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Plan of the talk

• Exact relations between coherence and measure of localization: 
application to MBL and quantum devices.	 	 	
Reference:  A. Garg and A.K. Pati, arXiv:2409.10449.


• Single-particle excitations across many-body localization 
transition and nature of MBL transition	 	 	 	 	
References:  	 	 	 	 	 	 	 	 	
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 Many-body Localization 

Anderson Localization in the presence of interactions 

H = − t∑
ij

C†
i Cj + h . c. + ∑

i

h(i)n(i) + V∑
ij

ninj

≡ ∑
l

ϵl | l⟩⟨l | + ∑
lm

Tlm | l⟩⟨m | ϵl =
L

∑
i=1

h(i)nl(i) + V∑
ij

nl(i)nl( j)

Γ

Γ

• Extended state has finite 
fraction of basis states


• MBL phase: system explores 
only an exponentially small 
fraction of basis states
Ergodicity Breaking

⇒



• I(t) =
Ne − No

Ne + No

Lack of thermalization and strong memory of initial states 

• Prepare system in CDW initial 
state and measure its 
relaxation


• |Ψ(t)⟩ = exp(−iHt) |Ψ(0)⟩

Schreiber et.al Science (2015)

B

A  

CLOSED SYSTEM



Non-
interacting 
Case

Kink Dependent Density Imbalance
|ψ0〉 = |000000000000111111111111〉

|ψ0〉 = |000000111111111111000000〉

|ψ0〉 = |000000111111000000111111〉

|ψ0〉 = |000011110000111100001111〉

• Y.Prasad and A. Garg 
PRB105, 214202 (2022).



• 


• 


• Since is not thermal in the MBL 
phase, 


• In the ergodic delocalized phase 

ρtotal(En) = |Ψn⟩⟨Ψn | , ρA = TrBρtotal

Renyi entropy R(En) = − log[TrAρ2
A(En)]

ρA
R(E) ∼ Ld−1

R(E) ∼ Ld

Entanglement entropy 
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• Y.Prasad and A. Garg 
PRB105, 214202 (2022).



Phase Diagram

H = − t∑
i

C†
i Ci+1 + h . c. + ∑

i

h(i)n(i) + ∑
ij

Vij

rα
ij

• h(i)= ;  a random offset


•  , we set V=t. 

h cos(2πβ i + ϕ) ϕ

Vij ∈ [−V : V]

Random Long-range interactions

• Y.Prasad and A.Garg PRB103, 064203 (2021).



Single-particle excitations across MBL transition

H = − t∑
i

C†
i Ci+1 + h . c. + V∑

i

nini+1 + ∑
i

h(i)n(i)

h(i) ∈ [−W/t, W/t] and h(i) = h cos(2πβi + ϕ) withβ =
5 − 1
2

, ϕ an offset

Green’s function in nth eigenstate 
Gn(i, j, t) = − ιΘ(t)⟨Ψn |{Ci(t), C†

j (0)} |Ψn⟩

Generalised Dyson equation 
Σ(n, ω) = G−1

o (ω) − G−1(n, ω) Scattering rate 

Γn(i, ω) = −
1
π

Im[Σn(i, i, ω)]

Local Density of States 

ρn(i, ω) = −
1
π

Im[Gn(i, i, ω)]



LDOS across MBL transition

ρi(n,ω) =
∑

m |⟨Ψm|c†i |Ψn⟩|2δ(ω − Em + En)

+|⟨Ψm|ci|Ψn⟩|2δ(ω + Em − En)

Create a particle-hole pair on top of |Ψn⟩. Excited state

|Ψex,n⟩ = C†
i |Ψn⟩ =

∑
m am|Ψm⟩

If |Ψn⟩ is localized, number of eigenstates contributing
to |Ψex,n⟩ is of measure zero ⇒ excitation can not
propagate over all eigenstates allowed by the energy
conservation. Hence ρtyp(ω) is vanishingly small.

If |Ψn⟩ is extended, |Ψex,n⟩ will get contribution from a
significant fraction of many-body eigenstates making
ρtyp(ω) finite in the delocalised phase.

