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Mordell-Weil Theorem

Theorem (Mordell (1922), Weil (1928))

Let E be an elliptic curve over a number field k . Then the group E (k) of
k-rational points on E is a finitely generated abelian group ; i.e.

E (k) ∼= E (k)tors ⊕ Zr

for some r ≥ 0.

Louis J. Mordell André Weil

Question (Uniformity for torsion)

What possible groups can arise as E (k)tors?
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Question (Uniformity for torsion)

(For a fixed k), what possible groups can arise as E (k)tors (as E varies
over all elliptic curves over k)?

Question (Strong uniformity for torsion)

For a fixed d ≥ 1, what possible groups can arise as E (k)tors as k varies
over all number fields of degree d over Q and E varies over all elliptic
curves over k?

Let’s call this set of possible groups Φ(d).
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Mazur’s Torsion Theorem

Theorem (Mazur, 1977)

E (Q)tors is one of the following 15 groups:

Z/NZ, 1 ≤ N ≤ 10 or N = 12
Z/2Z⊕ Z/2NZ, 1 ≤ N ≤ 4.

Moreover, each group occurs infinitely often.

Barry C. Mazur

This was conjectured by Beppo Levi in 1908 (in his Rome ICM address),
then again by Andrew Ogg in 1970.
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Actually, Mazur really proves the following result.

Theorem (Mazur (1977))

Let E be an elliptic curve over Q admitting a Q-rational torsion point of
prime order p. Then

p ∈ {2, 3, 5, 7} .

SLOGAN
For d = 1 strong uniformity for torsion boils down to bounding torsion
primes in degree d .
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Kamienny-Mazur reduction
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Merel’s theorem (1996)

Loïc Merel

The bound was subsequently improved to (1 + 3d/2)2 by Oesterlé also in
1996 (unpublished, but appeared as an appendix to Derickx’s PhD
thesis).
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Theorem (the people shown below (1977-2023))

S(1) = {2, 3, 5, 7}
S(2) = {2, 3, 5, 7, 11, 13}
S(3) = {2, 3, 5, 7, 11, 13}
S(4) = {2, 3, 5, 7, 11, 13, 17}

S(5) = {2, 3, 5, 7, 11, 13, 17, 19}
S(6) = {2, 3, 5, 7, 11, 13, 17, 19, 37}
S(7) = {2, 3, 5, 7, 11, 13, 17, 19, 23}
S(8) = {2, 3, 5, 7, 11, 13, 17, 19, 23}

Derickx Kamienny Khawaja Mazur

Parent Stein Stoll
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Φ(1), Φ(2) and Φ(3)

Theorem (Mazur (1977))

Φ(1) consists of the following 15 groups:

Z/mZ, for 1 ≤ m ≤ 12,m ̸= 11,
Z/2Z⊕ Z/2mZ, for 1 ≤ m ≤ 4.

Theorem (Kamienny-Kenku-Momose (1992))

Φ(2) consists of the following 26 groups:

Z/mZ, for 1 ≤ m ≤ 18,m ̸= 17,
Z/2Z⊕ Z/2mZ, for 1 ≤ m ≤ 6,
Z/3Z⊕ Z/3mZ, for 1 ≤ m ≤ 2,
Z/4Z⊕ Z/4Z.

Theorem (Derickx–Etropolski–van Hoeij–Morrow–Zureick-Brown (2021))

Φ(3) consists of the following 26 groups:

Z/mZ, for 1 ≤ m ≤ 21,m ̸= 17, 19
Z/2Z⊕ Z/2mZ, for 1 ≤ m ≤ 7.
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Uniformity vs strong uniformity

Question (Strong uniformity for torsion)

For a fixed d ≥ 1, what possible groups can arise as E (k)tors as k varies
over all number fields of degree d over Q and E varies over all elliptic
curves over k?

Question (Uniformity for torsion)

(For a fixed k), what possible groups can arise as E (k)tors (as E varies
over all elliptic curves over k)?
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Theorem (Najman (2011))

1 Let E be an elliptic curve over K = Q(
√
−3). Then E (K )tors is

isomorphic to one of the groups in Mazur’s list, Z/3Z⊕ Z/3Z,
Z/3Z⊕ Z/6Z, Z/13Z or Z/18Z.

