DNA in Tight Spaces: From Nucleosome and Chromosomes to Origami and Viruses

Aleksei Aksimentiev
University of Illinois at Urbana-Champaign

Other research areas

Biological condensates

Biomimetic membrane channels

All-atom molecular dynamics simulations: the computational microscope

Massive parallel computer Blue Waters (UIUC): ~200,000 CPUs

Time scale: $\sim 0.1-100 \mu \mathrm{~s}$
Length scale: $10 \mathrm{~K}-200 \mathrm{M}$ atoms or $(<100 \mathrm{~nm})^{3}$
Time resolution: 2 fs
Spacial resolution: 0.1 A

Atoms move according to classical mechanics $(\mathrm{F}=\mathrm{ma})$

Interaction between atoms is defined by molecular force field

Same sign charges

F

Same sign charges can attract (in a medium)

Effective attraction between DNA is observed when counterions have charge $\geq 2 e$

All-Atom Molecular Dynamics Simulation of DNA Condensates

Add 64 DNA helices
Add polyamine cations (+4)
Add 150 mM NaCl
Add explicit water
Apply a half-harmonic wall potential only to DNA
Solve the equation of motion ($\mathrm{F}=\mathrm{ma}$) under periodic boundary condition in all directions

Classical Force Field

Partial charges
from quantum mechanics
LJ parameters from experiments

[^0]
Standard CHARMM \& AMBER Force Fields Are Not Perfect for the Simulation of DNA Condensates

Champaign-Urbana Non-Bonded FIX (CUFIX): Improved Lennard-Jones Parameters for CHARMM \& AMBER

"Much of what is known about association and dissociation of solutes and ions comes from measurements of colligative properties" Molecular driving forces by Dill \& Bromberg.

Dimethylphosphate
Acetate
 \approx

Effectively infinite slab under PBC

Bridging lons Govern DNA Condensation

Wigner crystal model VS. Bridging model

2 mM spermine
(Todd et al. BJ 2008)

Yoo \& Aksimentiev, NAR 2016

What else we learned from DNA array simulations

Yoo and AA, Nucleic Acids Research 44: 2036-2046 (2016)

Orientation of DNA helices is azimuthally correlated

DNA-DNA forces in array are pair-wise

Electrostatics, not hydration produces DNA condensation

Inter-DNA friction depends mostly on DNA-DNA distance

3D Organization of Human Chromosomes

Sub-million nucleosomes form a chromatin fiber.

Chromosome's Mega-Domains Can Recognize One Another

Hi-C contact correlation map revealed long-range contacts between AT-rich mega domains.

Lieberman-Aiden et al., Science 2009 Imakaev et al., Nature Methods 2012

- How is such a long-range recognition possible?
- Can DNA recognize neighbors' AT contents without mediating proteins?

AT Content Programs Strength of DNA Condensation

Yoo*, Kim*, Aksimentiev \& Ha, Nature Communications (2016)

AT-rich segments form clusters better because they share polyamines with neighbors

DNA Methylation Enhances Condensation

Yoo*, Kim*, Aksimentiev \& Ha, Nature Communications (2016)

smFRET experiment confirms the prediction

J. Yoo, H. Kim, A. Aksimentiev and T. Ha. Nature Communications 7:11045 (2016)

DNA attraction controlled by methylation pattern

J. Yoo, H. Kim, A. Aksimentiev and T. Ha. Nature Communications 7:11045 (2016)

DNA condensation by lysine polypeptides

Nucleic Acids Res. 46: 9401 (2018)

Using lysine peptides instead of spermine does not change the sequence-dependence of DNA condensation

Driving force for phase separation of nuclear DNA?

Coarse-grained simulation of a mixture of 250 CG-rich and 250 TA-rich DNA fragments.
The simulation box is $200-\mathrm{nm}$ on edge. The simulation time is 100 microseconds
Nucleic Acids Res. 46: 9401 (2018)

Epigenetic modifications control flexibilitu

Loose binding:
DNA reading begins

Ngo, et al., Nature Communications (2016)
Tight binding:
DNA reading can't start
RNA polymerase
reads DNA sequence.

DNA looping assay

Measure average looping time

Questions:

- How does DNA sequence program such a broad range of flexibility?