How to Characterize the Many-body Localized Phase? – p.20



• Distribution is log-normal for weak to intermediate disorder, with larger weight for smaller 
values as W increases.


• Excitations become more localized as disorder increases  decreases. Excitations 
are longer lived for strong disorder in the MBL phase.

→ ρtyp(ω)
→ Γtyp(ω) → 0

Probability Distributions



Single particle excitations

• For small W,  and 


• For strong disorder. ,  

ρtyp(ω = 0) ∼ ρavg(ω = 0) Γtyp(ω = 0) ∼ Γavg(ω = 0)

ρtyp ∼ 0 ≪ ρavg Γtyp ∼ 0 ≪ Γavg
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Satisfies CCFS bound


A.Jana, VRC, AG, PRB(2024)

X[δ, L] ∼ X̃(δL1/ν)
ν > 2/d

•  


• is total number of  for various sizes L and 
disorder W,  are arranged in order of 
increasing   


•  for LDOS


•

CX =
∑Ntotal−1

j=1 |Xj+1 − Xj |

max{Xj} − min{Xj}
− 1

Ntotal Xi
{Xi}s
(W − Wc)L1/ν

Wc ∼ 7.96t, ν ∼ 2.7

Wc ∼ 7.8t, ν ∼ 2.3, for Γ

Finite Size Scaling of LDOS and 
Scattering Rates
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Assuming ξ ∼ |W − Wc |−ν



Transition in systems with random disorder
Chayes-Chayes-Fisher-Spencer (PRL 57, 2999 (1986))

• For all systems with quenched random disorder, that undergo continuous 
transition with a power-law divergence of the correlation length at the critical point


• ,  irrespective of whether the clean system has 
any transition or not. 


• This results applies not only to disordered magnets but also to systems showing 
percolation and Anderson Localization. Should also apply to Many -body 
localization.


• This bound was obtained mainly based on probability distribution of order 
parameter.

ξ ∼ |W − Wc |−ν ν ≥ 2/d



CCFS bound and 
Anderson Localization

Tarquinius et. al. PRB 95, 094204 (2017) 
3d model: Shklovskii PRB (1993),Kramer PRL (1997), Slevin PRL 
(1999)… 

4d Anderson model  
ν = 1.11 ≥ 2/d• PRB 95 , 094204 (2017)


• What about the MBL transition? Does 
it satisfy CCFS criterion?



• : mean level spacing in the block


•  : rate of entanglement  spread 
across the block, .


•

Δi

Γi
gi = Γi/Δi

ν = 3.1

Real Space RG approach

Vosk et.al PRX (2015), Potter et.al. PRX (2015), Zhang 
PRB (2016) ,Dumitrescu et.al. PRL (2017)… Kjall et.al. (2014), Luitz et.al.(2015),Khemani et.al.(2017),Sierant et.al (2021) 



Single Particle Excitations in long-range interacting MBL system

• Typical values of 
LDOS for  


• The cost function for 
ratio of typical to 
average values shows 
minima around 




• 	
	 


•

α = 1,3

Wc ∼ 7.66, α = 1
ν ∼ 2.62

α = 3 : Wc ∼ 7.89

ν ∼ 2.88
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Are MBL systems 
Hyperuniform?



• Cost function has minm around 
and 


• Best minima at 

Wc = 5.3 ν = 0.6 ± 0.1

ν = 0.64

Finite Size Scaling of Level Spacing Ratio
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• For Green’s function quantities 
 and 


• For all ranges of interactions 

Wc ∼ 7.9 ν ∼ 2.76

ν ≥ 2

A.Jana, VRC, AG, PRB(2024)



• νLSR ∼ 0.64 ∼ νFS
Critical exponent for Level Spacing Ratio

J. Sutradhar et.al. PRB (2022)
Eigen values of H_{eff} in strong disorder limit: 


LSR follows dimensionality of  in  Fock space and hence 
. CCFS criterion may not hold as it is for  or .