2 Let E be an elliptic curve over K = Q(i). Then E (K )tors is
isomorphic to one of the groups in Mazur’s list, Z/4Z⊕ Z/4Z, or
Z/13Z.

Filip Najman
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Later today in Zagreb ...

Theorem (B.-Derickx, 2023)

For K = Q(
√
d), |d | < 500, we determine which torsion subgroups arise

over K .
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Isogenies
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If P ∈ E (k)tors of order p, then ⟨P⟩ is a GK -stable subgroup of order p ;
i.e., it gives rise to a k-rational p-isogeny.

Question (Uniformity for ‘isogeny primes’)

Fox a fixed k , what possible primes arise as the degree of a k-rational
isogeny (as E varies over all elliptic curves over k)? Call this set
IsogPrimeDeg(k).

Question (Strong uniformity for isogeny primes)

Fox a fixed d ≥ 1, what possible primes arise as the degree of a
k-rational isogeny (as k varies over all number fields of degree d over Q
and E varies over all elliptic curves over k)?
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Mazur’s isogeny theorem

Theorem (Mazur (1978))

IsogPrimeDeg(Q) = {2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 67, 163} .

Barry C. Mazur

Question (John Cremona to me (2010))

Mazur found IsogPrimeDeg(Q) in 1978, can you do it for any other
number field?
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Beware CM ...

If E/k has CM by O that is defined over k , i.e.

EndK (E ) = O,

then any prime p that splits in O will correspond to a k-rational
endomorphism of degree p.

Lemma

If k contains the HCF of an IQF, then IsogPrimeDeg(k) is infinite.

Theorem (Momose (1995) + Merel (1996))

Assuming GRH, the converse of the above is true.

Question
Assume GRH. Let k be a number field not containing HCF of IQF. What
is the finite set IsogPrimeDeg(k)?
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Uniformity for isogeny primes for some quadratic k

Theorem (B. (2021))

Assuming GRH, we have the following.

IsogPrimeDeg(Q(
√

7)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√
−10)) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(
√

5)) = IsogPrimeDeg(Q) ∪ {23, 47}
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Uniformity for isogeny primes for some cubic k

Theorem (B.-Derickx (2022))

Assuming GRH, we have the following:

IsogPrimeDeg(Q(ζ7)
+) = IsogPrimeDeg(Q)

IsogPrimeDeg(Q(α)) = IsogPrimeDeg(Q) ∪ {29}
IsogPrimeDeg(Q(β)) = IsogPrimeDeg(Q),

where α3 − α2 − 2α− 20 = 0 and β3 − β2 − 3β + 1 = 0.

Selfie with Maarten Derickx in West London in January 2022
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What about strong uniformity of isogenies?

Strong uniformity of isogenies can’t be true in general because of the
aforementioned CM isogenies.

Open Problem (Strong uniformity of isogenies v2)

For a fixed d ≥ 1, what possible primes arise as the degree of a
non-CM-over-k k-rational isogeny (as k and E vary as before)?

Note that if d is odd, then this “non-CM-over-k” can be removed.
Pete Clark calls this question Isogeny Merel, since it now has a hope of
being a finite set, and one can ask about a bound on it in terms only of d .



Torsion Isogenies Signature Results

Our main theorem (rough version)

Theorem (B.-Derickx (2023))

We establish Isogeny Merel for isogenies whose signature satisfies one of
various conditions.
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The signature of an isogeny
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The name was coined by Nuno Freitas and Samir Siksek in 2013

and it expresses information about the isogeny character.
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Isogeny Character

Definition

Let E/k be an elliptic curve over a number field admitting a k-rational
p-isogeny. The isogeny character is the character expressing the Galois
action on the kernel W of the isogeny:

λ : Gk → Aut(W (k)) ∼= F×
p .

