DNA in Tight Spaces: From Nucleosome and Chromosomes to Origami and Viruses

Aleksei Aksimentiev University of Illinois at Urbana-Champaign

Other research areas

Nanopores sequencing

Nuclear pore transport

Biological condensates

Biomimetic membrane channels

All-atom molecular dynamics simulations: the computational microscope

Massive parallel computer Blue Waters (UIUC): ~200,000 CPUs Atoms move according to classical mechanics (F= ma)

Time scale: ~0.1-100 μs Length scale: 10K - 200M atoms or (< 100 nm)³ Time resolution: 2 fs Spacial resolution: 0.1 A Interaction between atoms is defined by molecular force field

Same sign charges

All-Atom Molecular Dynamics Simulation of DNA Condensates

Add 150 mM NaCl Add explicit water Apply a half-harmonic wall potential only to DNA Solve the equation of motion

Add **64 DNA** helices

(F= ma) under **periodic boundary condition** in all directions

Classical Force Field

Bonded parameters from quantum mechanics

Standard CHARMM & AMBER Force Fields Are Not Perfect for the Simulation of DNA Condensates

Champaign-Urbana Non-Bonded FIX (CUFIX): Improved Lennard-Jones Parameters for CHARMM & AMBER

Bridging Ions Govern DNA Condensation

What else we learned from DNA array simulations

Yoo and AA, Nucleic Acids Research 44: 2036-2046 (2016)

DNA-DNA forces in array are pair-wise

Electrostatics, not hydration produces DNA condensation

Inter-DNA friction depends mostly on DNA-DNA distance

3D Organization of Human Chromosomes

Sub-million nucleosomes form a chromatin fiber.

Chromosome's Mega-Domains Can Recognize One Another

Lieberman-Aiden et al., *Science* 2009 Imakaev et al., *Nature Methods* 2012 Can DNA recognize neighbors' AT contents without mediating proteins?

AT Content Programs Strength of DNA Condensation

Yoo*, Kim*, Aksimentiev & Ha, Nature Communications (2016)

AT-rich segments form **clusters** better because they **share** polyamines with neighbors

DNA Methylation Enhances Condensation

Yoo*, Kim*, Aksimentiev & Ha, Nature Communications (2016)

smFRET experiment confirms the prediction

J. Yoo, H. Kim, A. Aksimentiev and T. Ha. Nature Communications 7:11045 (2016)

DNA attraction controlled by methylation pattern

J. Yoo, H. Kim, A. Aksimentiev and T. Ha. Nature Communications 7:11045 (2016)

DNA condensation by lysine polypeptides

Nucleic Acids Res. 46: 9401 (2018)

Using **lysine peptides** instead of spermine does not change the sequence-dependence of DNA condensation

Driving force for phase separation of nuclear DNA?

Coarse-grained simulation of a mixture of 250 CG-rich and 250 TA-rich DNA fragments.

The simulation box is 200-nm on edge. The simulation time is 100 microseconds

Nucleic Acids Res. 46: 9401 (2018)

Epigenetic modifications control flexibility

Loose binding:

DNA reading begins

Ngo, et al., Nature Communications (2016)

Tight binding:

DNA reading can't start

RNA polymerase

reads DNA sequence.

DNA looping assay

broad range of flexibility?

Cloutier and Widom, *Molecular Cell* **2004** Vafabakhsh and Ha, Science 2012

DNA Minicircle as a Model System for Quantifying DNA Flexibility

cagaatccgtgctagtacctcaatatagactccctccggtgccga

All-atom MD simulations of a DNA minicircle

Luger et al. Nature 1997 | Cloutier and Widom, Molecular Cell 2004

Stable and highly correlated dynamics during 3-µs simulation

DNA Sequence Programs Preferential Register Angle of Minicircles

The presence of the preferential register angle suggests a non-flat **free energy landscape**.

Yoo et al. to be published

Preferential Register Angle Is the Global Minimum of Free **Energy Landscape**

Yoo et al. to be published

Meta-stable

480

540

540

Why Is Free Energy Landscape Non-Flat?

- To minimize the free energy, avoid bending stiff dinucleotides: mechanical minimal frustration.
- Then, which dinucleotide steps are stiff and which are flexible?

Yoo et al. to be published

Constructing Dinucleotide Bending Stiffness Matrix Through High-Throughput MD Simulations of DNA Minicircles

Yoo et al. to be published

Connecting Physics to "Omics"

Bending energy versus experimental nucleosome occupancy two 20-kb segments of chromosome 1 of *Saccharomyces cerevisiae.*

Nucleosome occupancy and bending energy averaged over all transcription start sites (TSS) in the genome of Saccharomyces cerevisiae.

