

Adaptation to changing environments

Models of moving optimum

Luis-Miguel Chevin, CEFE CNRS, Montpellier, France.

• When do organisms need to adapt by natural selection?

- When do organisms need to adapt by natural selection?
 - Internal feedbacks: Some aspect of the evolving population generates a selective pressure on itself.
 - <u>Ecological</u>: Resource competition causing negative frequency dependence,

mimicry of warning signals causing positive FD¹

- When do organisms need to adapt by natural selection?
 - Internal feedbacks: Some aspect of the evolving population generates a selective pressure on itself.
 - <u>Ecological</u>: Resource competition causing negative frequency dependence, mimicry of warning signals causing positive FD¹
 - Genomic: Meiotic drive, sexual antagonism, and other genetic conflicts²

- When do organisms need to adapt by natural selection?
 - Internal feedbacks: Some aspect of the evolving population generates a selective pressure on itself.
 - <u>Ecological</u>: Resource competition causing negative frequency dependence, mimicry of warning signals causing positive FD¹
 - Genomic: Meiotic drive, sexual antagonism, and other genetic conflicts²

> External forcing: A changing environment modifies which phenotype is optimal

- When do organisms need to adapt by natural selection?
 - Internal feedbacks: Some aspect of the evolving population generates a selective pressure on itself.
 - <u>Ecological</u>: Resource competition causing negative frequency dependence, mimicry of warning signals causing positive FD¹
 - Genomic: Meiotic drive, sexual antagonism, and other genetic conflicts²
 - >External forcing: A changing environment modifies which phenotype is optimal
- Even when internal feedbacks exist, long-term evolutionary dynamics may be sustained by environmental variation³

1: Chouteau et al (2016 PNAS) 2: Burt & Trivers (2008) 3: Chevin et al (2022 Evolution Letters)

Patterns of environmental change

• Natural systems are characterized by different types of environmental changes

 In evolutionary theory, adaptation to changing environments often modeled as evolutionary tracking of a moving optimum for phenotypic traits¹.

• Makes logical sense, but how well supported emprically?

- <u>Direct evidence</u>: (1) Phenotypic selection analysis.
- ► Quadratic selection gradient¹ $\gamma = \text{Cov}\left[(z \overline{z})^2, \frac{W}{\overline{W}}\right] / \sigma_z^4$ Mean curvature of fitness landscape, $\gamma < 0$ generally interpreted as stabilizing selection

 \blacktriangleright Meta-analysis found as many $\gamma > 0$ as $\gamma < 0$, interpreted as lack of evidence for stab. selection²

1: Lande & Arnold (1983 Evolution); 2: Kingsolver et al (2001 Am Nat)

- <u>Direct evidence</u>: (1) Phenotypic selection analysis.
- > Quadratic selection gradient¹ $\gamma = \text{Cov}\left[(z \overline{z})^2, \frac{W}{\overline{W}}\right] / \sigma_z^4$ Mean curvature of fitness landscape, $\gamma < 0$ generally interpreted as stabilizing selection

 \blacktriangleright Meta-analysis found as many $\gamma > 0$ as $\gamma < 0$, interpreted as lack of evidence for stab. selection²

 \geq But with a Gaussian peak, $\gamma > 0$ when mean phenotype sufficiently deviates from optimum

- <u>Direct evidence</u>: (1) Phenotypic selection analysis.
- ≻Quadratic selection gradient¹ $\gamma = \text{Cov}\left[(z \overline{z})^2, \frac{W}{\overline{W}}\right] / \sigma_z^4$

Mean curvature of fitness landscape, $\gamma < 0$ generally interpreted as stabilizing selection

 \blacktriangleright Meta-analysis found as many $\gamma > 0$ as $\gamma < 0$, interpreted as lack of evidence for stab. selection²

- \succ But with a Gaussian peak, $\gamma > 0$ when mean phenotype sufficiently deviates from optimum
- ⇒ What appears in theoretical predictions for changes in mean and variance under selection is the strength of stabilizing selection $S = \frac{1}{V_S}$ <u>not</u> $\gamma = \frac{\beta^2 S}{\sigma_z^4} = -S \frac{1 S(z \theta)^2}{\sigma_z^4}$ So why not estimate that directly?
- ➤Can be done using log link in GLM ³ (eg Poisson regression, relevant for fecundity selection) or directly fitting the Gaussian peak in explicit framework (eg Stan)⁴

• <u>Direct evidence</u>: (1) Phenotypic selection analysis.

