Thermal pressure on ultra-relativistic bubble walls

Andrew J. Long Rice University @ ICTS workshop Jan 2, 2025

As the Universe expands, the plasma contained within it cools down.

$$\frac{\mathrm{d}}{\mathrm{d}t}(a^3s) = 0 \qquad \Rightarrow \qquad T(t) \propto a(t)^{-1}$$

As the Universe expands, the plasma contained within it cools down.

$$\frac{\mathrm{d}}{\mathrm{d}t}(a^3s) = 0 \qquad \Rightarrow \qquad T(t) \propto a(t)^{-1}$$

Cosmological phase transitions may have occurred throughout the cosmic history when the plasma temperature passed through particle physics energy scales.

- → GUT scale
- → SUSY scale
- → electroweak scale Higgs fields gets a vev
- → QCD scale color confinement & chiral symmetry breaking
- → misc: B-breaking, L-breaking, PQ-breaking, dark sectors, inflaton sector, ...

As the Universe expands, the plasma contained within it cools down.

$$\frac{\mathrm{d}}{\mathrm{d}t}(a^3s) = 0 \qquad \Rightarrow \qquad T(t) \propto a(t)^{-1}$$

Cosmological phase transitions may have occurred throughout the cosmic history when the plasma temperature passed through particle physics energy scales.

- → GUT scale
- → SUSY scale
- ➔ electroweak scale Higgs fields gets a vev
- → QCD scale color confinement & chiral symmetry breaking
- → misc: B-breaking, L-breaking, PQ-breaking, dark sectors, inflaton sector, ...

First order phase transitions are characterized by *phase coexistence*

e.g., both liquid water and water vapor are present during the condensation phase transition

As the Universe expands, the plasma contained within it cools down.

$$\frac{\mathrm{d}}{\mathrm{d}t}(a^3s) = 0 \qquad \Rightarrow \qquad T(t) \propto a(t)^{-1}$$

Cosmological phase transitions may have occurred throughout the cosmic history when the plasma temperature passed through particle physics energy scales.

- → GUT scale
- → SUSY scale
- ➔ electroweak scale Higgs fields gets a vev
- → QCD scale color confinement & chiral symmetry breaking
- → misc: B-breaking, L-breaking, PQ-breaking, dark sectors, inflaton sector, ...

First order phase transitions are characterized by *phase coexistence*

e.g., both liquid water and water vapor are present during the condensation phase transition

SM predicts continuous crossover for EW & QCD (at small chemical potential)

new physics is required for a first order cosmological phase transition

observational probes of 1st order PT are necessarily tests of new physics

Bubble business

Phase coexistence means boundaries between phase domains (a.k.a., bubbles or walls)

today's talk: How quickly do bubbles grow? What is the speed of the bubble walls?

Why care about bubble wall speed?

for a nonrelativistic planar bubble wall: $\vec{F} = m\vec{a} \implies P = \sigma \dot{v}_w$ (P = force/area = pressure) $(\sigma = \text{mass/area} = \text{tension})$

pressure on the wall
$$P = P_{\rm vac} - P_{\rm therm}(v_w)$$

for a nonrelativistic planar bubble wall: $\vec{F} = m\vec{a} \implies P = \sigma \dot{v}_w$ (P = force/area = pressure) $(\sigma = \text{mass/area} = \text{tension})$

Starting simple: bubbles in vacuum

To begin, let's calculate the motion of a planar bubble wall expanding in vacuum. (This calculation applies more generally for a sufficiently dilute medium with small friction.)

$$\phi = \phi_{\rm s} \qquad \phi \approx \phi_{\rm h}$$

$$\rho_{\rm s} \approx V_{\rm s} \qquad \rho_{\rm h} \approx V_{\rm h}$$

$$P_{\rm s} \approx -V_{\rm s} \qquad P_{\rm h} \approx -V_{\rm h}$$

$$\overrightarrow{L_w(t)}$$

Andrew Long (Rice University)

 $L_w \ll R \Leftrightarrow \text{planar approx.}$

Starting simple: bubbles in vacuum

To begin, let's calculate the motion of a planar bubble wall expanding in vacuum. (This calculation applies more generally for a sufficiently dilute medium with small friction.)

equation of motion for a planar bubble wall:

$$P_{\rm vac} = \sigma \dot{v}_w$$

differential vacuum pressure on the wall:

$$P_{\rm vac} = P_{\rm h} - P_{\rm s} = V_{\rm s} - V_{\rm h}$$

solution for the wall speed:

$$v_w(t) = v_0 + (P_{\text{vac}}/\sigma) (t - t_0)$$

wall approaches the speed of light after a time:

$$t - t_0 \approx \tau = c\sigma/P_{\rm vac}$$

this is typically a very short time compared to Hubble:

 $\sigma \sim M^3$ and $P_{\rm vac} \sim M^4$ and $H \sim M^2/M_{\rm pl}$ so $\tau H \sim M/M_{\rm pl} \ll 1$

thermal pressure on ultrarelativistic bubbles

Starting simple: bubbles in vacuum

To begin, let's calculate the motion of a planar bubble wall expanding in vacuum. (This calculation applies more generally for a sufficiently dilute medium with small friction.)

equation of motion for a planar bubble wall:

$$P_{\rm vac} = \sigma \dot{v}_w$$

differential vacuum pressure on the wall:

$$P_{\rm vac} = P_{\rm h} - P_{\rm s} = V_{\rm s} - V_{\rm h}$$

solution for the wall speed:

$$v_w(t) = v_0 + (P_{\text{vac}}/\sigma) (t - t_0)$$

wall approaches the speed of light after a time:

$$t - t_0 \approx \tau = c\sigma/P_{\rm vac}$$

this is typically a very short time compared to Hubble:

 $\sigma \sim M^3$ and $P_{\rm vac} \sim M^4$ and $H \sim M^2/M_{\rm pl}$ so $\tau H \sim M/M_{\rm pl} \ll 1$

Andrew Long (Rice University)

thermal pressure on ultrarelativistic bubbles

for a nonrelativistic planar bubble wall:

$$\vec{F} = m\vec{a} \implies P = \sigma \dot{v}_w$$
 $(P = \text{force/area} = \text{pressure})$
 $(\sigma = \text{mass/area} = \text{tension})$

$$P = P_{\text{vac}} - R_{\text{therm}}(v_w)$$

what if it's
very large?

More difficult: bubbles in a fluid

On the other extreme, bubbles can be tightly coupled to a medium.

- The system is very nonlinear -- bubble moves fluid -- fluid drags bubble.
- Often studied using numerical simulation.
- Important to study for predicting gravitational waves and baryogenesis.

see talks by: Ryuske Jinno, Hu-aike Guo, Thomas Konstandin, Graham White

for a nonrelativistic planar bubble wall: $\vec{F} = m\vec{a} \implies P = \sigma \dot{v}_w$ (P = force/area = pressure) $(\sigma = \text{mass/area} = \text{tension})$

$$P = P_{\rm vac} - P_{\rm therm}(v_w)$$

Is there a middle ground where the calculation is still analytically tractable? If the bubbles are ultra-relativistic ($\gamma_w >> 1$) then they're moving much faster than the speed of sound in the medium ($c_s^2 = 1/3$). So the fluid in front of the wall doesn't "know" that the wall is coming. This makes it much easier to calculate the thermal pressure and wall speed.

$$P_{\rm vac} - P_{\rm therm} = \sigma \dot{v}_w$$

The rest of this talk is all about: how to calculate P_{therm}

Lots of recent interest in ultra-relativistic bubbles, particularly at electroweak phase transition.

2009 -- Bodeker & Moore
2017 -- Bodeker & Moore
2020 -- Hoche, Kozaczuk, AL, Turner, & Wang
... lots of papers including but not limited to:
2020 - Azatov & Vanvlasselaer
2021 - Azatov, Vanvlasselaer, & Yin
2022 - Gouttenoire, Jinno, & Salas

2022 - De Curtis, Rose, Guiggiani, Muyor, & Panico

- 2022 Laurent & Cline
- 2023 Azatov, Barni, Petrossian-Byrne, & Vanvlasselaer

2024 -- AL & Turner

. . .

my plan: summarize BM09, BM17, & my two papers

BM09 one-to-one transitions

Kinematics at the wall

Suppose that there is some particle species that gains mass upon entering the bubble.

thermal pressure on ultrarelativistic bubbles

Pressure on the wall

The longitudinal momentum transfer induces a force (i.e., thermal pressure) on the wall:

$$P_{\text{therm}} = \nu \int \frac{\mathrm{d}^3 \vec{p}}{(2\pi)^3} f(\vec{p}) v_z \,\Delta p_z$$

Pressure on the wall

The longitudinal momentum transfer induces a force (i.e., thermal pressure) on the wall:

$$P_{\text{therm}} = \nu \int \frac{\mathrm{d}^{3} \vec{p}}{(2\pi)^{3}} f(\vec{p}) v_{z} \Delta p_{z}$$
$$\sim \mathcal{F} \sim v_{w} \gamma_{w} T^{3} \sim \Delta m^{2} / \gamma_{w} T$$

The longitudinal momentum transfer induces a force (i.e., thermal pressure) on the wall:

$$P_{\text{therm}} = \nu \int \frac{\mathrm{d}^{3} \vec{p}}{(2\pi)^{3}} f(\vec{p}) v_{z} \Delta p_{z}$$
$$\sim \mathcal{F} \sim v_{w} \gamma_{w} T^{3} \sim \Delta m^{2} / \gamma_{w} T$$

Observe that the dependence on $\gamma_{\rm w}$ cancels out!

$$\Rightarrow P_{\text{therm}} \sim \Delta m^2 T^2$$

How does the thermal pressure affect the motion?

$$P_{\rm vac} - P_{\rm therm} = \sigma \dot{v}_w$$

Runaway is still possible despite the thermal pressure:

if
$$P_{\rm vac} > P_{\rm therm}$$
 then $\gamma_w \to \infty$ runaway

Pressure on the wall

The longitudinal momentum transfer induces a force (i.e., thermal pressure) on the wall:

$$P_{\text{therm}} = \frac{\nu \int \frac{\mathrm{d}^3 \vec{p}}{(2\pi)^3} f(\vec{p}) v_z \,\Delta p_z}{\sim \mathcal{F} \sim v_w \gamma_w T^3} \sim \Delta m^2 / \gamma_w T$$

Observe that the dependence on γ_w cancels out!

