The inhomogeneous multispecies PushTASEP

Arvind Ayyer
Indian Institute of Science, Bangalore (joint with J. Martin, arXiv:2310.09740)
9th Indian Statistical Physics Community Meeting,
ICTS Bangalore

April 3, 2024

Single species ASEP

- (Partially) Asymmetric Simple Exclusion Process or (P)ASEP.
- Ring of size L, with $n_{1}<L$ particles.

Single species ASEP

- (Partially) Asymmetric Simple Exclusion Process or (P)ASEP.
- Ring of size L, with $n_{1}<L$ particles.
- Let $0 \leq t \leq 1$. Transitions are:

$$
10 \xrightarrow{1} 01, \quad 01 \xrightarrow{t} 10 .
$$

Proposition

The ASEP on L sites with n_{1} particles has the uniform stationary distribution, i.e.

$$
\pi(\omega)=\frac{1}{\binom{L}{n_{1}}} .
$$

Multispecies ASEP

- Now suppose there are particles labelled $1, \ldots, s$ with strength order: $s>s-1>\cdots>1$ and vacancies labelled 0 .
- Consider a ring of L sites, with particle content given by the partition

$$
\lambda=(\underbrace{s, \ldots, s}_{m_{s}}, \ldots, \underbrace{1, \ldots, 1}_{m_{1}}, \underbrace{0, \ldots, 0}_{m_{0}}),
$$

where $\sum_{i} m_{i}=L$.

- The multispecies ASEP is defined by transitions

$$
i j \xrightarrow{1} j i, \quad j i \xrightarrow{t} i j, \quad \text { provided } i>j .
$$

Stationary distribution

Theorem (Ferrari-Martin (Ann. Prob. 2007))

Consider the multispecies TASEP $(t=0)$ with content λ. Let $M_{i}=m_{i}+\cdots+m_{s}$ for $1 \leq i \leq s$. Then the stationary probability of any configuration is a positive integer divided by

$$
\prod_{i=1}^{s}\binom{L}{M_{i}}
$$

Moreover, this positive integer has a combinatorial interpretation!

Bully-path projection example for ($4,4,3,2,2,1,1,0,0$)

0	0	\bullet	0	0	0	\bullet	0	0
0	0	0	0	0	\bullet	\bullet	\bullet	0
\bullet	\bullet	0	\bullet	0	\bullet	0	0	\bullet
\bullet	\bullet	0	\bullet	\bullet	\bullet	\bullet	\bullet	0

Bully-path projection example for ($4,4,3,2,2,1,1,0,0$)

Bully-path projection example for ($4,4,3,2,2,1,1,0,0$)

0	0
0	0
3	0

Bully-path projection example for (4, 4, 3, 2, 2, 1, 1, 0, 0)

Bully-path projection example for (4, 4, 3, 2, 2, 1, 1, 0, 0)

Bully-path projection example for ($4,4,3,2,2,1,1,0,0$)

Projected configuration: 430224110

- The positive integer for a configuration is precisely the number of multiline queues that bully-path project to that configuration.

Partition function for multispecies ASEP

Recall that $[n] \equiv[n]_{t}:=1+\cdots+t^{n-1}$ and $[n]_{t}!:=[1][2] \cdots[n]$.

Theorem (Martin, Elec. J. Prob. 2020)

Consider the multispecies ASEP with content λ. Then the common denominator of the stationary probabilities is given by

$$
\prod_{i=1}^{s}\binom{L}{M_{i}} \frac{\left[M_{i}\right] t!}{\left[n_{i}\right] t!} .
$$

The proof uses a multiline TASEP with rejection that projects to the multispecies ASEP.

Connection to ASEP polynomials

Theorem (Cantini-de Gier-Wheeler (J. Phys. A, 2015))

The steady state probability that the multispecies ASEP is in configuration $\mu \in S_{\lambda}$ is

$$
\frac{\mathrm{f}_{\mu}(1, \ldots, 1 ; q=1, t)}{P_{\lambda}(1, \ldots, 1 ; q=1, t)}
$$

where f_{μ} is the ASEP polynomial, and $P_{\lambda}(1, \ldots, 1 ; q=1, t)$ is the Macdonald polynomial.

Later on, Chen-de Gier-Wheeler (IMRN, 2018) found duality functions for the multispecies ASEP on a ring using ASEP polynomials at $x_{i}=1$ and $q=1$.

Linked multiline diagrams and ASEP polynomials

Theorem (Corteel-Mandelshtam-Williams (Amer. J. Math., 2022))

The ASEP polynomial can be written as

$$
\mathrm{f}_{\omega}\left(\beta_{1}, \ldots, \beta_{n} ; q, t\right)=\sum_{M} \mathrm{wt}(M),
$$

where the sum is over all linked multiline diagrams and $\mathrm{wt}(M)$ is a complicated weight function.

Until now, no stochastic process is known for which the stationary probabilities are the ASEP polynomials.

Single species PushTASEP

- Ring of size L with $n_{1}<L$ particles.
- From site i,
$\cdots \frac{1}{i} \underset{i+1}{ } \cdots \frac{1}{j-1} \frac{0}{j} \cdots \longrightarrow \cdots \frac{0}{i} \frac{1}{i+1} \cdots{ }_{j-1} \frac{1}{j} \cdots \quad$ with rate $\frac{1}{\beta_{i}}$,
- Also called the long-range exclusion process and isomorphic to the Hammersley-Aldous-Diaconis (HAD) process.

