−1( ̅𝑧𝑧𝑘𝑘 − 𝜃𝜃𝑘𝑘)2

Unweighted sum of all past maladaptation
 Past extreme events may have long-lasting consequences

• If 𝜃𝜃 is a Gaussian process, so are ̅𝑧𝑧 and ̅𝑧𝑧 − 𝜃𝜃
Then 𝑛𝑛 = ln𝑁𝑁 is related to chi-square, 
or gamma distribution with shape parameter increasing with time

Chevin et al 2017 (Am Nat)LM Chevin - TheoMoDive - 04 2023



Distribution of population size
• The reverse gamma distribution is: 
Bounded above by growth of optimum phenotype
Left skewed 
 excess of small population sizes at high 
extinction risk

Chevin et al 2017 (Am Nat)LM Chevin - Adaptation ICTS 2024 - Moving optimum



Distribution of population size
• The reverse gamma distribution is: 
Bounded above by growth of optimum phenotype
Left skewed 
 excess of small population sizes at high 
extinction risk
 Starting from fixed size, tends to normal over 

time, but slowly (excess of small N remains)

Chevin et al 2017 (Am Nat)LM Chevin - Adaptation ICTS 2024 - Moving optimum



Distribution of population size
• The reverse gamma distribution is: 
Bounded above by growth of optimum phenotype
Left skewed 
 excess of small population sizes at high 
extinction risk
 Starting from fixed size, tends to normal over 

time, but slowly (excess of small N remains)
Autocorrelation of optimum :

- increases the expected lnN
(facilitates adaptive tracking1,2)

- increases variance of population size 
(among independent lineages)1.
 possibly antagonistic for extinction risk

Chevin et al 2017 (Am Nat)LM Chevin - Adaptation ICTS 2024 - Moving optimum



Conclusion

LM Chevin - Adaptation ICTS 2024 - Moving optimum

• Models of adaptation to an optimum phenotype rely on plausible biological assumptions

• They yield predictions about adaptation across a range of conditions
(low/high mutation, fitness and traits). 
 Combine several lines of evidence.  

• Can help understand adaptation, but only a starting point: reality is more complex!
Multiple peaks, frequency dependence (flattening fitness peaks…), space, 
phenotypic plasticity…



Thanks!
Questions?
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Recursion for the mismatch with optimum:
𝑥𝑥𝑡𝑡 = ̅𝑧𝑧𝑡𝑡 − 𝜃𝜃𝑡𝑡 = ̅𝑧𝑧𝑡𝑡−1 − 𝐺𝐺𝑆𝑆 ̅𝑧𝑧𝑡𝑡−1 − 𝜃𝜃𝑡𝑡−1 − 𝜃𝜃𝑡𝑡−1 + 𝜃𝜃𝑡𝑡−1 − 𝜃𝜃𝑡𝑡

𝑥𝑥𝑡𝑡 = (1 − 𝐺𝐺𝑆𝑆)𝑥𝑥𝑡𝑡−1 + 𝜃𝜃𝑡𝑡−1 − 𝜃𝜃𝑡𝑡
∆𝑥𝑥 = −𝐺𝐺𝑆𝑆𝑥𝑥𝑡𝑡−1 − ∆𝜃𝜃

Gaussian fitness peak



• Recursion for mean phenotype ̅𝑧𝑧: 
̅𝑧𝑧𝑡𝑡 = ̅𝑧𝑧𝑡𝑡−1 − 𝐺𝐺𝑆𝑆 ̅𝑧𝑧𝑡𝑡−1 − 𝜃𝜃𝑡𝑡−1 = ̅𝑧𝑧𝑡𝑡−1 1 − 𝐺𝐺𝑆𝑆 + 𝐺𝐺𝑆𝑆𝜃𝜃𝑡𝑡−1

̅𝑧𝑧1 = ̅𝑧𝑧0 1 − 𝐺𝐺𝑆𝑆 + 𝐺𝐺𝑆𝑆𝜃𝜃0,    ̅𝑧𝑧2 = ̅𝑧𝑧0 1 − 𝐺𝐺𝑆𝑆 2 + 𝐺𝐺𝑆𝑆 1 − 𝐺𝐺𝑆𝑆 𝜃𝜃0 + 𝐺𝐺𝑆𝑆𝜃𝜃1, 
̅𝑧𝑧3 = ̅𝑧𝑧0 1 − 𝐺𝐺𝑆𝑆 2 + 𝐺𝐺𝑆𝑆 1 − 𝐺𝐺𝑆𝑆 2𝜃𝜃0 + 𝐺𝐺𝑆𝑆 1 − 𝐺𝐺𝑆𝑆 𝜃𝜃1 + 𝜃𝜃2…