 $\Rightarrow P_{\text{therm}} \sim \Delta m^2 T^2$

How does the thermal pressure affect the motion?

 $P_{\rm vac} - P_{\rm therm} = \sigma \dot{v}_w$

thermal pressure on ultrarelativistic bubbles

Runaway is still possible despite the thermal pressure:

if $P_{\text{vac}} > P_{\text{therm}}$ then $\gamma_w \to \infty$ runaway

2015 space-based interfer

Science with the space-based interferometer eLISA. II: Gravitational waves from cosmological phase transitions

Chiara Caprini^a, Mark Hindmarsh^{b,c}, Stephan Huber^b, Thomas Konstandin^d, Jonathan Kozaczuk^e, Germano Nardini^f, Jose Miguel No^b, Antoine Petiteau^g, Pedro Schwaller^d, Géraldine Servant^{d,h}, David J. Weirⁱ

Prediction of the Gravitational Wave Signal							
2.1	Contributions to the Gravitational Wave Spectrum						
	2.1.1	Scalar Field Contribution	6				
	2.1.2	Sound Waves	8				
	2.1.3	MHD Turbulence	9				
2.2	Dynamics of the Phase Transition: Three Cases						
	2.2.1	Case 1: Non-runaway Bubbles	11				
	2.2.2	Case 2: Runaway Bubbles in a Plasma	12				
	2.2.3	Case 3: Runaway Bubbles in Vacuum	13				

BM17 one-to-two transitions

Consider a model in which a particle splits upon hitting the wall - transition radiation.

examples:
$$q \to q' + W$$
 or $e^- \to e^- + \gamma$

Now we add a flavor label (a,b,c) to distinguish different particle species.

(in rest frame of the wall)

Thermal pressure

Since momenta of the recoiling particles are quantum random variables, we have to calculate the *average* momentum transfer:

$$P_{\rm th} = \nu_a \int \frac{\mathrm{d}^3 \vec{p_a}}{(2\pi)^3} f_a(\vec{p_a}) v_{a,z} \left\langle \Delta p_z \right\rangle \quad \text{(note angled brackets)}$$

$$\vec{p}_{a,s}$$
 $\vec{p}_{b,h}$

$$p_z \rangle = \int d\mathbb{P}_{a \to bc} \, \Delta p_z \quad \text{where} \quad \Delta p_z = p_{a,z,s} - p_{b,z,h} - p_{c,z,h}$$

thermal pressure on ultrarelativistic bubbles

Thermal pressure

Since momenta of the recoiling particles are quantum random variables, we have to calculate the *average* momentum transfer:

$$P_{\rm th} = \nu_a \int \frac{\mathrm{d}^3 \vec{p}_a}{(2\pi)^3} f_a(\vec{p}_a) v_{a,z} \left\langle \Delta p_z \right\rangle \text{ (note angled brackets)}$$

$$\left\langle \Delta p_z \right\rangle = \int \mathrm{d}\mathbb{P}_{a \to bc} \Delta p_z \quad \text{where} \quad \Delta p_z = p_{a,z,\mathrm{s}} - p_{b,z,\mathrm{h}} - p_{c,z,\mathrm{h}}$$

How can we calculate the differential probability?

QPS = quantum particle splitting formalism \rightarrow used by BM17 SCR = semiclassical current radiation formalism \rightarrow used by HKLTW20 & LT24

Andrew Long (Rice University)

Evaluate the probability as an S-matrix element

$$d\mathbb{P}_{a\to bc} = \frac{1}{2E_a} \frac{d^3 \vec{p}_{b,s}}{(2\pi)^3} \frac{1}{2E_b} \frac{d^3 \vec{p}_{c,s}}{(2\pi)^3} \frac{1}{2E_c} (2\pi)^3 \frac{p_{a,z,s}}{E_a} \,\delta(\vec{p}_{a,\perp} - \vec{p}_{b,\perp} - \vec{p}_{c,\perp}) \,\delta(E_a - E_b - E_c) \,|\mathcal{M}_{a\to bc}|^2$$

