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Multispecies ASEP PushTASEP

Single species ASEP

(Partially) Asymmetric Simple Exclusion Process or (P)ASEP.

Ring of size L, with n1 < L particles.

Let 0 ≤ t ≤ 1. Transitions are:

10
1−→ 01, 01

t−→ 10.

Proposition

The ASEP on L sites with n1 particles has the uniform stationary
distribution, i.e.

π(ω) =
1( L
n1

) .

A. Ayyer, IISc
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Multispecies ASEP

Now suppose there are particles labelled 1, . . . , s with strength
order: s > s − 1 > · · · > 1 and vacancies labelled 0.

Consider a ring of L sites, with particle content given by the
partition

λ = (s, . . . , s︸ ︷︷ ︸
ms

, . . . , 1, . . . , 1︸ ︷︷ ︸
m1

, 0, . . . , 0︸ ︷︷ ︸
m0

),

where
∑

i mi = L.

The multispecies ASEP is defined by transitions

ij
1−→ ji , ji

t−→ ij , provided i > j .

A. Ayyer, IISc
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Stationary distribution

Theorem (Ferrari–Martin (Ann. Prob. 2007))

Consider the multispecies TASEP (t = 0) with content λ. Let
Mi = mi + · · ·+ ms for 1 ≤ i ≤ s. Then the stationary probability
of any configuration is a positive integer divided by

s∏
i=1

(
L

Mi

)
.

Moreover, this positive integer has a combinatorial interpretation!

A. Ayyer, IISc
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Bully-path projection example for (4, 4, 3, 2, 2, 1, 1, 0, 0)

◦ ◦ • ◦ ◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦ • • • ◦
• • ◦ • ◦ • ◦ ◦ •
• • ◦ • • • • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 • ◦
• • ◦ • ◦ •4 ◦ ◦ •4
•4 • ◦ • • •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 • ◦ • ◦ •4 ◦ ◦ •4
•4 •3 ◦ • • •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦ •2 •2 •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦ •2 •2 •4 •1 •1 ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦0 •2 •2 •4 •1 •1 ◦0

Projected configuration: 430224110

The positive integer for a configuration is precisely the
number of multiline queues that bully-path project to that
configuration.

A. Ayyer, IISc



Multispecies ASEP PushTASEP

Bully-path projection example for (4, 4, 3, 2, 2, 1, 1, 0, 0)

◦ ◦ • ◦ ◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦ • • • ◦
• • ◦ • ◦ • ◦ ◦ •
• • ◦ • • • • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 • ◦
• • ◦ • ◦ •4 ◦ ◦ •4
•4 • ◦ • • •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 • ◦ • ◦ •4 ◦ ◦ •4
•4 •3 ◦ • • •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦ •2 •2 •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦ •2 •2 •4 •1 •1 ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦0 •2 •2 •4 •1 •1 ◦0

Projected configuration: 430224110

The positive integer for a configuration is precisely the
number of multiline queues that bully-path project to that
configuration.

A. Ayyer, IISc



Multispecies ASEP PushTASEP

Bully-path projection example for (4, 4, 3, 2, 2, 1, 1, 0, 0)

◦ ◦ • ◦ ◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦ • • • ◦
• • ◦ • ◦ • ◦ ◦ •
• • ◦ • • • • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 • ◦
• • ◦ • ◦ •4 ◦ ◦ •4
•4 • ◦ • • •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 • ◦ • ◦ •4 ◦ ◦ •4
•4 •3 ◦ • • •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦ •2 •2 •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦ •2 •2 •4 •1 •1 ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦0 •2 •2 •4 •1 •1 ◦0

Projected configuration: 430224110

The positive integer for a configuration is precisely the
number of multiline queues that bully-path project to that
configuration.

A. Ayyer, IISc



Multispecies ASEP PushTASEP

Bully-path projection example for (4, 4, 3, 2, 2, 1, 1, 0, 0)

◦ ◦ • ◦ ◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦ • • • ◦
• • ◦ • ◦ • ◦ ◦ •
• • ◦ • • • • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 • ◦
• • ◦ • ◦ •4 ◦ ◦ •4
•4 • ◦ • • •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 • ◦ • ◦ •4 ◦ ◦ •4
•4 •3 ◦ • • •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦ •2 •2 •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦ •2 •2 •4 •1 •1 ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦0 •2 •2 •4 •1 •1 ◦0

Projected configuration: 430224110

The positive integer for a configuration is precisely the
number of multiline queues that bully-path project to that
configuration.

