Active Force Patterning in a Mixture of Contractile Stresslets

Ayan Roychowdhury

with Saptarshi Dasgupta, Prof. Madan Rao

Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore.

APS Satellite Meeting at ICTS 2022

Actomyosin Complexes

localizations of molecular <u>stresslets</u>

Actomyosin Complexes

localizations of molecular <u>stresslets</u>

patterning of <u>stress</u> at the 'macroscale' of the cell

Actomyosin Complexes

www.mechanobio.info

localizations of molecular <u>stresslets</u>

patterning of <u>stress</u> at the 'macroscale' of the cell

Spatiotemporal Segregation of a Uniform Mixture of Stresslets

Actomyosin Complexes

www.mechanobio.info

Hydrodynamic Model

Hydrodynamic Model

Hydrodynamics of the Meshwork

$$\begin{split} \Gamma \, \dot{\boldsymbol{u}} &= \nabla \cdot \boldsymbol{\sigma} \\ \dot{\rho}_a + \nabla \cdot (\rho_a \, \dot{\boldsymbol{u}}) &= 0 \quad \Rightarrow \quad \delta \rho_a := \rho_a - \rho_a^0 \propto -\mathrm{tr} \boldsymbol{\epsilon} \\ \boldsymbol{\sigma} &= \frac{\delta F}{\delta \boldsymbol{\epsilon}} + \chi(\rho_a) \left(\zeta_1 \rho_1 + \zeta_2 \rho_2\right) \Delta \mu \, \mathbf{I} + \eta \, \dot{\boldsymbol{\epsilon}} \\ \stackrel{\text{elastic}}{\underset{\text{(passive)}}{\text{size}}} \quad \stackrel{\text{viscous}}{\underset{\text{(passive)}}{\text{size}}} \end{split}$$

$$F = \int \left(\frac{1}{2}\mathbb{C}[\boldsymbol{\epsilon}] \cdot \boldsymbol{\epsilon} + C\,\delta\rho_a\,\mathrm{tr}\boldsymbol{\epsilon} + \frac{A}{2}\delta\rho_a^2\right)dx$$

Hydrodynamic Model

Hydrodynamics of the Meshwork

 $\Gamma \dot{\boldsymbol{u}} = \nabla \cdot \boldsymbol{\sigma}$ $\dot{\rho}_a + \nabla \cdot (\rho_a \, \dot{\boldsymbol{u}}) = 0 \quad \Rightarrow \quad \delta \rho_a := \rho_a - \rho_a^0 \propto -\mathrm{tr}\boldsymbol{\epsilon}$ $\boldsymbol{\sigma} = \frac{\delta F}{\delta \boldsymbol{\epsilon}} + \chi(\rho_a) \left(\zeta_1 \rho_1 + \zeta_2 \rho_2\right) \Delta \mu \mathbf{I} + \eta \dot{\boldsymbol{\epsilon}}$ viscous elastic active (passive) (passive) $F = \int \left(\frac{1}{2}\mathbb{C}[\boldsymbol{\epsilon}] \cdot \boldsymbol{\epsilon} + C\,\delta\rho_a\,\mathrm{tr}\boldsymbol{\epsilon} + \frac{A}{2}\delta\rho_a^2\right)dx$

Hydrodynamics of the Stresslets

$$\dot{\rho}_1 + \nabla \cdot (\rho_1 \, \dot{\boldsymbol{u}}) = D \, \nabla^2 \rho_1 + k_1^{on} \, \rho_a - k_1^{off}(\boldsymbol{\epsilon}) \, \rho_1$$
$$\dot{\rho}_2 + \nabla \cdot (\rho_2 \, \dot{\boldsymbol{u}}) = D \, \nabla^2 \rho_2 + k_2^{on} \, \rho_a - k_2^{off}(\boldsymbol{\epsilon}) \, \rho_2$$

$$k_1^{off}(\boldsymbol{\epsilon}) = k_{10}^{off} e^{\alpha_1 \operatorname{tr}\boldsymbol{\epsilon}} \qquad \alpha$$
$$k_2^{off}(\boldsymbol{\epsilon}) = k_{20}^{off} e^{\alpha_2 \operatorname{tr}\boldsymbol{\epsilon}} \qquad \alpha$$