Estimating fluctuating selection as movements of Gaussian fitness peak for breeding time across birds and mammals in the wild¹: 39 populations, 21 species, 9 to 63 yrs (average 33.2 years)

- (Semi)-Direct evidence: (2) Comparison of mutational to standing genetic variance
- High-throughput measurement of many spindle traits in *C. elegans* embryos

- embryo size С final length distance 22 18 8 longation rate initial length ē pole-to-pole distance centrosome size division plane position 100 200 300 Time (s)
 - Comparing MA lines to natural isolates: Standing variation of all traits (y-axis) well predicted by their mutational (co)variances (xaxis), but only after accounting for stabilizing (& correlational) selection

• Indirect evidence: (3) Distribution of fitness effects across environments

Theory (Martin & Lenormand 2006 Evolution):

- Larger variance of *s*
- Higher proportion of beneficials Same mean E(s) = -tr(SM)/2

• Indirect evidence: (3) Distribution of fitness effects across environments

<u>Theory</u> (Martin & Lenormand 2006 Evolution):

Experiment 1 (Trindade et al 2012 Evolution): Confirmed + estimated all parameters from DFE predicted by FGM

• Indirect evidence: (3) Distribution of fitness effects across environments

<u>Theory</u> (Martin & Lenormand 2006 Evolution):

Experiment 2 (Hietpas et al 2013 Evolution): Confirmed + estimated s_0 from FGM

- Indirect evidence: (4) Paradox of stasis
- Rates of evolution across timescales¹:

Fast over short times, stasis in the long run, then burst after 10⁶ yrs.

Compared to evolutionary QG theory¹: Not consistent with drift, but consistent with stationary fluctuations of an optimum phenotype + rare strong shifts.

• Indirect evidence: (5) Reversion of selection responses

• Indirect evidence: (5) Reversion of selection responses

but here could only account for 15-20% of response

15

10

- Indirect evidence: (6) Ecological speciation
- ➢F2 hybrids between forming species, in nascent adaptive radiation in *pupfishes*

Combining these converging lines of evidence:

- (1) (Fluctuating) phenotypic selection analysis
- (2) Comparison of mutational to standing genetic variance
- (3) Distribution of fitness effects across environments
- (4) Paradox of stasis
- (5) Reversion of selection responses
- (6) Ecological speciation

+ others (eg fitness cost of artificial selection in natural environments¹, ...) Stabilizing selection seems overall well supported.

However specific shape of fitness peak may deviate from that usually assumed, especially far from optimum.

Goal and overview of the lecture

How can moving optimum models help understand and predict adaptation to changing environments?

Foreword: Moving optimum model

- 1. Adaptation to directional environmental change
 - 2. Adaptation to cycling environments
- 3. Adaptation to stochastic environmental fluctuations

Gaussian fitness peak

• Any phenotype-fitness map with an optimum can be approximated as Gaussian (2nd order Taylor series on log sale) $((z - \theta)^2)$

$$W(z) = W_{\max} \exp\left(-\frac{(z-\theta)^2}{2\omega^2}\right)$$

Optimum phenotype θ , width of fitness peak ω

• If trait z is a normally distributed (polygenic+residual variation), then mean fitness is also Gaussian with respect to mean phenotype

$$\overline{W} = \int_{-\infty}^{\infty} p(z)W(z)dz \propto \exp\left(-\frac{S(\overline{z}-\theta)^2}{2}\right)$$
$$S = \frac{1}{V_s} = \frac{1}{(\omega^2 + \sigma_z^2)}$$
 is the strength of stabilizing selection

Gaussian fitness peak

• The mean mismatch with optimum $x = \overline{z} - \theta$ drives evolutionary dynamics

➤ Change in frequency *p* of a mutation with effect *α* on the trait in haploid population: $\Delta \ln\left(\frac{p}{1-p}\right) = \ln\left(\frac{W(\bar{z}+\alpha)}{W(\bar{z})}\right) = -\frac{s}{2}\left[(x + \alpha)^2 - x^2\right] = -\frac{s}{2}\left[\alpha^2 + 2\alpha x\right]$ → linear in mismatch.