A. Ayyer, IISc



Multispecies ASEP PushTASEP

Bully-path projection example for (4, 4, 3, 2, 2, 1, 1, 0, 0)

◦ ◦ • ◦ ◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦ • • • ◦
• • ◦ • ◦ • ◦ ◦ •
• • ◦ • • • • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 • ◦
• • ◦ • ◦ •4 ◦ ◦ •4
•4 • ◦ • • •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 • ◦ • ◦ •4 ◦ ◦ •4
•4 •3 ◦ • • •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦ •2 •2 •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦ •2 •2 •4 •1 •1 ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦0 •2 •2 •4 •1 •1 ◦0

Projected configuration: 430224110

The positive integer for a configuration is precisely the
number of multiline queues that bully-path project to that
configuration.

A. Ayyer, IISc



Multispecies ASEP PushTASEP

Bully-path projection example for (4, 4, 3, 2, 2, 1, 1, 0, 0)

◦ ◦ • ◦ ◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ ◦ • • • ◦
• • ◦ • ◦ • ◦ ◦ •
• • ◦ • • • • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 • ◦
• • ◦ • ◦ •4 ◦ ◦ •4
•4 • ◦ • • •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 • ◦ • ◦ •4 ◦ ◦ •4
•4 •3 ◦ • • •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦ •2 •2 •4 • • ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦ •2 •2 •4 •1 •1 ◦

◦ ◦ •4 ◦ ◦ ◦ •4 ◦ ◦
◦ ◦ ◦ ◦ ◦ •4 •4 •3 ◦
•3 •2 ◦ •2 ◦ •4 ◦ ◦ •4
•4 •3 ◦0 •2 •2 •4 •1 •1 ◦0

Projected configuration: 430224110

The positive integer for a configuration is precisely the
number of multiline queues that bully-path project to that
configuration.

A. Ayyer, IISc



Multispecies ASEP PushTASEP

Partition function for multispecies ASEP

Recall that [n] ≡ [n]t := 1 + · · ·+ tn−1 and [n]t ! := [1][2] · · · [n].

Theorem (Martin, Elec. J. Prob. 2020)

Consider the multispecies ASEP with content λ. Then the
common denominator of the stationary probabilities is given by

s∏
i=1

(
L

Mi

)
[Mi ]t !

[ni ]t !
.

The proof uses a multiline TASEP with rejection that projects to
the multispecies ASEP.

A. Ayyer, IISc



Multispecies ASEP PushTASEP

Connection to ASEP polynomials

Theorem (Cantini–de Gier–Wheeler (J. Phys. A, 2015))

The steady state probability that the multispecies ASEP is in
configuration µ ∈ Sλ is

fµ(1, . . . , 1; q = 1, t)

Pλ(1, . . . , 1; q = 1, t)
,

where fµ is the ASEP polynomial, and Pλ(1, . . . , 1; q = 1, t) is the
Macdonald polynomial.

Later on, Chen–de Gier–Wheeler (IMRN, 2018) found duality
functions for the multispecies ASEP on a ring using ASEP
polynomials at xi = 1 and q = 1.

A. Ayyer, IISc
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Linked multiline diagrams and ASEP polynomials

Theorem (Corteel–Mandelshtam–Williams (Amer. J. Math., 2022))

The ASEP polynomial can be written as

fω(β1, . . . , βn; q, t) =
∑
M

wt(M),

where the sum is over all linked multiline diagrams and wt(M) is a
complicated weight function.

Until now, no stochastic process is known for which the stationary
probabilities are the ASEP polynomials.

A. Ayyer, IISc
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Single species PushTASEP

Ring of size L with n1 < L particles.

From site i ,

· · · 1
i

1
i+1
· · · 1

j−1
0
j
· · · −→ · · · 0

i
1

i+1
· · · 1

j−1
1
j
· · · with rate

1

βi
,

Also called the long-range exclusion process and isomorphic to
the Hammersley–Aldous–Diaconis (HAD) process.