• Full solution for 𝑡𝑡 ≥ 1 is

̅𝑧𝑧𝑡𝑡 = ̅𝑧𝑧0 1 − 𝐺𝐺𝑆𝑆 𝑡𝑡 + 𝐺𝐺𝑆𝑆�
𝑘𝑘=0

𝑡𝑡−1

1 − 𝐺𝐺𝑆𝑆 𝑡𝑡−1−𝑘𝑘𝜃𝜃𝑘𝑘

Replacing 𝑗𝑗 = 𝑡𝑡 − 𝑘𝑘, such that 𝑘𝑘 = 𝑡𝑡 − 𝑢𝑢

̅𝑧𝑧𝑡𝑡 = ̅𝑧𝑧0 1 − 𝐺𝐺𝑆𝑆 𝑡𝑡 + 𝐺𝐺𝑆𝑆�
𝑗𝑗=1

𝑡𝑡

1 − 𝐺𝐺𝑆𝑆 𝑗𝑗−1𝜃𝜃𝑡𝑡−𝑗𝑗

Charlesworth et al (1993 Genet Res); 

Gaussian fitness peak



Directional environmental change
• Highly polymorphic regime:

• Recursion for distance to optimum 𝑥𝑥 = ̅𝑧𝑧 − 𝜃𝜃: 
𝑥𝑥𝑡𝑡 = 1 − 𝐺𝐺𝑆𝑆 𝑥𝑥𝑡𝑡−1 − 𝑣𝑣

𝑥𝑥0 = 0, 𝑥𝑥1 = −𝑣𝑣, 𝑥𝑥2 = −𝑣𝑣(1 + 1 − 𝐺𝐺𝑆𝑆 ), 𝑥𝑥3 = −𝑣𝑣[1 + 1 − 𝐺𝐺𝑆𝑆 + 1 − 𝐺𝐺𝑆𝑆 2], …
• Full solution for 𝑡𝑡 ≥ 1 is

𝑥𝑥𝑡𝑡 = − 𝑣𝑣�
𝑘𝑘=0

𝑡𝑡−1

1 − 𝐺𝐺𝑆𝑆 𝑘𝑘 = −𝑣𝑣
1 − 1 − 𝐺𝐺𝑆𝑆 𝑡𝑡

1 − 1 − 𝐺𝐺𝑆𝑆
= −

𝑣𝑣
𝐺𝐺𝑆𝑆

[1 − 1 − 𝐺𝐺𝑆𝑆 𝑡𝑡]

• At equilibrium
𝑥𝑥eq = 1 − 𝐺𝐺𝑆𝑆 𝑥𝑥eq − 𝑣𝑣 ⟺ 𝑥𝑥eq = −

𝑣𝑣
𝐺𝐺𝑆𝑆

1: Pease et al 1989; Lynch et al 1991; Lynch & Lande 1993

∆ ̅𝑧𝑧 = 𝐺𝐺β = −𝐺𝐺𝑆𝑆𝒙𝒙



Cycling environment
• Model1: Sine wave with amplitude 𝐴𝐴 and period 𝑇𝑇

𝜃𝜃 = 𝐴𝐴 sin
2π𝑡𝑡
𝑇𝑇

• Continuous-time evolutionary dynamics
𝑑𝑑 ̅𝑧𝑧
𝑑𝑑𝑡𝑡

= −𝐺𝐺𝑆𝑆 ̅𝑧𝑧 − 𝐴𝐴 sin
2π𝑡𝑡
𝑇𝑇

𝑑𝑑 ̅𝑧𝑧
𝑑𝑑𝑡𝑡

+ 𝐺𝐺𝑆𝑆 ̅𝑧𝑧 = 𝐴𝐴 sin
2π𝑡𝑡
𝑇𝑇

LM Chevin - Adaptation ICTS 2024 - Moving optimum

𝜃𝜃 ̅𝑧𝑧

Lynch et al 1991; Lande & Shannon 1996
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