For a normally distributed trait, directional gradient (selection on mean phenotype) is¹: $\beta = \frac{\partial \ln \overline{W}}{\partial \overline{z}} = -Sx \quad → \text{ linear in mismatch}$

Gaussian fitness peak

- Response to selection also depends on additive genetic variance: $\Delta \bar{z} = G\beta = -GSx \rightarrow$ Linear restoring force reducing deviations from optimum x
- For a given deviation x, faster evolution if larger adaptive potential SG, i.e. narrow fitness peak x large additive genetic variance.
- When genetic variance can be approximated as constant, simple dynamical system allowing analytical progress under relevant types of environmental change.

- Abrupt directional change (environmental shift) addressed in previous lectures (in adaptive walk¹ and polygenic² regimes)
- More gradual tendencies (e.g. global warming) can be modeled as steady change at constant speed v, preceded by a constant environment

1: Orr (1998 Evolution) 2: Lande (1976), Hayward & Sella (2022)

LM Chevin - Adaptation ICTS 2024 - Moving optimum

- <u>Low mutation regime (origin-fixation process)</u>: Adaptive walk by sequential fixation in otherwise monomorphic population.
- Reminder: Under sudden shift, populations start far from optimum
 → large effect mutations can fix in early steps¹

FIG. 8. Spacings between largest and next-to-largest, etc. factors fixed during adaptation.

- <u>Low mutation regime (origin-fixation process)</u>: Adaptive walk by sequential fixation in otherwise monomorphic population.
- Under gradual trend, selection coefficients change as optimum moves
 → A mutation first needs to become beneficial

- <u>Low mutation regime (origin-fixation process)</u>: Adaptive walk by sequential fixation in otherwise monomorphic population.
- Under gradual trend, selection coefficients change as optimum moves
 → A mutation first needs to become beneficial

- <u>Low mutation regime (origin-fixation process)</u>: Adaptive walk by sequential fixation in otherwise monomorphic population.
- Under gradual trend, selection coefficients change as optimum moves
 → A mutation first needs to become beneficial

- <u>Low mutation regime (origin-fixation process)</u>: Adaptive walk by sequential fixation in otherwise monomorphic population.
- Under gradual trend, selection coefficients change as optimum moves
 → A mutation first needs to become beneficial

- <u>Low mutation regime (origin-fixation process)</u>: Adaptive walk by sequential fixation in otherwise monomorphic population.
- Under gradual trend, selection coefficients change as optimum moves
 → A mutation first needs to become beneficial

- <u>Low mutation regime (origin-fixation process)</u>: Adaptive walk by sequential fixation in otherwise monomorphic population.
- Under gradual trend, selection coefficients change as optimum moves
 → A mutation first needs to become beneficial

- <u>Low mutation regime</u> (origin-fixation process): Adaptive walk by sequential fixation in otherwise monomorphic population.
- Under gradual trend, selection coefficients change as optimum moves \rightarrow A mutation first needs to become beneficial (duration T_{ℓ}), then escape drift (T_{w}), then reach high frequency (T_{f})¹.

- <u>Low mutation regime (origin-fixation process)</u>: Adaptive walk by sequential fixation in otherwise monomorphic population.
- Under gradual trend, selection coefficients change as optimum moves \rightarrow A mutation first needs to become beneficial (duration T_{ℓ}), then escape drift (T_{w}), then reach high frequency (T_{f})¹.
- Slower environmental changes are dominated by T_{ℓ} , favoring small steps because they become beneficial earlier

- <u>Low mutation regime</u> (origin-fixation process): Adaptive walk by sequential fixation in otherwise monomorphic population.
- Under gradual trend, selection coefficients change as optimum moves
- A single composite parameter determines the genetics of adaptation¹:

$\gamma = \frac{\nu}{NUS\sigma_{\alpha}^{3}}$	v: Speed of environmental changeN: population size]	Ecology
	U: genomic mutation rate S: Strength of stabilizing selection	_	Adaptive potential
	σ_lpha : SD of mutation phenotypic effects		

- Large γ: Environment changes fast relative the adaptive potential.
 Adaptation is genetically limited, mutations of large effects can fix (cf Orr 1998)
- Small γ: Environment changes slowly relative the adaptive potential. Adaptation is environmentally limited, mutations of small effects mostly fix
- <u>Highly polymorphic regime:</u>
- Distance to optimum $x = \overline{z} \theta$ initially increases as phenotype lags behind optimum.
- This increases the strength of directional selection and response.

