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Status Report
Symplectic singularities

• These lectures review the current understanding we have of moduli spaces for 
theories with 8 supercharges


• The focus is on


• Higgs branches in 3, 4, 5, 6 dimensions


• Coulomb branch in 3 dimensions
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Table 1. Most up-to-date, but incomplete list of unitary quivers without loops for elementary slices usable in the quiver subtraction algorithm.
In each case we provide two quivers, a framed version and an equivalent unframed version, where a U(1) should be ungauged on the long node.
For an, bn, cn, dn, acn, hn,k and h̄n,k there are n gauge nodes in the framed quiver and n + 1 gauge nodes in the unframed quiver. Notice that
hn,1 = H

n, hn,2 = cn, h2,3 = cg2, hn,1 = an, hn,2 = acn, and h2,3 = ag2.
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Symplectic singularities & 
Physics

symplectic singularities

HK CB

3d
M
S

HK - hyper-Kähler Quotient

CB - Coulomb Branch

3d MS - 3d Mirror Symmetry

Figure 1: One has to make a distinction between the various geometric spaces dealt

with in the realm 3d N = 4 gauge theories. Examples of symplectic singularities are

given through both the hyper-Kähler quotient and the Coulomb branch construction. The

space of symplectic singularites which can be constructed as a Coulomb branch and as a

hyper-Kähler quotient, is the realm of the famous 3d mirror symmetry. However, there

are Coulomb branches for which no hyper-Kähler quotient construction is known and vice

versa. Furthermore there are hyper-Kähler quotients and Coulomb branches, which are not

symplectic singularities. If the hyper-Kähler quotient is a union of symplectic singularities,

the individual cones may be described as the Coulomb branches of a set of magnetic quivers.

The hyper-Kähler quotient need not accurately describe the Higgs branch of the quantum

moduli space of a theory, an example is given in Section 4.

Kraft and Procesi [21, 22] used Hasse diagrams to describe the geometry of closures

of nilpotent orbits, a result reproduced from brane physics in [23, 24]. As shown in [17]

one can determine the Hasse diagram of a Coulomb branch of a theory using an operation

called quiver subtraction, which was first introduced in [25]. One can compute the Hasse

diagram of a classical Higgs branch through the partial Higgs mechanism, or if a magnetic

quiver is known, through quiver subtraction on the magnetic quiver [17]. Hasse diagrams

for singular hyper-Kähler quotients were studied in [26]. For unitary quivers a procedure

to produce the Higgs branch (quiver variety) Hasse diagram is given in [27] 5. Outside the

realm of symplectic singularities, Hasse diagrams were introduced for Coulomb branches

of 4d N = 3 theories, so called triply special Kähler spaces, in [28].

In Figure 1 an overview of how the notions of hyper-Kähler quotients, Coulomb

branches and symplectic singularities interplay is given. There is a large class of examples

of symplectic singularities, which can be constructed as the Higgs branch of one theory and

the Coulomb branch of another theory. This is the playground for the 3d mirror symmetry

of [29] 6. There are several examples of hyper-Kähler quotients, which are symplectic sin-

5The authors thank Antoine Bourget for a wonderful journal club talk on [27], and Travis Schedler for

helpful comments.
6Two theories do not have to be 3d mirror duals just because the Coulomb branch of one is the Higgs

branch of the other, a simple counter example is O(2) with 2 fundamental hypermultiplets and the a�ne

D̂4 Dynkin quiver. While the Coulomb branch of the O(2) theory is the Higgs branch of the a�ne quiver,

the Higgs branch of the O(2) theory is not the Coulomb branch of the a�ne quiver and they are not 3d

mirror duals.
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Characterization of Symplectic Singularities
physical quantities — ordered by ease of computation

• Dimension (quaternionic)


• Global symmetry


• Phase (Hasse) diagram


• Representation content of the chiral ring (Hilbert Series)


• Highest weight generating function (HWG)