 $x_{1,2} > 0$: catch bond $\alpha_{1,2} < 0$: slip bond

Governing Hydrodynamic Equations

scalar version, non-dimensionalized

$$\begin{split} \dot{u} &= \partial_x \,\sigma, \\ \dot{\rho} + \partial_x (\rho \,\dot{u}) &= D \,\partial_{xx}^2 \rho + \left(1 - \frac{C}{A} \,\epsilon\right) - \left(k_1 + k_3 \,\epsilon + o(\epsilon)\right) \rho - \left(k_2 + k_4 \,\epsilon + o(\epsilon)\right) \phi \\ \dot{\phi} + \partial_x (\phi \,\dot{u}) &= D \,\partial_{xx}^2 \phi + k_5 \left(1 - \frac{C}{A} \epsilon\right) - \left(k_1 + k_3 \,\epsilon + o(\epsilon)\right) \phi - \left(k_2 + k_4 \,\epsilon + o(\epsilon)\right) \rho \end{split}$$

$$\begin{split} \epsilon &= \partial_x u \qquad \rho := \frac{\rho_1 + \rho_2}{2}, \quad \phi := \frac{\rho_1}{2} \\ & \uparrow \\ \mathsf{Segregation \ Order \ P} \\ \end{split}$$

Governing Hydrodynamic Equations

scalar version, non-dimensionalized

$$\begin{split} \dot{u} &= \partial_x \sigma, \\ \dot{\rho} &= \partial_x u \qquad \rho := \frac{\rho_1 + \rho_2}{2}, \quad \phi := \frac{\rho_1}{2}, \quad \phi :=$$

$$\begin{aligned} \epsilon &= \partial_x u \qquad \rho := \frac{\rho_1 + \rho_2}{2}, \quad \phi := \frac{\rho_1}{2} \\ &= \frac{1}{2} \\ Segregation \ Order \ F \\ \left(1 - \frac{C}{A}\epsilon\right) - \left(k_1 + k_3 \epsilon + o(\epsilon)\right) \phi - \left(k_2 + k_4 \epsilon + o(\epsilon)\right) \phi \\ \sigma &= \sigma_0 + \tilde{B} \epsilon + B_2 \epsilon^2 + B_3 \epsilon^3 + \dot{\epsilon} + o(\epsilon^3) \\ , \text{ active back stress} \end{aligned}$$

$$\begin{split} \sigma_{0} &:= 2 \, \chi(\rho_{a}^{0}) \left(\zeta_{\text{avg}} \, \rho + \zeta_{\text{rel}} \, \phi \right), \quad \text{active back stress} \\ \tilde{B} &:= B - \frac{C^{2}}{A} - 2 \, \chi'(\rho_{a}^{0}) \, \frac{C}{A} \left(\zeta_{\text{avg}} \, \rho + \zeta_{\text{rel}} \, \phi \right), \quad \text{activity renolinear elastic} \\ B_{2} &:= \chi''(\rho_{a}^{0}) \left(\frac{C}{A} \right)^{2} \left(\zeta_{\text{avg}} \, \rho + \zeta_{\text{rel}} \, \phi \right), \quad \text{active renolinear elastic} \\ B_{3} &:= -\frac{\chi'''(\rho_{a}^{0})}{3} \left(\frac{C}{A} \right)^{3} \left(\zeta_{\text{avg}} \, \rho + \zeta_{\text{rel}} \, \phi \right). \end{split}$$