- <u>Highly polymorphic regime:</u>
- Distance to optimum $x = \overline{z} \theta$ initially increases as phenotype lags behind optimum.
- This increases the strength of directional selection and response.
- Lag <u>eventually equilibrates</u>, with mean phenotype evolving at same speed as optimum: $\Delta \bar{z} = -GSx_{eq} = v$
- Equilibrium lag is thus $x_{eq} = -\frac{v}{SG}$ \rightarrow larger with fast environmental change and low adaptive potential

- <u>Highly polymorphic regime:</u>
- Distance to optimum $x = \overline{z} \theta$ initially increases as phenotype lags behind optimum.
- This increases the strength of directional selection and response.
- Lag <u>eventually equilibrates</u>, with mean phenotype evolving at same speed as optimum: $\Delta \bar{z} = -GSx_{eq} = v$
- Equilibrium lag is thus $x_{eq} = -\frac{v}{SG}$ \rightarrow larger with fast environmental change and low adaptive potential
- Reciprocal dynamics to sudden shift

1: Pease et al 1989; Lynch et al 1991; Lynch & Lande 1993

 $\gamma = 0.01$

100

200

300

400

500

8

6

2

- <u>Highly polymorphic regime:</u>
- Distance to optimum $x = \overline{z} \theta$ initially increases as phenotype lags behind optimum.
- This increases the strength of directional selection and response.
- Lag <u>eventually equilibrates</u>, with mean phenotype evolving at same speed as optimum: $\Delta \overline{z} = -GSx_{eq} = v$
- Equilibrium lag is thus $x_{eq} = -\frac{v}{SG}$ \rightarrow larger with fast environmental change and low adaptive potential
- Analog to adaptive walk regime: $\gamma =$ 1: Pease et al 1989; Lynch et al 1991; Lynch & Lande 1993

- <u>Highly polymorphic regime:</u>
- Maximum reduction in population growth rate caused by maladaptation: Lag load $L = \frac{S}{2} x_{eq}^2 = \frac{v^2}{2SG^2}$
- The critical rate of environmental change at which $r_{max} - L = 0$ is $v_c = \sqrt{2r_{max}SG}$
- Narrower fitness peak (larger S) causes larger fitness drop for a given mismatch x, but also faster evolutionary reduction of x. The latter dominates, increasing v_c.
- But may be violated with other fitness function²

- Fitness function where strength of selection β does not increase monotonically with maladaptation
- Maximum selection gradient
 Tipping point for rate of evolution
- Larger lags lead to ever-increasing maladaptation: Extinction vortex
- Even transient increase in lag may be impossible to recover from: hysteresis

- Seasonality occurs on evolutionary timescales for short lived species.
- Such organisms usually have large population sizes, thus high adaptive potential.
- Other cycles occur with larger periods (El Niño, North Atlantic oscillation...), and could be tracked by more long-lived organisms

LM Chevin - Adaptation ICTS 2024 - Moving optimum

Direct observation of adaptive tracking on ecological time scales in Drosophila Science **375**, 1246 (2022)

Seth M. Rudman^{1,2}*†, Sharon I. Greenblum^{3,4}*†, Subhash Rajpurohit^{1,5}†, Nicolas J. Betancourt¹, Jinjoo Hanna¹, Susanne Tilk³, Tuya Yokoyama³, Dmitri A. Petrov³, Paul Schmidt¹*

Direct observation of adaptive tracking on ecological time scales in Drosophila Science **375**, 1246 (2022)

Seth M. Rudman^{1,2*+}, Sharon I. Greenblum^{3,4*+}, Subhash Rajpurohit^{1,5+}, Nicolas J. Betancourt¹, Jinjoo Hanna¹, Susanne Tilk³, Tuya Yokoyama³, Dmitri A. Petrov³, Paul Schmidt^{1*}

Parallel phenotypic changes

Largely repetable genetic differentiation over time

Direct observation of adaptive tracking on ecological time scales in *Drosophila* Science **375**, 1246 (2022)

Seth M. Rudman^{1,2*+}, Sharon I. Greenblum^{3,4*+}, Subhash Rajpurohit^{1,5+}, Nicolas J. Betancourt¹, Jinjoo Hanna¹, Susanne Tilk³, Tuya Yokoyama³, Dmitri A. Petrov³, Paul Schmidt^{1*}