• Chiral ring - generators and relations



Dimension
Higgs branch

• If there is complete Higging


• 


•  is number of hyper multipets


•  is number of vector multipets

dimℋ = H − V

H

V



Dimension of Higgs branch
Kibble 1967

• A theory with gauge group G and matter 


• If the gauge group G is broken to a subgroup H


• Decompose ;         Adj = adj + 


•  — irreducible representations of H,  multiplicities,  — trivial representation 


• New theory with gauge group H and matter 


• 


•

R

R = ∑
i

airi ∑
i

biri

ri ai, bi r0

R′� = ∑
i≠0

(ai − bi)ri

ai − bi ≥ 0

dimℋ = a0 − b0



Dimension of 3d Coulomb branch

• 


• rank of G

dim𝒞 = r



Global symmetry
symplectic singularity

•  acts on the moduli space


• rotates complex structures


• Pick one — holomorphic functions


• U(1) inside gives weight to holmorphic functions


• weight n is the highest weight in the representation with spin  under 


• functions of weight 2 are closed when paired under the symplectic form


• Form Lie Algebra


• adj of global symmetry is given by the set of all functions of weight 2

SU(2)R

n
2

SU(2)R



Global symmetry
Higgs branch

• In a quiver with flavor nodes of rank  the global symmetry is 




• As quarks have weight 1, on the Higgs branch we need to find all possible 
mesons


• They transform in the adjoint representation of the global symmetry

Ni

S (∏
i

U(Ni))



Global symmetry
Coulomb branch

• Balance of a gauge node — sum of node ranks connected to it minus twice 
its rank


• For a large class of quivers the subset of balanced nodes forms the Dynkin 
diagram for the non Abelian part of the global symmetry


• For the remaining  unbalanced nodes there is an additional  
contribution to the global symmetry


• These combinatorial criteria need to be tested with an explicit evaluation of all 
functions of weight 2

n U(1)n−1



Global symmetry
Coulomb branch exercise

• Find the global symmetry for the quivers


• Show it is bigger than the symmetry expected by balance


• to be published in a paper with K. Gledhill

Example Consider the following quiver

Q =
2 4 6 8 5

5

2

2 (2.6)

where the red indicates that the corresponding node is unbalanced. Here, after ungauging

on one of the unbalanced nodes the quiver is still unframed, and there are two unbalanced

nodes and one balanced sub-D6 Dynkin diagram. Thus we read o↵ the BGS

BGSQ = SO(12)⇥ U(1). (2.7)

However if we compute the refined Hilbert series to order t2 for Q we find that, after the

appropriate fugacity map (see Appendix B for more details),

HSQ = 1 + (1 + [0, 1, 0, 0, 0, 0]B6)t
2 +O(t4), (2.8)

which means that the global symmetry is actually enhanced to

EGSQ = SO(13)⇥ U(1). (2.9)

Blue is used to highlight the factor of the global symmetry that is enhanced. Here we see

explicitly the failure of the BGS to give the full global symmetry. ⇤

2.2 Hasse Diagrams

One can also glean information about the non-Abelian part of the global symmetry of a

quiver via studying its Hasse diagram [13, 14, 19]. The Hasse diagram characterises the

structure of a moduli space by visualising its stratification as a symplectic singularity into

so-called symplectic leaves and transverse slices. Physically, a symplectic leaf corresponds

to a certain set of massless states (or phase) admitted by the theory on this section of the

moduli space. A transverse slice is then the set of moduli one needs to tune to move from

one phase of the theory to another. The symmetry of the lowest elementary slices of the

Hasse diagram form a subgroup of the non-Abelian part of the global symmetry.