DNA, a building material

DNA origami: a method to **program self-assembly** of custom-shape 3D nanostructures

- Nanometer-scale precision
- High yield
- No expensive fabrication facilities

Custom shapes, channels, and sensors Viral DNA (scaffold)

William Shih Hendrik Dietz

For illustration, an unfolding trajectory at a high temperature is played backward.

Design and characterization of DNA nanostructures

S.M. Douglas, at el. Nature (2009)

Cryo-EM reconstruction, the only experimentally derived structural model

Computer-aided design of DNA origami with caDNAno (Shih group, Harvard U.)

Transmission electron microscopy and/or atomic force microscopy validates the design

CanDo (Mark Bathe, MIT)

Bai, ..., Dietz, PNAS (2012)

High-resolution cryoelectron microscope

Petascale computer system

Bai et al, PNAS 109:20012 (2012)

Bai et al, PNAS 109:20012 (2012)

Pseudo-atomic model

Bai et al, PNAS 109:20012 (2012)

MD simulation of the cryo-EM object starting from a caDNAno design

Bai *et al*, PNAS 109:20012 (2012)

7M atom solvated model ~200 ns MD trajectory

MD simulation of the cryo-EM object starting from a caDNAno design

Bai et al, PNAS 109:20012 (2012)

7M atom solvated model ~200 ns MD trajectory

MD simulation of the cryo-EM object starting from a caDNAno design

Bai et al, PNAS 109:20012 (2012)

7M atom solvated model ~200 ns MD trajectory

Simulated electron density is similar to experimental electron density

Electron density maps

Cryo-EM reconstruction

All-atom MD simulation

Comparison with experiment

Maffeo, Yoo & Aksimentiev, NAR 44: 3013 (2016)

EM density psuedo-atomic model

simulation

DNA origami structures

Yan and coworkers, Science (2013)

Shih and coworkers, Science (2009)

Dietz and coworkers, Science (2015)

Chris Maffeo

Chris Maffeo

Chris Maffeo

Chris Maffeo

500 bp dsDNA fragment modeled at different resolutions

24 bp/2 beads	12 bp/2 beads	6 bp/2 beads	3 bp/2 beads	1 bp/2 beads	All-atom, ~100 b
2	000				

Interactions in a simple coarse-grained DNA model

Interactions in a simple coarse-grained DNA model

Typical structural relaxation procedure

Multi-resolution simulations provide highly detailed structures quickly

Coarse-grained model captures programmed curvature

Experiment from : Science 325:725

Adaptive resolution simulation of DNA origami systems

Victoria Birkedal

Group

Andersen et al., Nature 2009

Used to interpret FRET characterization of DNA box variants: *Nanoscale* 11:18475 (2019)

Multi-resolution modeling of self-assembled DNA nanostructures

Dongran Han, Suchetan Pal, Jeanette Nangreave, Zhengtao Deng, Yan Liu, Hao Yan Science 332:342

Multi-resolution workflow extended to DNA polyhedral meshes

E Benson, A Mohammed, J Gardell, S Masich, E Czeizler, P Orponen & B Högberg Nature 523**:**441

Coarse-grained simulations for sampling structural fluctuations

Alexander E. Marras, Lifeng Zhou, Hai-Jun Su and Carlos E. Castro PNAS 112:713

- How genome ejection is triggered and sustained?
- Can it be used as a drug target?

http://darwin.bio.uci.edu/~faculty/wagner/hsv2f.html

100 nm

Packaging viruses with ARBD

ARBD: Atomic Resolution Brownian Dynamics (multi-resolution)

Package DNA (CG) with ARBD, into CryoEM reconstruction of a HK97 bacteriophage capsid. A cryoEM map of the portal is fitted into the original capsid reconstruction, and DNA is packaged through the portal.

Smooth, purely repulsive grid-based potential obtained by blurring cryoEM density and adding the portal

Multi-resolution packaging dsDNA viruses

Kush Coshic et al. to be published

Internal pressure during packaging

Comparison to structural data

Cryo-electron microscopy

Small Angle X-ray Scattering

Simulation SAXS data were generated from CRYSOL, using an atomistic PDB of the protein coat and packaged DNA

Kush Coshic et al. to be published

Conclusions and outlook

The length and time scale of an all-atom MD allows for adequate sampling on DNA-DNA interactions in complex environment

All-atom force field is accurate enough to make quantitative, experimentally testable predictions

A multi-resolution representation can expand the time and length scale of processes amenable to all-atom MD approach

Acknowledgements

Funding through CPLC

NSR

XSEDE

Extreme Science and Engineering Discovery Environment

UIUC team