RECOMBINED GENERATIONS AN

80 ISOGENIC

LINES ORIGINALLY COLLECTED IN SPRING IN PENNSYLVANIA

> « Overall, our results show that strong and temporally variable natural selection can consistently drive **rapid and polygenic adaptation of multiple fitnessassociated phenotypes** on the same time scale as the environmental change »

Parallel phenotypic changes

pairwise Fst

- Model¹: $\theta = A \sin\left(\frac{2\pi t}{T}\right)$, amplitude A and period T
- **Polygenic trait** with constant *G*
- After $\sim \frac{1}{SG}$ generations, mean phenotype settles into sine wave with same period as optimum, but:

- amplitude multiplied by
$$\zeta = \frac{SGT}{\sqrt{(SGT)^2 + (2\pi)^2}} \le 1$$

- phase shifted (delayed) by $\varphi = -\arctan\left(\frac{2\pi}{SGT}\right)$

• Higher adaptive potential *SG* and slower oscillations (larger *T*) lead to closer adaptive tracking of optimum $(\zeta \rightarrow 1 \text{ and } \varphi \rightarrow 0)$

- Single locus with selection coefficient $s = A \sin\left(\frac{2\pi t}{T}\right)$
- \succ Quarter-period lag between frequency p and s (max(p) when s = 0)
- > Amplitude of p is $A_p \approx A \frac{T}{8\pi} \rightarrow$ larger under larger period and maximum s

Randomly fluctuating environment

• Most environments exhibit residual noise, after removing any trend

Randomly fluctuating environment

- Most environments exhibit residual noise, after removing any trend
- These fluctuations may well have deterministic causes, but if the latter are
 (i) unknown
 - (ii) external to the system (and potentially complex)
 - (iii) beyond reach of measurement precision,
- then fluctuations are **effectively random**, both to scientists analyzing them and to organisms experiencing them.
- \rightarrow Treated as **stochastic processes** = random variable with time dependence

• Randomness matters when making predictions

Deterministic time series:

• Randomness matters when making predictions Deterministic time series:

The future is certain provided accurate measurement of the past, and perfect knowledge of causal factors.

• Randomness matters when making predictions

Stochastic time series:

LM Chevin - Adaptation ICTS 2024 - Moving optimum

• Randomness matters when making predictions

Stochastic time series:

The future is probabilistic even with perfect measurement

Variance of the process matters, not just expectation

• **Temporal autocorrelation** ρ determines timescale of predictability

• Related to "colour » of environmental noise¹

Fig. from Leung et al (2020 Ecol Lett) 1: Vasseur & Yodzis (2004 Ecology)

 Selection on mutation with phenotypic effect *α* in background phenotype *m*, in haploid population¹.

Denoting
$$\psi = \ln\left(\frac{p}{q}\right)$$
, ie the logit frequency,
 $\Delta \psi = \ln W_{m+\alpha} - \ln W_m = -\frac{S\alpha}{2} [\alpha + 2(m-\theta)]$
 $\Rightarrow \psi_t = \psi_0 - \frac{S\alpha}{2} \left[\alpha t + 2\sum_{i=0}^{t-1} (m_i - \theta_i)\right]$

Additive in mismatch \rightarrow If optimum θ follows a Gaussian process, so does ψ .

If changes in background mean phenotype m can be neglected, then ψ simply integrates all past optimas, with equal weight on all times

- Assume the optimum follows a stationary autocorrelated Gaussian process (AR1)
- Fluctuation pattern has **no influence on expected change** in (logit) frequency
- Stochastic variance of ψ is $\sigma_{\psi,t}^2 \approx \sigma_s^2 \frac{1+\rho}{1-\rho} t$, with $\sigma_s^2 = (S\alpha\sigma_\theta)^2$
- → Increases linearly, faster under higher autocorrelation
- On *p* scale, variance of ψ translates into variance in the timing of selective sweeps

- If background genetic variance for the trait is normally distributed, then mean background also evolves in response to fluctuating optimum.
- The process for $\psi = \text{logit}(p)$ becomes **stationary, with variance that plateaus** \rightarrow Other polymorphic loci buffer the stochasticity perceived by major gene

• For polygenic trait with constant variance, the mean phenotype¹ is

$$\bar{z}_t = \bar{z}_0 (1 - GS)^t + GS \sum_{j=1}^t (1 - GS)^{j-1} \theta_{t-j} \xrightarrow[t \to \infty]{} GS \sum_{j=1}^\infty (1 - GS)^{j-1} \theta_{t-j}$$