Since it is a one-dimensional Galois character it corresponds to an abelian
extension of k , so precomposing with the Artin map we may identify λ
with a character

Ik(p) → F×
p

on the group of fractional ideals of k coprime to p. By abuse of notation
we also call this λ.
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Key Proposition

The following key result expresses how λ12 acts on principal ideals:

Proposition

Let k be a number field, K its Galois closure, Σ = Hom(k,K ), and λ a
p-isogeny character over k .Then for every prime ideal p0 lying above p in
K there exists a formal sum ε = εp0 =

∑
σ∈Σ aσσ with all

aσ ∈ {0, 4, 6, 8, 12} such that for all α ∈ k× prime to p,

λ12((α)) ≡ αε (mod p0).

Furthermore if p > 13 and p is unramified in k , then for every p0 there is
a unique such signature εp0 .

This was first proven by Momose in 1995 under various conditions
(k = K and p unramified in k); a more careful treatment of it was given
by David in 2009; in our previous work we remove these restrictions.
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The isogeny signature

Definition
We refer to εp0 as the isogeny signature of λ w.r.t. p0.

• Different choice of p0 permutes the aσ integers (so we drop it from
the notation);

• Fixing an ordering to Σ allows us to regard ε as a d-tuple of integers
valued in {0, 4, 6, 8, 12}

• Really one first defines ap for p a prime ideal of k ; this has the
interpretation that λ12|Ip = χ

ap
p ; then one defines aτ to be ap

corresponding to p = τ−1(p0).
• In particular, if aτ are all zero, then λ12 is an everywhere unramified

character.
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Summary

• It is a d-tuple of integers valued in {0, 4, 6, 8, 12};
• Hence there are only 5d of them ...
• ... but this depends on a choice of ordering of Hom(k,K ).
• It expresses how inertia at p acts on the kernel of the isogeny;
• Isogeny Merel reduces to dealing with each possible signature.
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Some special signatures

Definition
• If ε = (0, . . . , 0) or (12, . . . , 12), we say that ε is of Type 1.
• If ε = (6, . . . , 6) we say that ε is of Type 2.
• Define the trace of ε as Tr ε :=

∑
aσ.

Observe that Tr ε must satisfy one of:
• Tr ε ̸≡ 0 (mod 6) - ✓
• Tr ε ≡ 6 (mod 12) - ✓assuming GRH
• Tr ε ≡ 0 (mod 12) - only if ε is Type 1; otherwise this is OPEN
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Results
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The key proposition implies the following:

Proposition

Let λ be a p-isogeny character over k of signature ε and α ∈ k× coprime
to p. Suppose the fractional ideal (α) factors as

∏r
i=1 q

ei
i . Then for each

1 ≤ i ≤ r there exists

βi ∈ S(Nm(qi ), k) := {±1,±Nm(qi )}∪
{
β ∈ k | β is a Frobenius root over Fqi

}
,

and a prime ideal pi of Q(βi ) such that

λ(Frobqi ) ≡ βi (mod pi );

moreover one has that p divides the integer

Bε,α,β := NmQ(αε,β1,...,βr )/Q

(
αε −

r∏
i=1

β12ei
i

)
.

We apply this for α = q a rational integer; we loop over all possible
splittings of (q) in a degree d number field, and take the lcm of the
resulting Bε,α,β integers to remove the dependence on k .
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Algorithm 4.1

SLOGAN
Bε,q is a multiplicative bound on isogeny primes of signature ε, but it
might be zero :(
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Tr ε ̸≡ 0 (mod 6)

Proposition

If Tr(ε) ̸≡ 0 (mod 6), then none of the Bε,q,β are zero.

Proof.
If Bε,q,β = 0 for some β,then

qTr ε =
r∏

i=1

β12ei
i .

By considering the absolute value of this equation, and observing that
the only possible values for |βi | are 1,

√
qfi , or qfi , we see that 6 must

divide Tr ε.
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Theorem (B.-Derickx)

Let k be a number field of degree d , and E/k an elliptic curve admitting
a k-rational p-isogeny of signature ε for p prime. Assume
Tr ε ̸≡ 0 (mod 6). Then for all primes q, we have Bε,q ̸= 0, p|Bε,q, and

p ≤ (2Tr ε + 212d)2
d

.
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Tr ε ≡ 6 (mod 12) (Sketch)

Here one can show that Bε,q = 0, and that if p ∤ B∗
ε,q, then p splits in

Q(
√
−q).