Use WKB approximation to calculate mode functions for particles that change mass at the wall – this affects M_{a-bc}

let's see some examples

Examples

massless radiator / massive radiation

$$q \to q' + W$$

$$\begin{split} m_{\rm a,s} &= m_{\rm a,h} = m_{\rm b,s} = m_{\rm b,h} = 0\\ \langle \Delta p_z \rangle &\approx \frac{g^2 C_2[R]}{4\pi^2} \left(\log \frac{m_{c,\rm h}}{m_{c,\rm s}} - \frac{m_{c,\rm h}^2 - m_{c,\rm s}^2}{2m_{c,\rm h}^2} \right) \frac{m_{c,\rm h}^2}{E_{c,\rm IR}} \end{split}$$

massive radiator / massless radiation

$$\begin{split} e^{-} &\to e^{-} + \gamma \\ m_{\rm c,s} &= m_{\rm c,h} = 0 \\ \langle \Delta p_z \rangle \approx \frac{g^2 C_2[R]}{4\pi^2} \left(\log \frac{m_{b,\rm h}}{m_{a,\rm s}} - \frac{m_{b,\rm h}^2 - m_{a,\rm s}^2}{m_{b,\rm h}^2 + m_{a,\rm s}^2} \right) \frac{m_{b,\rm h}^2 + m_{a,\rm s}^2}{E_a} \log \frac{E_{c,\rm UV}}{E_{c,\rm IR}} \end{split}$$

Examples

massless radiator / massive radiation

$$q \to q' + W$$

$$\begin{split} m_{\rm a,s} &= m_{\rm a,h} = m_{\rm b,s} = m_{\rm b,h} = 0\\ \left< \Delta p_z \right> &\approx \frac{g^2 C_2[R]}{4\pi^2} \left(\log \frac{m_{c,\rm h}}{m_{c,\rm s}} - \frac{m_{c,\rm h}^2 - m_{c,\rm s}^2}{2m_{c,\rm h}^2} \right) \frac{m_{c,\rm h}^2}{E_{c,\rm IR}} \end{split}$$

massive radiator / massless radiation

$$e \to e + \gamma$$

$$m_{c,s} = m_{c,h} = 0$$

$$\langle \Delta p_z \rangle \approx \frac{g^2 C_2[R]}{4\pi^2} \left(\log \frac{m_{b,h}}{m_{a,s}} - \frac{m_{b,h}^2 - m_{a,s}^2}{m_{b,h}^2 + m_{a,s}^2} \right) \frac{m_{b,h}^2 + m_{a,s}^2}{E_a} \log \frac{E_{c,UV}}{E_{c,IR}}$$

thermal pressure on ultrarelativistic bubbles

Examples

thermal pressure on ultrarelativistic bubbles

Summary of BM17

Bodeker & Moore (2017) employs the Quantum Particle Splitting (QPS) formalism to calculate the average momentum transfer to the bubble wall, which factors into the thermal pressure.

If there exists a channel where a massless radiator emits a massive (spin-1) radiation, then they find that this channel will dominate the thermal pressure, going like:

$$q \to q' + W$$
 \blacktriangleright $P_{\text{therm}} \propto \gamma_w^1$

Since the vacuum pressure does not grow with γ_w , they conclude that the thermal pressure will eventually win out, and the bubble wall reaches an (ultrarelativistic) terminal velocity.

For channels in which a massive radiator emits massless (spin-1) radiation, they find that the thermal pressure does not grow with increasing γ_w .

$$e^- \to e^- + \gamma \quad \Longrightarrow \quad P_{\text{therm}} \propto \gamma_w^0$$

HKLTW20<24 semiclassical current

Summary of HKLTW20

- Motivated by BM17, my collaborators and I began to study EW bubble wall velocity.
- We noted the IR sensitivity of BM17's result.
- We suspected that it could be important to re-sum multiple soft emissions.
- We didn't see how to do this using BM's formalism (QPS) for calculating matrix elements.
- So we adopted a different formalism (SCR) that treats the radiator particle as a classical current and calculates the spectrum of radiation.
- Using this SCR formalism, we re-summed soft emissions to all orders.
- We concluded that the average momentum transfer and thermal pressure scale as:

$$\langle \Delta p_z
angle \propto \gamma_w^1$$
 and $P_{
m therm} \propto \gamma_w^2$

regardless of whether the radiator is massive, or the radiation is massive.
 Note that we did two things differently from BM17 - we used SCR rather than QPS - and we re-summed multiple soft emissions. It wasn't clear which change led to the different result.

in the newer paper LT24 we clarify a subtlety about SCR formalism, which explains the different γ_w scaling

Semiclassical Current Radiation (SCR) formalism

[HKLTW20 & LT24]

Andrew Long (Rice University)

Focus on channels with massive radiator / massless radiation, like: $e^-
ightarrow e^- + \gamma$

Treat the radiating particle as a classical electromagnetic current.

