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Evolution of antibiotic resistance

• Resistance evolution is a universal response of microbial pathogens to

biomedical interventions

• Evolutionary considerations are key for developing strategies that prevent

or delay resistance evolution in clinical or environmental settings

• At the same time microbial resistance evolution serves as a model system

for addressing broader questions of evolutionary theory
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Two case studies

• The resistance landscape of TEM-1 β -lactamase

joint work with de Visser lab (Wageningen)

• Concentration-dependent evolution of ciprofloxacin resistance

joint work with Bartek Waclaw and Rosalind Allen (Edinburgh)



Quantifying antibiotic effects

• The effect of a drug is quantified by the dose-reponse curve, the growth

rate of a (large) bacterial population as a function of drug concentration

• At the minimal inhibitory concentration (MIC) the growth rate drops to zero

• Resistance mutations increase the MIC

• The combination of multiple mutations along an evolutionary pathway leads

to highly resistant strains



TEM-1 β -lactamase

• β -lactam antibiotics such as penicillin target cell wall synthesis

• TEM-1 β -lactamase confers resistance against ampicillin to E. coli

• Experiments study adaptation to novel antibiotic cefotaxime



Pathways to TEM-1 resistance
D.M. Weinreich et al., Science 312, 111 (2006)

• 5 mutations increase the MIC by 4×10
4

• Construct all 2
5 = 32 combinatorial mutants



Pathways to TEM-1 resistance
D.M. Weinreich et al., Science 312, 111 (2006)

• Only 18 out of 5! = 120 directed mutational pathways are monotonically

increasing in resistance, and only a few of them have appreciable weight



Pathways to TEM-1 resistance De Pristo et al. 2007

• 27 out of 18651552840 undirected pathways are monotonically increasing



Mathematical framework



Pathways in fitness landscapes
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• Genotypes are encoded by binary sequences (σ1, . . . ,σL) where σi = 1

(σi = 0) denotes the presence (absence) of a mutation at position i

• A fitness or resistance landscape is a function on the L-dimensional

hypercube {0,1}L of genotypes

• The fitness graph is obtained by orienting the links in the direction of

increasing fitness Crona et al. 2013



Pathways in fitness landscapes
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• L = 3 mutational steps from the wild type 000 to the adapted mutant 111

• Mutations can occur in 3×2×1 = 3! = 6 different orders corresponding to

6 possible directed pathways

• If all mutations are unconditionally beneficial all pathways are accessible

(= increasing in fitness)



Pathways in fitness landscapes
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• Sign epistasis occurs if mutations can be beneficial or deleterious

depending on the genetic context Weinreich et al. 2005

• This implies that parallel arrows in the fitness graph point in opposite

directions

• Sign epistasis reduces the number of direct accessible paths but may

increase the number of evolutionary endpoints



Accessibility and predictability

• Pathways are accessible if fitness/resistance increases monotonically

• Existence of a small but nonzero fraction of accessible pathways implies

high (retrospective) predictability



Accessibility and predictability

• Pathways are accessible if fitness/resistance increases monotonically

• Existence of a small but nonzero fraction of accessible pathways implies

high (retrospective) predictability

Questions for theory

• How does accessibility depend on the structure of the fitness landscape

and on the boundary conditions of the paths?

• How typical is it that a small but nonzero fraction of pathways are

accessible?



Accessibility percolation JK, arXiv:1903.11913

• Null model: assign fitness at random to genotypes Kauffman & Levin 1987

• Probability of existence of accessible paths generically displays a sharp

percolation transition from 0 to 1 at a critical value β ∗ of the fitness quantile

β ∈ [0,1] between initial and final genotype

• For directed paths on the hypercube β ∗ = 1− lnL
L
→ 1 for L → ∞

Hegarty & Martinsson 2014

• Mutational reversions increase accessibility such that β ∗ < 1 for L → ∞
Berestycki et al. 2017

• For sequences with a alleles per site B. Schmiegelt, JK, 2019

β ∗ ≈
lna

a
+

1+ lna

a2
→ 0 for a ≫ 1

• Near β = β ∗ the number of accessible paths is small and hence

predictability is high



Exploring the TEM-1 resistance landscape



A panel of resistance mutations

M.F. Schenk et al., PLoS Genet. 2012

• At least 48 out of 2583 point mutations increase resistance against

cefotaxime
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• Analysis using extreme value theory yields power law distribution of

mutational effects with an exponent ∼ 1



Construction of combinatorial resistance landscapes

• Constructing all possible 2
48 ≈ 2.8×10

14 combinatorial mutants is

obviously unfeasible

• The choice of a subset of mutations is expected to bias the structure of the

fitness landscape: de Visser & Krug, Nat. Rev. Genet. 2014

– singly beneficial vs. singly deleterious mutations

– mutations chosen for individual or collective effects

– mutations occurring along an adaptive trajectory

• Here we consider 4-dimensional landscapes constructed from three

subsets of individually beneficial mutations: Schenk et al. 2013

– non-synonymous mutations of strong effect

– non-synonymous mutations of weak/typical effect

– synonymous mutations of strong effect



Mutations chosen for individual vs. collective effect

M.F. Schenk et al., Mol. Biol. Evol. (2013)