Using Effective Chebotarev, we can find a q for which p does not split in
Q(

√
−q) that satisfies

q ≤ (4 log p + 10)2;

for this q, we then have that p|B∗
ε,q and hence

p ≤ (qTr ε + q12d)2
d

;

these two inequalities contradict each other for large p.
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Theorem (B.-Derickx)

Let k be a number field of degree d , and E/k an elliptic curve admitting
a k-rational p-isogeny of signature ε for p prime. Assume
Tr ε ≡ 6 (mod 12), and assume GRH. Then

p ≤ max

((
109Tr ε + 10108d)2d

,Rd

)
,

where Rd is the largest real root of the function

x −
(
g(x)2Tr ε + g(x)24d)2d

and g(x) = log(6x) + 9 + 5
2 (log log(6x))

2.
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ε is of Type 1

WLOG ε = (0, . . . , 0). If one of the Bε,q,β = 0, then
r∏

i=1

β12ei
i = 1

for some splitting type (r , e1, . . . , er , f1, . . . , fr ). The only way this can
happen is if all of the βi are equal to ±1 (because the Frobenius roots
here have norm a power of q);in particular

λ2(Frobqi ) ≡ 1 (mod p).

If E had potentially good reduction at some qi , then we’d get a nontrivial
multiplicative bound ; so we can assume that E has potentially
multiplicative reduction at all qi . Writing x for the corresponding k-point
on X0(p), this means that x specializes to one of the cusps 0 of ∞ at qi .
If x reduced to 0 at some qi , then

λ2(Frobqi ) ≡ Nm(qi )
2 (mod p),

and hence p|(Nm(qi )
2 − 1). Otherwise, x reduces to ∞ at all qi . This is

then precisely the Kamienny-Mazur formal immersion setup, and hence
(applying DKSS) p divides BadFormalImmersion(d).
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Theorem (B.-Derickx)

Let k be a number field of degree d , E/k an elliptic curve admitting a
k-rational p-isogeny of signature ε of type 1, and q ≥ 3 a rational prime.
Then p divides the nonzero integer

lcm

(
B∗
ε,q,

d∏
f=1

(qf − 1),BadFormalImmersion(d),AGFId(q)

)
,

and in particular,

p ≤ max
(
65(2d)6, (312d + 1)2

d
)
.
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Strong uniformity of torsion in unramified extensions

Corollary

Let d ≥ 1 be an integer, and let E be an elliptic curve over a number
field k of degree d . If E attains a torsion point of prime order p rational
over an extension of k that is unramified at all primes of k above p, then

p ≤ max
(
65(2d)6, (312d + 1)2

d
)
.

This generalises Merel’s theorem (which is the case of the trivial
extension of k).

Proof.
Let L be the extension in the statement, and P the torsion point. WLOG
L/k is Galois. If ⟨P⟩ is k-rational, then E has a k-rational p-isogeny
which is of Type 1 (by assumption of L being unramified above p) so the
previous bound applies. If ⟨P⟩ is not k-rational, then P and σ(P)
generate E [p] for some σ ∈ Gal(L/k); this implies ζp ∈ L, so considering
ramificiation, we get p − 1 < d ; in both cases p is bounded by the
previous bound.
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An exact list for Type 1 isogenies if d = 2

Theorem (B.-Derickx)

Let k be a number field of degree d , E/k an elliptic curve admitting a
k-rational p-isogeny of signature ε of type 1, and q ≥ 3 a rational prime.
Then p divides the nonzero integer

lcm

(
B∗
ε,q,

d∏
f=1

(qf − 1),BadFormalImmersion(d),AGFId(q)

)
,

and in particular,
p ≤ max

(
65(2d)6, (312d + 1)2

d
)
.

Theorem (B.-Derickx)

There exists an elliptic curve over a quadratic field K admitting a
K -rational p-isogeny of signature (0, 0), for p prime, if and only if p is in
the following set:

{2, 3, 5, 7, 11, 13, 17, 19, 37, 43, 73} .
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d = 2

Demo of code
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