Treat the electromagnetic radiation as quantum, i.e. photons.

$$\hat{A}_{\mu}(x) = \int \frac{\mathrm{d}^{3} \boldsymbol{p}}{(2\pi)^{3}} \frac{1}{\sqrt{2E_{p}}} \sum_{s=\pm 1} \left[\hat{a}_{\boldsymbol{p},s} \,\varepsilon_{\mu}(\boldsymbol{p},s) \,\mathrm{e}^{-\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{x}} + \hat{a}_{\boldsymbol{p},s}^{\dagger} \,\varepsilon_{\mu}^{*}(\boldsymbol{p},s) \,\mathrm{e}^{\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{x}} \right]$$
$$\hat{H}_{\mathrm{int}}(t) = \int \mathrm{d}^{3} \boldsymbol{x} \, j^{\mu}(t,\boldsymbol{x}) \,\hat{A}_{\mu}(t,\boldsymbol{x})$$

Emission probability

For a given current $j^{\mu}(x)$, calculate the probability distribution over photon momenta:

$$d\mathbb{P}_{0\to0\gamma}(\boldsymbol{p}) = \frac{d^3\boldsymbol{p}}{(2\pi)^3} \frac{1}{2E_p} \sum_{s=\pm 1} |W_{0\to0\gamma}|^2$$

where $W_{0\to0\gamma}(\boldsymbol{p},s) = \langle (\boldsymbol{p},s)_{\text{OUT}} | 0_{\text{IN}} \rangle$

After a little work ...

$$W_{0\to0\gamma}(\boldsymbol{p},s) = (-\mathrm{i}) \int \mathrm{d}^4 x \, j(x) \cdot \varepsilon^*(\boldsymbol{p},s) \, \mathrm{e}^{\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{x}}$$
$$= (-\mathrm{i}) \, \tilde{j}(\boldsymbol{p}) \cdot \varepsilon^*(\boldsymbol{p},s)$$
$$\mathrm{d}\mathbb{P}_{0\to0\gamma} = -\frac{\mathrm{d}^3 \boldsymbol{p}}{(2\pi)^3} \, \frac{1}{2E_p} \, \tilde{j}(\boldsymbol{p})^* \cdot \tilde{j}(\boldsymbol{p})$$

thermal pressure on ultrarelativistic bubbles

[HKLTW20 & LT24]

Emission probability

For a given current $j^{\mu}(x)$, calculate the probability distribution over photon momenta:

$$d\mathbb{P}_{0\to0\gamma}(\boldsymbol{p}) = \frac{\mathrm{d}^{3}\boldsymbol{p}}{(2\pi)^{3}} \frac{1}{2E_{p}} \sum_{s=\pm 1} |W_{0\to0\gamma}|^{2}$$

where $W_{0\to0\gamma}(\boldsymbol{p},s) = \langle (\boldsymbol{p},s)_{\mathrm{OUT}} | 0_{\mathrm{IN}} \rangle$

After a little work ...

$$W_{0\to0\gamma}(\boldsymbol{p},s) = (-\mathrm{i}) \int \mathrm{d}^4 x \, j(x) \cdot \varepsilon^*(\boldsymbol{p},s) \, \mathrm{e}^{\mathrm{i}\boldsymbol{p}\cdot\boldsymbol{x}}$$
$$= (-\mathrm{i}) \, \tilde{j}(\boldsymbol{p}) \cdot \varepsilon^*(\boldsymbol{p},s)$$
$$\mathrm{d}\mathbb{P}_{0\to0\gamma} = -\frac{\mathrm{d}^3 \boldsymbol{p}}{(2\pi)^3} \, \frac{1}{2E_p} \, \tilde{j}(\boldsymbol{p})^* \cdot \tilde{j}(\boldsymbol{p})$$

Daniel V. Schroeder Weber State University

32 Chapter 2 The Klein-Gordon Field

Particle Creation by a Classical Source

There is one type of interaction, however, that we are already equipped to handle. Consider a Klein-Gordon field coupled to an external, classical source field j(x). That is, consider the field equation

$$(\partial^2 + m^2)\phi(x) = j(x),$$
 (2.61)

(2.66)

where $|0\rangle$ still denotes the ground state of the free theory. We can interpret these results in terms of particles by identifying $|\tilde{j}(p)|^2/2E_{\mathbf{p}}$ as the probability density for creating a particle in the mode p. Then the total number of particles produced is

Andrew Long (Rice University)

thermal pressure on ultrarelativistic bubbles

thermal pressure on ultrarelativistic bubbles

Comparison of QPS & SCR

In both formalisms, we calculate the average momentum transfer as

$$\langle \Delta p_z \rangle = \int d\mathbb{P}_{a \to bc} \, \Delta p_z$$

where $\Delta p_z = p_{a,z,s} - p_{b,z,h} - p_{c,z,h}$

QPS Formalism: splitting probability ~~ you pick p_a and calculate probability over p_b and p_c

$$\mathbb{IP}_{a\to bc} = \frac{1}{2E_a} \frac{\mathrm{d}^3 \vec{p}_{b,\mathrm{s}}}{(2\pi)^3} \frac{1}{2E_b} \frac{\mathrm{d}^3 \vec{p}_{c,\mathrm{s}}}{(2\pi)^3} \frac{1}{2E_c} (2\pi)^3 \frac{p_{a,z,\mathrm{s}}}{E_a} \,\delta(\vec{p}_{a,\perp} - \vec{p}_{b,\perp} - \vec{p}_{c,\perp}) \,\delta(E_a - E_b - E_c) \,|\mathcal{M}_{a\to bc}|^2$$