DNA Minicircle as a Model System for Quantifying DNA Flexibility

cagaatccgtgctagtacctcaatatagactccctccggtgccga ggccgctcaattggtcgtaggactatcctcacctccaccgtttca

All-atom MD simulations of a DNA minicircle

DNA Sequence Programs Preferential Register Angle of Minicircles

cagaatccgtgctagtacctcaatatagactccctccggtgccga ggccgctcaattggtcgtaggactatcctcacctccaccgtttca

$3-\mu s$ simulation of 90-bp DNA minicircle: dynamic \& highly correlated

DNA sequence programs the preferential angle.

- The presence of the preferential register angle suggests a non-flat free energy landscape.

Preferential Register Angle Is the Global Minimum of Free Energy Landscape

- We change the register angle \angle, from 0° to 360° with 32° increment.
- In this movie, rotation is accelerated for visualization purpose.
- At a given angle, we compute the average torque for $\sim 0.5 \mu \mathrm{~s}$.
- In total, $5.5 \mu \mathrm{~s}$ simulation.

Yoo et al. to be published

Why Is Free Energy Landscape Non-Flat?

- To minimize the free energy, avoid bending stiff dinucleotides: mechanical minimal frustration.
- Then, which dinucleotide steps are stiff and which are flexible?

Constructing Dinucleotide Bending Stiffness Matrix Through High-Throughput MD Simulations of DNA Minicircles

Automated high-throughput computation of free energy landscapes

Total simulation time $\sim 100 \mu \mathrm{~s}$

$$
E(\phi)=\sum_{s=1}^{90} k(\text { dinucleotide type of } s, s+1) \omega_{1, s}(\phi)^{2}
$$

Optimize Dinucleotide Bending Stiffness Matrix
using the free energy landscapes.

mG: G of mCpG sites
Yoo et al. to be published

Connecting Physics to "Omics"

Bending energy versus experimental nucleosome occupancy two 20-kb segments of chromosome 1 of Saccharomyces cerevisiae.

Nucleosome occupancy and bending energy averaged over all transcription start sites (TSS) in the genome of Saccharomyces cerevisiae.

Yoo et al. to be published

DNA, a building material

DNA origami: a method to program self-assembly of custom-shape 3D nanostructures

- Nanometer-scale precision
- High yield
- No expensive fabrication facilities

Custom shapes, channels, and sensors

Nadrian Seeman
Paul Rothemund

William Shih
Hendrik Dietz

For illustration, an unfolding trajectory at a high temperature is played backward.

Design and characterization of DNA nanostructures

Bai, ... , Dietz, PNAS (2012)

Computer-aided design of DNA origami with caDNAno (Shih group, Harvard U.)

Transmission electron microscopy and/or atomic force microscopy validates the design

CanDo (Mark Bathe, MIT)

Cryo-EM reconstruction versus all-atom simulation

High-resolution cryoelectron microscope

Petascale computer system

Cryo-EM reconstruction versus all-atom simulation

Bai et al, PNAS 109:20012 (2012)

Cryo-EM reconstruction versus all-atom simulation

Bai et al, PNAS 109:20012 (2012)

Cryo-EM reconstruction versus all-atom simulation

Bai et al, PNAS 109:20012 (2012)

MD simulation of the cryo-EM object starting from a caDNAno design

Bai et al, PNAS 109:20012 (2012)

7M atom solvated model ~200 ns MD trajectory

MD simulation of the cryo-EM object starting from a caDNAno design

Bai et al, PNAS 109:20012 (2012)

MD simulation of the cryo-EM object starting from a caDNAno design

Bai et al, PNAS 109:20012 (2012)

7M atom solvated model ~200 ns MD trajectory

Simulated electron density is similar to experimental electron density

Electron density maps

Cryo-EM reconstruction

All-atom MD simulation

Comparison with experiment

Maffeo, Yoo \& Aksimentiev, NAR 44: 3013 (2016)

EM density psuedo-atomic model

ENRG MD for Origami Structur x \qquad

The Aksimentiev Group

Theoretical and Computational Research at the Interface of Physics, Biology, and Nanotechnology

ENRG MD For Origami Structure Prediction

Upload a DNA origami design .json file
Choose File No file chosen

Select the origami lattice. *

- Square

Honeycomb

Select the scaffold sequence. *

- m13mp18 (up to 7,249 bases)

Custom

Simulation package *

- NAMD (CHARMM FF)

Gromacs (AMBER FF; beta coming soon)

Create simulation files

DNA origami structures

Yan and coworkers, Science (2011)

Shih and coworkers, Science (2009)