Stationary distribution

- Recall that the elementary symmetric polynomial of degree m in indeterminates x_{1}, \ldots, x_{k} is

$$
e_{m}\left(x_{1}, \ldots, x_{k}\right)=\sum_{1 \leq i_{1}<\cdots<i_{m} \leq k} x_{i_{1}} \ldots x_{i_{k}}
$$

- Let $\eta=\left(\eta_{1}, \ldots, \eta_{L}\right)$ be a configuration.

Proposition

The stationary probability of a configuration η is

$$
\frac{1}{e_{n_{1}}\left(\beta_{1}, \ldots, \beta_{L}\right)} \prod_{\substack{i=1 \\ \eta_{i}=1}}^{L} \beta_{i}
$$

Multispecies PushTASEP

- As before, we are on the ring of L sites, with particle content λ.
- As before, the strength order of particles: $s>\cdots>1>0$.

Multispecies PushTASEP

- As before, we are on the ring of L sites, with particle content λ.
- As before, the strength order of particles: $s>\cdots>1>0$.
- Transition when bell rings at site i with rate α_{i} :
(1) Particle at site i moves clockwise,

Multispecies PushTASEP

- As before, we are on the ring of L sites, with particle content λ.
- As before, the strength order of particles: $s>\cdots>1>0$.
- Transition when bell rings at site i with rate α_{i} :
(1) Particle at site i moves clockwise,
(2) finds the first weakest particle and displaces it,

Multispecies PushTASEP

- As before, we are on the ring of L sites, with particle content λ.
- As before, the strength order of particles: $s>\cdots>1>0$.
- Transition when bell rings at site i with rate α_{i} :
(1) Particle at site i moves clockwise,
(2) finds the first weakest particle and displaces it,
(3) which in turn does the same.

Multispecies PushTASEP

- As before, we are on the ring of L sites, with particle content λ.
- As before, the strength order of particles: $s>\cdots>1>0$.
- Transition when bell rings at site i with rate α_{i} :
(1) Particle at site i moves clockwise,
(2) finds the first weakest particle and displaces it,
(3) which in turn does the same.
(4) Continue this way ending at a vacancy.
- The homogeneous version of this process is the multispecies HAD process (Ferrari and Martin, AIHP B, 2009).

Examples

- $\lambda=(2,2,1,1,1)$ so that $n=8, s=5$.

$$
\begin{aligned}
& 24302413 \xrightarrow{1 / \beta_{2}} 20432413 \\
& 24302413 \xrightarrow{1 / \beta_{4}} 24302413 \\
& \xrightarrow[24102413]{\sim} \quad 24110423
\end{aligned}
$$

Stationary distribution

Theorem (A.-Martin, 2024+)

The stationary distribution π of the multispecies PushTASEP with content λ is given by

$$
\pi(\eta)=\frac{\mathrm{f}_{\eta}\left(\beta_{1}, \ldots, \beta_{L} ; q=1, t=0\right)}{P_{\lambda}\left(\beta_{1}, \ldots, \beta_{L} ; 1,0\right)}
$$

where f_{η} is the ASEP polynomial and

$$
P_{\lambda}\left(\beta_{1}, \ldots, \beta_{L} ; 1,0\right)=\prod_{i=1}^{s} e_{M_{i}}\left(\beta_{1}, \ldots, \beta_{L}\right)
$$

is the partition function.

Connection to the multispecies TASEP

- Recall that the partition function for the multispecies TASEP is

$$
\prod_{i=1}^{s}\binom{L}{M_{i}}
$$

- If we set $\beta_{1}=\cdots=\beta_{L}=1$ in the PushTASEP, we obtain not only the same partition function, but the same stationary distribution!

Example: $\lambda=(2,1,0)$

- Order the configurations as $\{210,201,120,102,021,012\}$.
- The stationary weights turn out to be

$$
v=\left(\beta_{1} \beta_{2}\left(\beta_{1}+\beta_{3}\right), \beta_{1}^{2} \beta_{3}, \beta_{1} \beta_{2}^{2}, \beta_{1} \beta_{3}\left(\beta_{2}+\beta_{3}\right), \beta_{2} \beta_{3}\left(\beta_{1}+\beta_{2}\right), \beta_{2} \beta_{2}^{3}\right) .
$$

$$
Z=\left(\beta_{1}+\beta_{2}+\beta_{3}\right)\left(\beta_{1} \beta_{2}+\beta_{1} \beta_{3}+\beta_{2} \beta_{3}\right)=e_{(2,1)}\left(\beta_{1}, \beta_{2}, \beta_{3}\right) .
$$

Idea of proof

- Follow the overall strategy of P. Ferrari and J. Martin (Ann. Prob. 2007) for the multispecies TASEP.
- We construct a multiline PushTASEP which projects to the multispecies PushTASEP.
- The projection is the same bully-path projection as for the TASEP.

A nonequilibrium theorem

Theorem (A.-Martin, 2024+)

Run the multispecies PushTASEP on the ring with content λ, starting either in the stationary distribution, or in any starting configuration with η in which $\eta_{k+1} \geq \eta_{k+2} \geq \ldots \eta_{L}$.
Then the distribution of the path of the process observed on sites $1,2, \ldots, k$ is invariant under permutations of $\beta_{k+1}, \ldots, \beta_{L}$.

Open questions

- It turns out that we can insert the t parameter, see arXiv:2403.10485, joint with J. Martin and L. Williams.
- But inserting the q parameter is difficult; $P_{\lambda}(x ; q, t)$ does not factorise in general.
- The intuition is that q should be a parameter in the transition involving sites n and 1 .
- Therefore, we lose translation invariance.
- Insights from integrable models might play a role in defining such a model.

ధ్రన్యవాదాలు घ न्यपा प