The Hasse diagrams for the Coulomb branch and Higgs branch are equivalently constructed

in di↵erent ways: the former uses a “bottom-up” approach, while the latter uses a “top-

down” one. The equivalence of these approaches can be seen from the brane picture or the

3d mirror of a theory, in the cases where these exist. The bottom-up approach is to use the

Higgs mechanism to see what moduli need to be adjusted to give di↵erent combinations of

massive and massless gauge bosons until the gauge group is maximally broken, and then

use this to build up the picture of symplectic leaves and transverse slices. However this

approach only works when the theory has a classical Lagrangian description. For theories

where this is not the case, for instance due to a strong coupling limit, there is an alternative
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will not have the quiver n.min B5, but instead
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and so the subtraction is invalid. The correct way to add d4 on to n.min B5 would be as

follows:

2a

2
b

2
c

2

1

1

+
1 2

1 1

1
1

a

2
b

3
c

4

2

2

1

+
1 2

1 1

1

2
b

4
c

6

3

3

2

(3.11)

One can check that subtracting d4 twice from the final quiver in (3.11) will indeed give

n.min B5 as desired. The final quiver in (3.11), following the algorithm in Section 2.1, has

BGS SO(10). However, we have seen that the Hasse diagram contains SO(11), and thus

this must be a subgroup of the global symmetry. Indeed, upon Hilbert series computation,

SO(11) is the confirmed EGS. ⇤
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Phase (Hasse) diagrams
massless fields

• We characterize different phases by identifying the set of massless fields of 
the theory


• Theories with massive fields that have the same massless content are 
considered to be equivalent.


• They are in the same phase.



Massive fields

• Masses are functions of moduli in the theory


• As we move along the moduli space, masses of massive states vary.


• At some critical points some states become massless


• In such cases we say that the phase of the theory changes


• It contains more massless states.



Natural questions

• As we move from phase A to phase B with more massless fields:


• Characterise each phase — give some names


• How many moduli are tuned to get from A to B?


• What is the geometry of these moduli?


• These are called transition moduli, as they move from phase A to phase B.



Transition moduli

• Necessarily conical


• As we scale these moduli massive states remain massive


• massless states remain massless


• At the origin new massless states show up



Example: Free scalar field

• Consider a scalar field with mass 


• There are two phases


•  one dimensional phase with 0 massless states


•  zero dimensional phase with 1 massless state


• The transition modulus  parametrizes  which is conical, one dimensional

m

m ≠ 0

m = 0

m ℝ+



Minimal transitions

• Given a phase, a minimal transition is a minimal set of tuned moduli for 
moving to a new phase


• The Hasse (phase) diagram for such moduli consists of 2 points connected by 
one edge.


• Two phases


• The origin


• Anything else


• An important problem — find such minimal cases



Supersymmetry 

• The discussion so far is very generic and can apply to any theory


• With supersymmetry we get a better control.


• Can compute masses with control over quantum corrections


• Can use geometric techniques to get exact results


• Will focus on theories with 8 supercharges


• look at Higgs branches in 3, 4, 5, 6d


• Coulomb branch in 3d



Phase Diagram
Hasse diagram

• We form a diagram with two objects


• nodes and edges


• A node represents a phase (symplectic leaf)


• An edge represents a minimal transition (transverse slice) between a node A 
with some massless states to a node B with additional massless states



Basic Hasse diagrams - affine ADE quivers
2 symplectic leaves, minimal slices
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Figure 2: A�ne ADE Dynkin quivers. a) Ân b) D̂n c) Ê6 d) Ê7 e) Ê8. Their Coulomb

branches are the minimal nilpotent orbit closure of the corresponding algebra, written an,

dn, and en respectively. Their Higgs branches are the Kleinian singularities corresponding

to the algebra, written An, Dn, and En respectively. It should be clear from context,

when a capital letter refers to the Kleinian singularity rather than a Dynkin diagram or an

algebra. The Hasse diagrams for both the Coulomb and Higgs branches are given in (1.5).

1. Black dots with a number n next to it: denote a leaf of quaternionic dimension n.

2. A line � with a label next to it, between two black dots: denotes the elementary slice

between two neighbouring leaves.