En ∼ ϵn + O(t)

Heff
dFS ∼ L d < 4 ν ≥ 2/L

• 


 is correlated. 


•  from LSR is also  close to critical 
exponent obtained Anderson model on  
RRG.

Heff = ∑
l,m

Tl,m | l⟩⟨m | + ∑
l

ϵl | l⟩⟨l |

ϵl

ν



MBL Transition in  Quasiperiodic Systems
CCFS criterion does not hold for systems with quasiperiodic 
potential. 

A continuous transition is stable w.r.t quasiperiodicity if . 
Not applicable to MBL transitions driven by quasiperiodicity itself.

ν ≥ 1/d



Non-interacting case

•  ν = 1.48 ≥ 1/d

Local DOS for Aubry-Andre model
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• νlsr = 0.537,νldos = 1.21

Interacting AA model
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Comparison of random and deterministic models

• for all the models supporting our argument that LSR 
follows dimensionality of effective Anderson model on Fock space 
and at most   .


• Finite size scaling of LDOS shows 



•  

•  for LSR and LDOS not very different for AA model, while it is 
significantly different for random  disorder model. No Griffiths 
phase in AA model due to absence of rare regions. 

νlsr ≪ 1

νlsr ≥ 2/L

ν ≥ 2/d for Random Disorder
ν ≥ 1/d for quasiperiodic systems

Wc



Can combined effect of disorder and 
interactions  preserve  coherence ? 

AG, A.K. Pati ,  arXiv: 2409.10449 



Coherence: Basic Definition

• 


• 


• 	

	 	

C1 = ∑
α≠β

|ρα≠β |

C2 = ∑
α≠β

|ραβ |2

Crel = − ∑
α

ραα log(ραα) − S(ρ)

S(ρ) = − Tr[ρ log ρ]

• 


• Under incoherence 
operations does 
not increase


•  is a convex 
function of quantum 
states 

C(ρ) ≥ 0

C(ρ)

C(ρ)

C (∑
k

pkρk) ≤ ∑
k

pkC(ρk)



Exact relations between coherence and measure of  localization

•



• 


•

C1 = ∑
α≠β

|ραβ |

1 ≤ C1 + IPR ≤ Nf

1 ≤ Crel + IPR ≤ log(Nf)

IPR = ∑
α

|Ψα |4

Pure States:  , ρ = |Ψ⟩⟨Ψ | |Ψ⟩ =
Nf

∑
α=1

Ψα |α⟩

• For conventionally extended 
state, 

 


For localized state, 


IPR ∼ (1/Nf), C1 ∼ Nf − 1

IPR ∼ O(1)

C1 ∼ 0,Crel ∼ 0

Crel ∼ log(Nf)



Trade-off relations for mixed states

• 


• 


•

C2 + IPR ≤ 1

Crel(ρ) + IPR(ρ) + M(ρ) ≤ d, M(ρ) = 1 − Tr(ρ2)

Crel(ρ) + dnIPR(ρ) ≥ 1

, 


Reduced Density Matrix for subsystem A








|Ψ⟩ =
2L

∑
α=1

Ψ(α) |α⟩ ρ = |Ψ⟩⟨Ψ |

ρA = TrBρ, CA
2 = ∑

α≠β

|ρA
αβ |2

IPRA = ∑
α

|ρA
αα |2

For extended states, 




Localized states, 


CA
2 ∼ ( 1

2L )
2

(2L/2(2L/2 − 1)) ∼ 0

CA
2 ∼ O(1)



, 
hi ∈ [−W, W] V1 = 1,V2 = 1/2

• 


• 


•

C2 + IPR ≤ 1

Crel(ρ) + IPR(ρ) + M(ρ) ≤ d, M(ρ) = 1 − Tr(ρ2)

Crel(ρ) + dnIPR(ρ) ≥ 1



AG, A.K. Pati ,  arXiv: 2409.10449 

Coherence for subsystem A gets 
enhanced due to combined effect of 
disorder and interactions!