A: Large effect B: Small effect C: Weinreich 2006

• Mutations chosen for individual effect interact more strongly and negatively

than mutations chosen “with hindsight” because of their collective effect



Similar patterns observed in yeast
Bank et al., PNAS 2016

• Combinatorial study of 13 mutations in the Hsp90 heat shock protein



Synonymous resistance landscape

M.P. Zwart et al., Heredity (2018)

• Landscape displays a “layered” structure that may be related to

translational bottlenecks M. Josupeit, JK, arXiv:2009.10621



Concentration-dependent fitness landscapes

S. Das, S. Direito, B. Waclaw, R. Allen, JK, eLife 9:e55155 (2020)



Dose-response curves

Gullberg et al., PLoS Pathogens 2011

• Mutations that increase resistance

often decrease growth rate in the

absence of antibiotic (null fitness)

• As a consequence the dose-

response curves of susceptible and

mutant strains cross at the minimal

selective concentration (MSC)

• The mutant selection window is the

concentration range

MSC < c < MICres



Observation 1: Scaling of dose-response curves

• Single and double mutations in Escherichia coli conferring resistance

against ciprofloxacin S. Direito, B. Waclaw, R. Allen
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Observation 1: Scaling of dose-response curves

• Single and double mutations in Escherichia coli conferring resistance

against ciprofloxacin S. Direito, B. Waclaw, R. Allen
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• Shape of dose-response curve is a Hill function f (x) = (1+ x4)−1



Observation 2: Independent marginal phenotypes

• Null-fitness and MIC of multiple mutants combine multiplicatively or display

negative interactions data from Marcusson et al., PLoS Pathogens 2009
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• This pattern was first observed for resistance mutations in Salmonella

enterica and E. coli Knopp & Andersson, mBio 2018



Model with predictable concentration dependence

• L resistance mutations i = 1, . . . ,L characterized by null-fitness ri < 1 and

resistance mi > 1 relative to the wild type

• Dose-response curve of a mutant σ = (σ1, . . . ,σL) is given by

wσ(x) = rσ f (x/mσ)

where the function f (x) is independent of σ and the marginal phenotypes

combine multiplicatively as

rσ =
L

∏
j=1

(r j)
σ j and mσ =

L

∏
j=1

(m j)
σ j

• Resistance is quantified by the concentration at which growth drops by 50%

(IC50), which implies that f (1) = 1

2

• In this way 2
L concentration-dependent fitness values can be predicted

from 2L single mutant phenotypes and one shape function



Two resistance mutations
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• Fitness landscape evolves from single-peaked to two-peaked and back

• Not all rank orders can appear in this process



Maximal ruggedness at intermediate concentrations

• L = 16 mutations with randomly distributed ri, mi

• Quantify ruggedness by the number of local fitness peaks
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• Typical fitness peaks carry n mutations at lnx ∼ n〈lnmi〉, and the maximal

number of peaks grows exponentially with L



Landscapes are nevertheless highly accessible

• Scaling and absence of positive

marginal epistasis imply

that certain rank orders are

forbidden at any concentration

• As a consequence, any peak

genotype is accessible from all

its sub- and supersets

• In particular, the fittest type is

always accessible from the wild

type
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Two-peaked landscape at an

intermediate concentration



Reachability of the fittest and most resistant mutant

• L = 10 mutations with randomly distributed ri, mi
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• Probability of reaching the fittest/most resistant mutant from the wild type

using strong selection/weak mutation dynamics



Summary

• Evolution of antimicrobial resistance through multiple mutational steps is a

model for evolutionary predictability

• Combinatorial construction of resistance landscapes reveals a systematic

dependence on the choice of the combined mutations

• Tradeoff between resistance and growth rate induces rugged fitness

landscapes at intermediate antibiotic concentration

• Despite their ruggedness these landscapes are remarkably accessible and

the evolution of high levels of resistance remains facile

• Outlook: Consider time-dependent antibiotic concentrations as a model for

evolution in changing enviroments
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