Now consider the a�ne Dynkin quivers of ADE (Figure 2). Their Coulomb branches

are minimal nilpotent orbit closures, while their Higgs branches are Kleinian singularities.

Both their Higgs and Coulomb branches consist of two symplectic leaves and the transverse

slice is the the branch itself. The respective Hasse diagrams are

HC =

an, dn or en

0

x

HH =

AN , Dn or En

0

1

. (1.5)

Where closures of minimal nilpotent orbits are denoted with a lower case and Kleinian

singularities with an upper case letter, note that A1 = a1, and

x =

���������������������

n for an
2n − 3 for dn
11 for e6
17 for e7
29 for e8

(1.6)
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Higgs branch of SU(3) with 6 flavors
3 symplectic leaves, 2 minimal slices

21

5

5

SU(2)

4

SU(3)

6

{1}

Hasse diagram E↵ective theory

10

5

0

Figure 3: Hasse diagram obtained from partial Higgsing of SU(3) with 6 fundamentals. The
e↵ective gauge theory on each symplectic leaf is given by the quiver in the corresponding bracket
and an extra number N of neutral hypermultiplets, where N is the number labelling the node. Note
that N is also the quaternionic dimension of the leaf.

transverse spaces of the Higgs branch; hence, the Hasse diagram can be derived from the

brane configuration. Using the notion of magnetic quivers [18], one can characterise the

Hasse diagram in more detail than in Section 2.1. Inspecting Figure 5 reveals the following:

• The left column depicts brane configurations for the di↵erent symplectic leaves. They

are obtained by removing elementary slices, one at a time. These are Kraft-Procesi

transitions [12, 13], with the di↵erence that they are performed in 5-brane webs.

• The central column provides the (electric) quivers, previously computed in Section

2.1, whose Higgs branch is the transverse slice between the corresponding symplectic

leaf and the full space (the Higgs branch of SU(3) with 6 flavours).

• The right column contains the magnetic quivers which describe each symplectic leaf.

The precise relationship is that the 3d N = 4 Coulomb branch of the magnetic quiver

is the closure of the symplectic leaf.

• The arrows between the di↵erent 5-brane webs in the left column denote the sub-webs

which realise the Kraft-Procesi transitions. The Higgs branch of such 5-brane webs

are the elementary slices.

• The arrows in the right column denote the magnetic quivers corresponding to the

elementary slices. The precise relationship is that the 3d N = 4 Coulomb branch of

the magnetic quiver is the elementary slice.

From the brane analysis of Kraft-Procesi transitions in Figure 5, the Hasse diagram

of the Higgs branch of SU(3) with 6 flavours can be obtained. It is depicted in Figure 4.
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Hasse diagram Magnetic quiver
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1
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1
− ○

1
− ○

1
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1
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○
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Figure 4: Hasse diagram with magnetic quivers representing the closures of symplectic leaves for
the classical Higgs branch of SU(3) with 6 fundamentals. The transverse slices between neighbouring
symplectic leaves have been added in the edges of the Hasse diagram. This is a generalisation of the
results by [9, 10] to a set of spaces di↵erent from nilpotent orbits.

This deserves some comments. To each node a magnetic quiver is associated, such that its

space of dressed monopole operators describes the closure of the symplectic leaf. In other

words, if the magnetic quiver is considered as an auxiliary 3d N = 4 theory, its Coulomb

branch is the closure of the symplectic leaf. This is in marked contrast to the Hasse

diagram of Figure 3, where no explicit quiver description was available for the closures of

the symplectic leaves. In addition, the links between connected points have been labelled by

elementary slices, here d4 and a5. The way to see these is from the magnetic quivers that are

obtained during the transition, see Figure 5. The space of dressed monopole operators of

the magnetic quivers (alternatively their 3d N = 4 Coulomb branches) are either the closure

of the minimal nilpotent orbit of A5, hence denoted as an a5 Kraft-Procesi transition, or

the minimal nilpotent orbit closure of D4, which is called a d4 Kraft-Procesi transition [10].