SCR Formalism: emission probability ~~ you pick p_a and p_b and calculate probability over p_c

$$\mathrm{d}\mathbb{P}_{0\to0\gamma} = -\frac{\mathrm{d}^3\vec{p}}{(2\pi)^3} \,\frac{1}{2E_p}\,\tilde{j}(p)^*\cdot\tilde{j}(p)$$

- 2

How to choose p_b?

If the radiation is very soft ($p_c \sim small$) then the kinematics are approx. same as 1-to-1 transition:

$$|ec{p}_{c,\mathrm{h}}| \ll |ec{p}_{b,\mathrm{h}}|$$

$$E_{b} = E_{a}$$

$$\vec{p}_{b,\perp} = \vec{p}_{a,\perp} \longrightarrow \langle \Delta p_{z} \rangle \approx \frac{g^{2}C_{2}[R]}{4\pi^{2}} \left(\log \frac{m_{b,h}}{m_{a,s}} - \frac{m_{b,h}^{2} - m_{a,s}^{2}}{m_{b,h}^{2} + m_{a,s}^{2}} \right) \frac{m_{b,h}^{2} + m_{a,s}^{2}}{E_{a}} \log \frac{E_{c,\text{UV}}}{E_{c,\text{IR}}}$$
on-shell

How to choose p_b?

If the radiation is very soft ($p_c \sim small$) then the kinematics are approx. same as 1-to-1 transition:

$$|ec{p}_{c,\mathrm{h}}| \ll |ec{p}_{b,\mathrm{h}}|$$

$$E_{b} = E_{a}$$

$$\vec{p}_{b,\perp} = \vec{p}_{a,\perp} \longrightarrow \langle \Delta p_{z} \rangle \approx \frac{g^{2}C_{2}[R]}{4\pi^{2}} \left(\log \frac{m_{b,h}}{m_{a,s}} - \frac{m_{b,h}^{2} - m_{a,s}^{2}}{m_{b,h}^{2} + m_{a,s}^{2}} \right) \frac{m_{b,h}^{2} + m_{a,s}^{2}}{E_{a}} \log \frac{E_{c,\text{UV}}}{E_{c,\text{IR}}}$$
on-shell
$$SCR \text{ yields identical result as QPS formalism} \qquad P_{\text{therm}} \propto \gamma_{w}^{0}$$

How to choose p_b?

Alternatively, impose energy & transverse-momentum conservation among all 3 particles:

$$E_{b} = E_{a} - E_{c}$$

$$\vec{p}_{b,\perp} = \vec{p}_{a,\perp} - \vec{p}_{c,\perp} \longrightarrow \langle \Delta p_{z} \rangle = \frac{g^{2}}{2\pi^{2}} E_{c,\text{UV}}$$

on-shell

Now SCR yields a funny result

- does not vanish for $m_b = m_a$ (i.e., limit of no mass change)
- strong UV sensitivity

if you take
$$E_{c,\text{UV}} \sim \gamma_w T$$
 then $\langle \Delta p_z \rangle \propto \gamma_w^1$ and $P_{\text{therm}} \propto \gamma_w^2$
(same as HKLTW20)

Nonzero wall thickness as a UV cutoff

Until this point we have been neglecting the thickness of the bubble wall: L_w

However, the inverse wall thickness enters as a UV cutoff, which is lower than $\gamma_w T$.

This leads to a different γ_w scaling for the p_b choice with UV sensitivity.

Summary & conclusion

Summary & conclusion

formalism	channel	how to choose p_b	$\langle \Delta p_z \rangle$	UV cutoff $p_{\scriptscriptstyle \mathrm{UV}}$	$P_{\rm therm}$
С	$a \rightarrow b$	0	$\frac{m_b^2 - m_a^2}{2E_a}$	0	$\propto \gamma_w^0$
QPS	$a \rightarrow bc$	0	$rac{q^2 e^2}{4\pi^2} \left(\log rac{m_b}{m_a} - rac{m_b^2 - m_a^2}{m_b^2 + m_a^2} ight) rac{m_b^2 + m_a^2}{E_a} \log rac{p_{\scriptscriptstyle m UV}}{p_{\scriptscriptstyle m IR}}$	0	$\propto \gamma_w^0$
	$a \rightarrow bc$	1-to-1 kinematics	$rac{q^2 e^2}{4\pi^2} \left(\log rac{m_b}{m_a} - rac{m_b^2 - m_a^2}{m_b^2 + m_a^2} ight) rac{m_b^2 + m_a^2}{E_a} \log rac{p_{\scriptscriptstyle m UV}}{p_{\scriptscriptstyle m IR}}$	0	$\propto \gamma_w^0$
SCR	$a \rightarrow bc$	1-to-2 kinematics	$rac{q^2e^2}{2\pi^2}p_{ m UV}$	E_a	$\propto \gamma_w^2$