ormalised c modulus

on-linear elastic moduli

 ϵ

Linear Stability of the homogeneous unstrained uniform steady state

 $u_0=0$ ϕ_0

$$\begin{bmatrix} \dot{\delta\hat{u}}(t,q) \\ \dot{\delta\hat{\rho}}(t,q) \\ \dot{\delta\hat{\phi}}(t,q) \end{bmatrix} = \begin{bmatrix} -\frac{\tilde{B}_{0}q^{2}}{1+q^{2}} & \frac{2\zeta_{\mathrm{rel}}\,iq}{1+q^{2}} \\ -\left(\frac{C}{A} + \frac{k_{3}}{k_{1}} - \frac{\tilde{B}_{0}q^{2}}{(1+q^{2})k_{1}}\right) iq & -Dq^{2} - k_{1} + \frac{2q^{2}\zeta_{\mathrm{avg}}}{(1+q^{2})k_{1}} & -k_{2} + \frac{2q^{2}\zeta_{\mathrm{rel}}}{(1+q^{2})k_{1}} \\ -\left(\frac{k_{2}}{k_{1}}\frac{C}{A} + \frac{k_{4}}{k_{1}}\right) iq & -k_{2} & -Dq^{2} - k_{1} \end{bmatrix} \begin{bmatrix} \delta\hat{u}(t,q) \\ \delta\hat{\rho}(t,q) \\ \delta\hat{\phi}(t,q) \end{bmatrix}$$

General solution for distinct eigenvalues: $\sum_{i=1}^{3} c_i e^{\lambda_i(q) t} \mathbf{V}_i(q)$

$$\rho_0 = 0 \qquad \rho_0 = 1/k_1$$

Linear Stability of the homogeneous unstrained uniform steady state

 $u_0 = 0 \qquad \phi$

$$\begin{bmatrix} \dot{\delta \hat{u}}(t,q) \\ \dot{\delta \hat{\rho}}(t,q) \\ \dot{\cdot} \\ \dot{\delta \hat{\phi}}(t,q) \end{bmatrix} = \begin{bmatrix} -\frac{\tilde{B}_0 q^2}{1+q^2} \\ -\left(\frac{C}{A} + \frac{k_3}{k_1} - \frac{\tilde{B}_0 q^2}{(1+q^2)k_1}\right) iq \\ -\left(\frac{k_2}{k_1}\frac{C}{A} + \frac{k_4}{k_1}\right) iq \end{bmatrix}$$

General solution for distinct eigenvalues: $\sum_{i=1}^{3} c_i e^{\lambda_i(q) t} \mathbf{V}_i(q)$

Non-Hermitian Dynamics: Non-orthogonal Eigenvectors, **Exceptional Point where some of the Eigenvalues and Eigenvectors coalesce**

$$\rho_0 = 0 \qquad \rho_0 = 1/k_1$$

stronger stresslets unbind slower

Segregation stronger stresslets unbind slower

stronger stresslets unbind faster

Travelling Wave

Segregation stronger stresslets unbind slower

stronger stresslets unbind faster

Travelling Wave

stronger stresslets unbind before c.i.

Driving Force for 'Linear' Segregation: Elastic Stress Dissipation

Effective Strain Energy Density

$$w^{lin} := \sigma_0(\rho, \phi) \epsilon + \frac{1}{2} \tilde{B}(\rho, \phi) \epsilon^2$$

$$w^{lin}(t) := \int_{-a}^{a} \dot{w}^{lin} dx$$

$$-40$$

$$-40$$

$$-60$$

$$-80$$

$$-100$$

$$-100$$

Passive Elastic Modulus (B)

Late Time State of the Segregated Domains

Singular Structures of Stronger Contractile Stresslets

Singular Structures of Stronger Contractile Stresslets

www.mechanobio.info

Singular Structures of Stronger Contractile Stresslets

 $\llbracket p^e \rrbracket = \gamma H - \llbracket p^a \rrbracket$ (active Young-Laplace law)

www.mechanobio.info

Exceptional Points, Transient Growth, Bypass Transition

Eigenvalue-based analysis is misleading near EPs

P J Schmid, Nonmodal Stability Theory, Annu. Rev. Fluid Mech., 39, 2007

Instead of static singular structures, bypass transition to other phases are possible, e.g., moving singularities

Activity and Strain-dependent Turnover lead to Spatiotemporal Segregation of the Uniform Mixture of Stresslets

Elastic Stress Dissipation drives Segregation in the Linear Regime

Nonlinear Feedback leads to Stress Singularities on Lower Dimensional Structures, akin to Stress Fibers

Exceptional Points lead to Bypass Transition

Summary

Thank You for Your Attention!