Dietz and coworkers, Science (2012)

25nm

56 nm

Yan and coworkers, Science (2013)

Dietz and coworkers, Science (2015)

Multi-Resolution DNA (mrDNA) model

Nucleic Acids Research 48: 5135 (2020)

Chris Maffeo

Strategy: change resolution for speed and detail

Multi-Resolution DNA (mrDNA) model

Nucleic Acids Research 48: 5135 (2020)

Chris Maffeo

Strategy: change resolution for speed and detail

Multi-Resolution DNA (mrDNA) model

Nucleic Acids Research 48: 5135 (2020)

Chris Maffeo

Strategy: change resolution for speed and detail

Multi-Resolution DNA (mrDNA) model

Nucleic Acids Research 48: 5135 (2020)

Chris Maffeo

Strategy: change resolution for speed and detail

Multi-Resolution DNA (mrDNA) model

Nucleic Acids Research 48: 5135 (2020)

Chris Maffeo

Strategy: change resolution for speed and detail

Multi-Resolution DNA (mrDNA) model

Nucleic Acids Research 48: 5135 (2020)

Chris Maffeo

Strategy: change resolution for speed and detail

500 bp dsDNA fragment modeled at different resolutions

Interactions in a simple coarse-grained DNA model

Interactions in a simple coarse-grained DNA model

Typical structural relaxation procedure

Nucleic Acids Research 48: 5135 (2020)

Multi-resolution simulations provide highly detailed structures quickly

Coarse-grained model captures programmed

 curvature

Experiment from : Science 325:725

Adaptive resolution simulation of DNA origami systems

Andersen et al., Nature 2009

Used to interpret FRET characterization of DNA box variants: Nanoscale 11:18475 (2019)

Multi-resolution modeling of self-assembled DNA nanostructures

Dongran Han, Suchetan Pal, Jeanette Nangreave, Zhengtao

Deng, Yan Liu, Hao Yan
Science 332:342

 - Ton

Multi-resolution workflow extended to DNA polyhedral meshes

E Benson, A Mohammed, J Gardell, S Masich, E Czeizler, P

Orponen \& B Högberg
Nature 523:441

Nucleic Acids Research 48: 5135 (2020)

Coarse-grained simulations for sampling structural fluctuations

Alexander E. Marras, Lifeng
Zhou, Hai-Jun Su and Carlos E.
Castro PNAS 112:713

Nucleic Acids Research 48: 5135 (2020)

Viral genome, the program of infection

Cryoem reconstruction with concentric rings (Evilevitch et al, UIUC)

Open questions:

- What is the 3D structure of the genome?
- How genome ejection is triggered and sustained?
- Can it be used as a drug target?
DNA is a
highly
charged
polymer!

http://darwin.bio.uci.edu/~faculty/wagner/hsv2f.html

Packaging viruses with ARBD

ARBD: Atomic Resolution Brownian Dynamics (multi-resolution)

Package DNA (CG) with ARBD, into CryoEM reconstruction of a HK97 bacteriophage capsid.
A cryoEM map of the portal is fitted into the original capsid reconstruction, and DNA is packaged through the portal.

Smooth, purely repulsive grid-based potential obtained by blurring cryoEM density and adding the portal

Multi-resolution packaging dsDNA viruses

Kush Coshic et al. to be published

Internal pressure during packaging

packaging complete

Kush Coshic et al. to be published
Pressure (atm)

Comparison to structural data

Cryo-electron microscopy

Experiment
J. Mol. Biol. (2009) 391, 471-483, Hendrix et al

Small Angle X-ray Scattering

Experiment:
Journal of molecular biology, 408: 541 (2011)

Simulation SAXS data were generated from CRYSOL, using an atomistic PDB of the protein coat and packaged DNA

Kush Coshic et al. to be published

Conclusions and outlook

The length and time scale of an all-atom MD allows for adequate sampling on DNA-DNA interactions in complex environment

All-atom force field is accurate enough to make quantitative, experimentally testable predictions

A multi-resolution representation can expand the time and length scale of processes amenable to all-atom MD approach

Acknowledgements

- Funding through CPLC

Center for the Physics

 of Living Cells
- Computations

Glue waitis
 SUSTAINED PETASCALE COMPUTING

UIUC team

Jejoong Yoo

Chris
Maffeo

TJ Ha JHU

Kim group at UNIST in Korea

[^0]: Bonded parameters from quantum mechanics