→ Weighted average of past optima, with more weight on more recent ones. Smoothes environmental "signal", all the more as adaptive potential SG is small

• For polygenic trait with constant variance, the mean phenotype¹ is

$$\bar{z}_t = \bar{z}_0 (1 - GS)^t + GS \sum_{j=1}^t (1 - GS)^{j-1} \theta_{t-j} \xrightarrow[t \to \infty]{} GS \sum_{j=1}^\infty (1 - GS)^{j-1} \theta_{t-j}$$

- If optimum undergoes Gaussian process, so do:
 - the mean phenotype \bar{z} (linear combination of Gaussians)
 - the mismatch with optimum $x = \overline{z} \theta$
- \rightarrow The distribution of maladaptation can be summarized by its mean and variance.
- At stationarity:
- >The expected mean phenotype matches the expected optimum

> But the variance and autocorrelation of mismatch play important roles.

- Directional selection gradient is proportional to phenotypic mismatch, $\beta = -S(\bar{z} \theta)$
- Even with a constant optimum, drift causes temporal variation in mismatch $(\bar{z} \theta)$

- The variance of directional selection caused b drift aroung the constant optimum is $V(\beta) = \frac{S}{(2-SG)N_e}$
- \rightarrow Lower bound for fluctuations in directional selection, larger for lower N_e and larger S.
- The autocorrelation function of selection gradients is $ACF(\beta, \tau) = (1 SG)^{\tau}$
- \rightarrow Evolutionary inertia over timescale 1/(SG)longer with lower evolutionary potential

• Autocorrelated fluctuating optimum (AR1), with T the characteristic time over which optimum is autocorrelated

- Autocorrelated fluctuating optimum (AR1), with T the characteristic time over which optimum is autocorrelated
- Without drift: $V(\beta) \approx \frac{S \sigma_{\theta}^2}{1+SGT}$

- Higher autocorrelation leads
 to better adaptive tracking,
 thus smaller fluctuations in β
- The variance due to drift around optimum adds up to that of optimum fluctuations

 Autocorrelated fluctuating optimum (AR1), with T the characteristic time over which optimum is autocorrelated

• Without drift:
$$V(\beta) \approx \frac{S \sigma_{\theta}^2}{1+SGT}$$

ACF $(\beta, \tau) = \frac{e^{-\frac{\tau}{T}} - SGT e^{-SG\tau}}{1-SGT}$

(Weighted) difference between autocorrelation of optimum and evolutionary inertia

→ Fluctuations in β do not tell the whole story about fluctuating selection!

 Analytical predictions assuming constant genetic variance work well on individualbased simulations with high mutation rates

Population dynamics under moving optimum

- Evolution and demography are connected through the fitness landscape¹ relating population mean fitness \overline{W} to the mean phenotype \overline{z}
- Simple discrete-time model:

Demography: $\ln N_{t+1} = \ln N_t + \ln \overline{W}_t$ Evolution: $\Delta \overline{z} = G \frac{\partial \ln \overline{W}}{\partial \overline{z}}$

• With Gaussian fitness peak, mean mismatch with optimum drives eco-evo dynamics

Demography: $\ln N_{t+1} = \ln N_t + r_{\max} - g(N_t) - \frac{s}{2}(\bar{z}_t - \theta_t)^2$ Evolution: $\Delta \bar{z} = -GS(\bar{z}_t - \theta_t)$

> 1 : Wright (1937 PNAS) Crow & Kimura (1970) Lande (1976 Evolution, 1982 Ecology)

Population dynamics under moving optimum

• Neglecting density dependence (eg under severe stress): $n_t = \ln N_t = n_0 + r_{\max}t - \frac{s}{2}\sum_{k=0}^{t-1}(\bar{z}_k - \theta_k)^2$

Unweighted sum of all **past maladaptation** → Past extreme events may have long-lasting consequences

• If θ is a Gaussian process, so are \overline{z} and $(\overline{z} - \theta)$ Then $n = \ln N$ is related to chi-square, or gamma distribution with shape parameter increasing with time

Distribution of population size

- The reverse gamma distribution is:
 - Bounded above by growth of optimum phenotype