By construction, the minimal Kraft-Procesi transitions are the transverse slices between

two neighbouring points in the Hasse diagram. Again, this understanding of the Hasse

diagram reflects the refinement obtained due to the use of magnetic quivers and 5-brane

webs compared to the classical Higgs mechanism analysis.

The present brane realisation of Kraft-Procesi transitions can be translated to an

operation between the magnetic quivers. This is analogous to the quiver subtraction [14]

that was proposed to generalise the brane realisations of the Kraft-Procesi transitions

for closures of nilpotent orbits [12, 13]. A new formulation of the operation of quiver

subtractions can be found in Appendix A.2. This new formulation covers the new Kraft-

Procesi transitions found in the 5-brane webs, and it is fully consistent with the previous

definition. It also achieves to unify the quiver subtraction operation as defined in [14] with

the subtractions of e8 Kraft-Procesi transitions utilised in [19, 27].
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Phase diagram for SU(3) with 6 flavors
Higgs mechanism — recall Kibble’s method

• At the origin SU(3) is massless


• Now turn moduli such that SU(2) is massless


• 


• 


• SU(2) with remaining matter 


• 5 moduli which parametrize the Higgs branch of U(1) with 6 flavors


• Further Higgsing to give masses to SU(2) adds 5 more moduli for the Higgs branch of 
SU(2) with 4 flavors

8 → 3 + 2 + 2 + 1

6 × (3 → 2 + 1)

4 × 2 + 5 × 1



Phase diagram for SU(3) with 6 flavors
Coulomb branch — quiver subtraction

• The moduli space is given by the Coulomb branch of the 4 leg quiver


• Look for a sub quiver which is in the family of the affine Dynkin diagram


• Subtract and add flavors so that balance is preserved



Exercise
SU(4) with 9 flavors

• Compute the Hasse diagram for the Higgs branch of this theory


• First going bottom up using the Higgs mechanism


• Second going top down using the method of Quiver Subtraction



G2 with N hypers of fundamental matter

25

a2N−3

cN

d2N−4
SU(2)

2N − 4

SU(3)

2N − 2

G2

CN

SO(3)

CN

O(1)

CN

U(1)

2N − 2

Figure 17: Hasse diagram for G2 with N ≥ 4 fundamentals with electric quivers associated to
every subdiagram between two points in the Hasse diagram.

O(k) gauge group. This case is similar to Sp(k) with symmetry SO(2N + 1): we again

find height 2 nilpotent orbits, this time of sp(N,C), and again the transitions involve non-

simply laced quivers. The Hasse diagram is displayed in Table 3. In particular, note that

it is important that the gauge group is O(k) and not SO(k).

G2 gauge group. In this final example, we are forced out of the range of nilpotent orbits,

and in addition we do not know of magnetic quivers to represent the Higgs branch. However,

the Hasse diagram shown in Table 3 can be computed using group theory. Repeating the

computation of Sections 2.1 and 2.3 for G2 with N fundamental hypermultiplets in Figure

17, we find, that we can Higgs the theory to SU(3) with 2N−2 fundamental hypermultiplets

and that the elementary slice to the origin of the Higgs branch has dimension N . Since

the fundamental representation of G2 is real we expect an Sp(N) global symmetry. Hence

the first line in the Hasse diagram is cN . The rest of the Hasse diagram is easily computed

as the Hasse diagram of SU(3) with 2N − 2 flavours, which can be read from Table 1 and

the entire Hasse diagram is fixed. However, we are unable to give the magnetic quiver for

this theory as quiver addition is not a unique operation, see Appendix A.4.
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SU(4) with 1 antisymm and 12 fundamentals

26

d12

a11

a11

c1

d10

SU(2)

10

U(1)

12

U(1)

12

SU(3)

12

SU(4)

12

SU(2)

12

O(1)

Sp(1)

Sp(2)