For models with massive radiator / massless radiation, both QPS and SCR formalisms yield:

$$e^- \rightarrow e^- + \gamma \implies P_{\text{therm}} \propto \gamma_w^0 \implies \text{runaway possible}$$

Take care to choose p_b when using the SCR formalism. Some choices gives $P_{\rm therm} \propto \gamma_w^2$

Possibly interesting directions for future studies:

- Revisit massless radiator / massive radiation using the SCR formalism.
- Consider models with no mass change, but coupling change instead.

backup slides

SCR formalism

How to choose p_{h} ? Suppose that rather than taking 1-to-1 kinematics or 1-to-2 kinematics, you just treat p_b and p_a as separate free parameters. But suppose that they're colinear for simplicity.

differential emission probability $\frac{\mathrm{d}\mathbb{P}_{0\to0\gamma}}{\mathrm{d}\Omega} = \frac{q^2 e^2}{16\pi^3} \mathbb{P}_{0\to0} \frac{\mathrm{d}p}{p} \frac{(\sin^2\theta) (v_a - v_b)^2}{(1 - v_a \cos\theta)^2 (1 - v_b \cos\theta)^2}$

after the angular integral

$$p\frac{\mathrm{d}\mathbb{P}_{0\to0\gamma}}{\mathrm{d}p} = \left(\frac{q^2e^2}{2\pi^2}\mathbb{P}_{0\to0}\right)f(v_a,v_b)$$

average momentum transfer ($v_a=1$)

$$\langle \Delta p_z \rangle \approx \left(\frac{q^2 e^2}{4\pi^2} \mathbb{P}_{0\to 0}\right) \left(\frac{1-v_b}{v_b^2}\right) \left(1 - \frac{1-v_b^2}{2v_b} \log \frac{1+v_b}{1-v_b}\right) p_{\mathrm{UV}}$$

$$f(v_a, v_b) = \frac{1}{2} \left(\frac{1 - v_a v_b}{v_a - v_b} \right) \log \frac{(1 + v_a)(1 - v_b)}{(1 - v_a)(1 + v_b)} - 1$$

massless radiator / massive radiation

[Bodeker & Moore (2017)] [appendix of AL & Turner (2024)]

$$\begin{split} \mathrm{d}\mathbb{P}_{a\to bc} &= \frac{1}{2E_a} \frac{\mathrm{d}^3 \vec{p}_{b,\mathrm{s}}}{(2\pi)^3} \frac{1}{2E_b} \frac{\mathrm{d}^3 \vec{p}_{c,\mathrm{s}}}{(2\pi)^3} \frac{1}{2E_c} (2\pi)^3 \frac{p_{a,z,\mathrm{s}}}{E_a} \, \delta(\vec{p}_{a,\perp} - \vec{p}_{b,\perp} - \vec{p}_{c,\perp}) \, \delta(E_a - E_b - E_c) \, |\mathcal{M}_{a\to bc}|^2 \\ \mathrm{d}\mathbb{P}_{a\to bc} &= \frac{\mathrm{d}^3 \vec{p}_{c,\mathrm{s}}}{(2\pi)^3} \frac{1}{8E_a E_b E_c} \, |\mathcal{M}_{a\to bc}|^2 \Big|_{\vec{p}_{b,\perp} = \vec{p}_{a,\perp} - \vec{p}_{c,\perp}, E_b = E_a - E_c} \\ \mathrm{d}\mathbb{P}_{a\to bc} &= \mathrm{d}k_\perp \, \mathrm{d}x \, \frac{k_\perp}{32\pi^2(1-x)E_a \sqrt{x^2 E_a^2 - k_\perp^2 - m_{c,\mathrm{s}}^2}} \, |\mathcal{M}_{a\to bc}|^2 \Big|_{\vec{p}_{b,\perp} = \vec{p}_{a,\perp} - \vec{p}_{c,\perp}, E_b = E_a - E_c} \\ & \text{where:} \quad x = E_c/E_a \quad \text{and} \, \vec{p}_{a,\perp} = 0 \quad \text{and} \, k_\perp = \left| \vec{p}_{c,\perp} \right| \\ & |\mathcal{M}_{a\to bc}^{(0)}|^2 \approx 16g^2 C_2[R] \frac{k_\perp^2 \left(m_{c,\mathrm{h}}^2 - m_{c,\mathrm{s}}^2\right)^2 (1-x)^4}{\left(k_\perp^2 + (1-x)^2 m_{c,\mathrm{s}}^2\right)^2 \left(k_\perp^2 + (1-x)^2 m_{c,\mathrm{s}}^2\right)^2} \, E_a^2 + O(E_a^0) \\ & x \frac{\mathrm{d}\mathbb{P}_{a\to bc}}{\mathrm{d}x} \approx \frac{g^2 C_2[R]}{2\pi^2} \left(\frac{m_{c,\mathrm{h}}^2 + m_{c,\mathrm{s}}^2}{m_{c,\mathrm{h}}^2 - m_{c,\mathrm{s}}^2} \log \frac{m_{c,\mathrm{h}}}{m_{c,\mathrm{s}}} - 1 \right) (1-x) + O(E_a^{-2}) \\ & \langle \Delta p_z \rangle \approx \frac{g^2 C_2[R]}{4\pi^2} \left(\log \frac{m_{c,\mathrm{h}}}{m_{c,\mathrm{s}}} - \frac{m_{c,\mathrm{h}}^2 - m_{c,\mathrm{s}}^2}{2m_{c,\mathrm{h}}^2} \right) \frac{m_{c,\mathrm{h}}^2}{E_c,\mathrm{h}} + O(E_a^{-3}) \end{split}$$