A. Ayyer, IISc
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Stationary distribution

Recall that the elementary symmetric polynomial of degree m
in indeterminates x1, . . . , xk is

em(x1, . . . , xk) =
∑

1≤i1<···<im≤k

xi1 . . . xik ,

Let η = (η1, . . . , ηL) be a configuration.

Proposition

The stationary probability of a configuration η is

1

en1(β1, . . . , βL)

L∏
i=1
ηi=1

βi .

A. Ayyer, IISc
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Multispecies PushTASEP

As before, we are on the ring of L sites, with particle content
λ.

As before, the strength order of particles: s > · · · > 1 > 0.

Transition when bell rings at site i with rate αi :
1 Particle at site i moves clockwise,
2 finds the first weakest particle and displaces it,
3 which in turn does the same.
4 Continue this way ending at a vacancy.

The homogeneous version of this process is the multispecies
HAD process (Ferrari and Martin, AIHP B, 2009).

A. Ayyer, IISc
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Examples

λ = (2, 2, 1, 1, 1) so that n = 8, s = 5.

2 4 3 0 2 4 1 3 2 0 4 3 2 4 1 3
1/β2

2 4 3 0 2 4 1 3 2 4 3 0 2 4 1 3
1/β4

2 4 1 0 2 4 1 3 2 4 1 1 0 4 2 3
1/β5

A. Ayyer, IISc
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Stationary distribution

Theorem (A.–Martin, 2024+)

The stationary distribution π of the multispecies PushTASEP with
content λ is given by

π(η) =
fη(β1, . . . , βL; q = 1, t = 0)

Pλ(β1, . . . , βL; 1, 0)
,

where fη is the ASEP polynomial and

Pλ(β1, . . . , βL; 1, 0) =
s∏

i=1

eMi
(β1, . . . , βL)

is the partition function.

A. Ayyer, IISc
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Connection to the multispecies TASEP

Recall that the partition function for the multispecies TASEP
is

s∏
i=1

(
L

Mi

)
.

If we set β1 = · · · = βL = 1 in the PushTASEP, we obtain not
only the same partition function, but the same stationary
distribution!

A. Ayyer, IISc
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Example: λ = (2, 1, 0)

1

β2

1

β1

1

β3

1

β1

1

β2

1

β1

1

β3

1

β1

1

β3

1

β2

1

β3

1

β2

2 1 0

2 0 1

1 2 0
1 0 2

0 2 1

0 1 2

Order the configurations as {210, 201, 120, 102, 021, 012}.
The stationary weights turn out to be

v =
(
β1β2(β1 + β3), β21β3, β1β

2
2 , β1β3(β2 + β3), β2β3(β1 + β2), β2β

3
2

)
.

Z = (β1 + β2 + β3)(β1β2 + β1β3 + β2β3) = e(2,1)(β1, β2, β3).

A. Ayyer, IISc
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Idea of proof

Follow the overall strategy of P. Ferrari and J. Martin (Ann.
Prob. 2007) for the multispecies TASEP.

We construct a multiline PushTASEP which projects to the
multispecies PushTASEP.

The projection is the same bully-path projection as for the
TASEP.

A. Ayyer, IISc
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A nonequilibrium theorem

Theorem (A.–Martin, 2024+)

Run the multispecies PushTASEP on the ring with content λ,
starting either in the stationary distribution, or in any starting
configuration with η in which ηk+1 ≥ ηk+2 ≥ . . . ηL.
Then the distribution of the path of the process observed on sites
1, 2, . . . , k is invariant under permutations of βk+1, . . . , βL.

A. Ayyer, IISc
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Open questions

It turns out that we can insert the t parameter, see
arXiv:2403.10485, joint with J. Martin and L. Williams.

But inserting the q parameter is difficult; Pλ(x ; q, t) does not
factorise in general.

The intuition is that q should be a parameter in the transition
involving sites n and 1.

Therefore, we lose translation invariance.

Insights from integrable models might play a role in defining
such a model.

A. Ayyer, IISc
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