Wc ∼ 9.75t



Application for Superconducting Qubit Arrays

• C. Berke, Nature Communications (2022)

• Our work shows that disorder in Josephson 
energies may help in enhancing coherence of 
a subsystem of SC qubit arrays.



Summary

• We proved exact trade-off relations between various norms of quantum 
coherence and measure of localization. 


• Many-body localization might preserve coherence for certain quantum states.


• Coherence of a subset of SC qubit arrays with inhomogeneous Josephson 
energies might have enhanced coherence due to combined effect of disorder 
and interactions.


• Finite-size scaling of single-particle excitations and scattering rates shows 
that MBL systems with random and quasiperiodic potential belong to different 
universality class.



• a continuous transition in Ising model 
as a function of temperature with 
correlation length diverging at the 
transition point


• ξ ∼ δ−ν

Harris Criterion

• Add disorder ,  is not constant now


• In a box of size , 


• r.m.s. < mean for a stable transition 


•

δ

ξ δ = δ̄ + C
1
ξd

⇒ ν ≥ 2/d
Harris, J. Phys. C (1974)

• CCFS criterion is much 
stronger and is applicable 
to transitions driven by 
disorder itself e.g. Anderson 
Localization Transition.



CCFS violation in MBL systems

• Numerics can not handle large enough sizes to see correct trend which is 
seen in RG calculations which show .


•  MBL transition is not continuous in nature…??


• This prompted modified RG calculations which predicted Kosterlitz-Thouless 
(KT) type transition (Goremykina (2019), Dumitrescu (2019), 
Morningstar(2019))


•  

ν ∼ 3

ξKT = exp
b±

|W − Wc |



•  gives best 
collapse


• Suntajs PRB (2020)

W⋆ = W0 + W1L

Scaling with KT ansatz



Single-particle excitations

A. Jana, V.R. Chandra, AG PRB(L)(2022).

•  and : maximum at  and decreases as energy of 
excitation increases. This is for excitations in mid band states.


• and  as a function of energy of many-body eigenstate in 
which excitation is produced. More localized a man-body state is, more 
localized is the single-particle excitation. 

ρtyp(ω) Γtyp(ω) ω ∼ μ

ρtyp(0) Γtyp(0)



LDOS across MBL transition

ρi(n,ω) =
∑

m |⟨Ψm|c†i |Ψn⟩|2δ(ω − Em + En)

+|⟨Ψm|ci|Ψn⟩|2δ(ω + Em − En)

Create a particle-hole pair on top of |Ψn⟩. Excited state

|Ψex,n⟩ = C†
i |Ψn⟩ =

∑
m am|Ψm⟩

If |Ψn⟩ is localized, number of eigenstates contributing
to |Ψex,n⟩ is of measure zero ⇒ excitation can not
propagate over all eigenstates allowed by the energy
conservation. Hence ρtyp(ω) is vanishingly small.

If |Ψn⟩ is extended, |Ψex,n⟩ will get contribution from a
significant fraction of many-body eigenstates making
ρtyp(ω) finite in the delocalised phase.

How to Characterize the Many-body Localized Phase? – p.20



Wlsr
W Wldos

ergodic MBL • Similar conclusions from 
analysis of density imbalance 
and mean square displacement 
(Mirlin, F. Evers) 

7.1t ≤ WG
c ≤ 7.9t

Wlsr
c ∼ 5.3t

• From LDOS and Scattering Rate

• From Level Spacing Ratio

Morningstar et. al PRB (2022)



Thank You!



Broadening used in Green’s Functions

In thermodynamic limit, delocalized phase is independent of , in localized phase 
increases with . For finite-size  systems this happens for 

 with  average spacing and  spacing for system of size of correlation length.

ρtyp η ρtyp

η
Δ < η < Δ2 Δ Δ2



Cost-function Minima



KT Scaling

ξKT = exp
b±

|W − Wc |
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One-kink state

• 


•

G(x, t) = ∑
i

⟨ni+x(t)ni(0)⟩

⟨x2(t)⟩ = ∑
x

x2[G(x, t) − G(x,0)]

• m(t) = ∑
i

i[ni(t) − ni(0)]