thermal pressure on ultrarelativistic bubbles

massive radiator / massless radiation

[Bodeker & Moore (2017)] [appendix of AL & Turner (2024)]

$$\begin{split} \mathrm{d}\mathbb{P}_{a\to bc} &= \frac{1}{2E_a} \frac{\mathrm{d}^3 \vec{p}_{b,\mathrm{s}}}{(2\pi)^3} \frac{1}{2E_b} \frac{\mathrm{d}^3 \vec{p}_{c,\mathrm{s}}}{(2\pi)^3} \frac{1}{2E_c} \left(2\pi \right)^3 \frac{p_{a,z,\mathrm{s}}}{E_a} \, \delta(\vec{p}_{a,\perp} - \vec{p}_{b,\perp} - \vec{p}_{c,\perp}) \, \delta(E_a - E_b - E_c) \, |\mathcal{M}_{a\to bc}|^2 \\ \mathrm{d}\mathbb{P}_{a\to bc} &= \frac{\mathrm{d}^3 \vec{p}_{c,\mathrm{s}}}{(2\pi)^3} \frac{1}{8E_a E_b E_c} \, \left| \mathcal{M}_{a\to bc} \right|^2 \Big|_{\vec{p}_{b,\perp} = \vec{p}_{a,\perp} - \vec{p}_{c,\perp}, E_b = E_a - E_c} \\ \mathrm{d}\mathbb{P}_{a\to bc} &= \mathrm{d}k_{\perp} \, \mathrm{d}x \, \frac{k_{\perp}}{32\pi^2 (1-x) E_a \sqrt{x^2 E_a^2 - k_{\perp}^2 - m_{c,\mathrm{s}}^2}} \, |\mathcal{M}_{a\to bc}|^2 \Big|_{\vec{p}_{b,\perp} = \vec{p}_{a,\perp} - \vec{p}_{c,\perp}, E_b = E_a - E_c} \\ & \text{where:} \quad x = E_c / E_a \quad \text{and} \, \vec{p}_{a,\perp} = 0 \quad \text{and} \, k_{\perp} = \left| \vec{p}_{c,\perp} \right| \\ & |\mathcal{M}_{a\to bc}^{(0)}|^2 \approx 16g^2 C_2 [R] \frac{k_{\perp}^2 \left(m_{b,\mathrm{h}}^2 - m_{a,\mathrm{s}}^2\right)^2 \left(1-x\right)^2 x^4}{\left(k_{\perp}^2 + x^2 m_{b,\mathrm{h}}^2\right)^2 \left(k_{\perp}^2 + x^2 m_{a,\mathrm{s}}^2\right)^2} \, E_a^2 + O(E_a^0) \\ & x \frac{\mathrm{d}\mathbb{P}_{a\to bc}}{\mathrm{d}x} \approx \frac{g^2 C_2 [R]}{2\pi^2} \left(\frac{m_{b,\mathrm{h}}^2 + m_{a,\mathrm{s}}^2}{m_{b,\mathrm{h}}^2 - m_{a,\mathrm{s}}^2} \log \frac{m_{b,\mathrm{h}}}{m_{a,\mathrm{s}}} - 1 \right) \left(1-x\right) + O(E_a^{-2}) \\ & \langle \Delta p_z \rangle \approx \frac{g^2 C_2 [R]}{4\pi^2} \left(\log \frac{m_{b,\mathrm{h}}}{m_{a,\mathrm{s}}} - \frac{m_{b,\mathrm{h}}^2 - m_{a,\mathrm{s}}^2}{m_{b,\mathrm{h}}^2 + m_{a,\mathrm{s}}^2} \log \frac{E_{c,\mathrm{UV}}}{E_c,\mathrm{IR}} + O(E_a^{-3}) \end{split}$$

thermal pressure on ultrarelativistic bubbles