Left skewed

→ excess of small population sizes at high extinction risk

Distribution of population size

- The reverse gamma distribution is:
 - Bounded above by growth of optimum phenotype
 - Left skewed
 - → excess of small population sizes at high extinction risk
 - Starting from fixed size, tends to normal over time, but slowly (excess of small N remains)

Distribution of population size

- The reverse gamma distribution is:
 - Bounded above by growth of optimum phenotype
 - Left skewed
 - → excess of small population sizes at high extinction risk
 - Starting from fixed size, tends to normal over time, but slowly (excess of small N remains)
 - Autocorrelation of optimum :
 - increases the expected lnN (facilitates adaptive tracking^{1,2})
 - increases variance of population size (among independent lineages)¹.
 - \rightarrow possibly antagonistic for extinction risk

LM Chevin - Adaptation ICTS 2024 - Moving optimum

Chevin et al 2017 (Am Nat)

Conclusion

- Models of adaptation to an optimum phenotype rely on plausible biological assumptions
- They yield predictions about adaptation across a range of conditions (low/high mutation, fitness and traits).
 → Combine several lines of evidence.
- Can help understand adaptation, but only a starting point: reality is more complex! Multiple peaks, frequency dependence (flattening fitness peaks...), space, phenotypic plasticity...
Thanks! Questions?

Gaussian fitness peak

Recursion for the mismatch with optimum:

$$x_{t} = \bar{z}_{t} - \theta_{t} = \bar{z}_{t-1} - GS(\bar{z}_{t-1} - \theta_{t-1}) - \theta_{t-1} + \theta_{t-1} - \theta_{t}$$

$$x_t = (1 - GS)x_{t-1} + \theta_{t-1} - \theta_t$$
$$\Delta x = -GSx_{t-1} - \Delta \theta$$

Lande (1976 Evolution)

LM Chevin - Adaptation ICTS 2024 - Moving optimum

Gaussian fitness peak

- <u>Recursion for mean phenotype \bar{z} </u>: $\bar{z}_t = \bar{z}_{t-1} - GS(\bar{z}_{t-1} - \theta_{t-1}) = \bar{z}_{t-1}(1 - GS) + GS\theta_{t-1}$ $\bar{z}_1 = \bar{z}_0(1 - GS) + GS\theta_0, \quad \bar{z}_2 = \bar{z}_0(1 - GS)^2 + GS(1 - GS)\theta_0 + GS\theta_1,$ $\bar{z}_3 = \bar{z}_0(1 - GS)^2 + GS(1 - GS)^2\theta_0 + GS(1 - GS)\theta_1 + \theta_2...$
- Full solution for $t \ge 1$ is

$$\bar{z}_t = \bar{z}_0 (1 - GS)^t + GS \sum_{k=0}^{t-1} (1 - GS)^{t-1-k} \theta_k$$

Replacing j = t - k, such that k = t - u $\bar{z}_t = \bar{z}_0(1 - GS)^t + GS\sum_{i=1}^t (1 - GS)^{j-1}\theta_{t-j}$

Charlesworth et al (1993 Genet Res);

Directional environmental change

- <u>Highly polymorphic regime:</u>
- <u>Recursion for distance to optimum $x = \overline{z} \theta$ </u>: $x_t = (1 - GS)x_{t-1} - v$

 $x_0 = 0, x_1 = -v, x_2 = -v(1 + (1 - GS)), x_3 = -v[1 + (1 - GS) + (1 - GS)^2], ...$

- Full solution for $t \ge 1$ is $\Delta \bar{z} = G\beta = -GSx$ $x_t = -v \sum_{k=0}^{t-1} (1 - GS)^k = -v \frac{1 - (1 - GS)^t}{1 - (1 - GS)} = -\frac{v}{GS} [1 - (1 - GS)^t]$
- At equilibrium

$$x_{\text{eq}} = (1 - GS)x_{\text{eq}} - v \iff x_{\text{eq}} = -\frac{v}{GS}$$

Cycling environment

• **Model**¹: Sine wave with amplitude A and period T

$$\theta = A \sin\left(\frac{2\pi t}{T}\right)$$

• Continuous-time evolutionary dynamics

$$\frac{d\bar{z}}{dt} = -GS\left[\bar{z} - A\sin\left(\frac{2\pi t}{T}\right)\right]$$
$$\frac{d\bar{z}}{dt} + GS\bar{z} = A\sin\left(\frac{2\pi t}{T}\right)$$