12

⇤2

T

Figure 11: Hasse diagram for 6d SU(4) with one 2nd rank antisymmetric and 12 fundamentals
with electric quivers associated to every subdiagram between two points in the Hasse diagram. The
T theory is a U(2) gauge theory with twelve fundamentals of SU(2) with U(1) charge 1 and two
SU(2) singlets of U(1) charge 2.

them, which are read o↵ from the associated magnetic quivers shown in Figure 8. Returning

to the Hasse diagram in Figure 11, the theory corresponding to the combined a11 + a11 or

c1 + d12 transition denoted T is a U(2) gauge theory (because the commutant of SU(2)

inside SU(4) is U(2)) with 12 fundamental hypermultiplets and 2 SU(2) singlets with

charge 2 under the U(1).
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Monopole formula — the ingredients
per each node of label k

•  — the Weyl group of 


•  — The (Langlands) dual lattice


• A set of integer numbers  — magnetic charges


•  — Principal Weyl chamber 


• Boundaries of the Weyl chamber — when some  coincide


•  — stabilizer of  in  — a Levi subgroup of GL(k)


•  — degrees of Casimir invariants of 

W = Sk GL(k)

Λ̂

Λ̂ = ℤk ∋ m = (m1, …, mk)

Λ̂/W m1 ≤ ⋯ ≤ mk

mi

Hm m GL(k)

dm
i Hm



Example
GL(2)

•  — the Weyl group of 


• A set of integer numbers  — magnetic charges


• Principal Weyl chamber 


• Boundary of the Weyl chamber:  


•  — stabilizer of m in : 


•  — degrees of Casimir invariants of  :  

S2 GL(2)

m = (m1, m2)

m1 ≤ m2

m1 = m2

Hm GL(2) {(ℂ*)2 for m1 ≠ m2

GL(2) for m1 = m2

dm
i Hm {(1,1) for m1 ≠ m2

(1,2) for m1 = m2



The gauge group
Quivers with no flavor nodes

• Given a quiver with a set of nodes, each with labels 


• The gauge group is 


• corresponding dual lattice  and Weyl group W

ka

[∏
a

GL(ka)]/ℂ*

Λ̂



The gauge group
Quivers with flavor nodes

• In the presence of flavor (square) nodes there is no overall  to divide by


• The gauge group is  and the product is over gauge (circle) nodes

ℂ*

∏
a

GL(ka)



Ungauging
graph equivalence
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The conformal dimension — Δ(m)
 grading on the Coulomb branchℂ*

• Given a quiver with a set of nodes, each with labels 


•  is a sum of contributions from nodes and edges:


• For each node with magnetic charges  there is a negative contribution


•  (associated with positive roots of )


• For each edge connecting nodes  with magnetic charges  and  a positive contribution


•  (associated with bifundamental representation)

ka

Δ(m)

ma
i , i = 1…ka

− ∑
1≤i<j≤ka

|ma
i − ma

j | GL(ka)

a, b ma
i mb

j

1
2

ka

∑
i=1

kb

∑
j=1

|ma
i − mb

j |



The monopole formula
Hilbert series of the Coulomb branch

• Given a quiver with all the ingredients defined so far


• Introduce a variable 


• The Hilbert series is given by (flavor nodes have fixed . Set to 0.)


• 


•

t

m

H(t) = ∑
m∈Λ̂/W

t2Δ(m)Pm(t)

Pm(t) = ∏
i

1
1 − t2dm

i



Example — the trivial case
Coulomb branch of ℍn = ℂ2n

• For a finite A type quiver:


• A linear quiver with n+1 gauge nodes, each with label 1, connected by n 
edges


• The Coulomb branch is 


• The Hilbert series is


•

ℍn

H(t) =
1

(1 − t)2n
= 1 + 2n t + n(2n + 1)t2 + …



Examples — from the world of nilpotent orbits
Simple quivers and their Hilbert Series

Nilpotent Orbit DimH Quiver HS HWG

[1, 1] 0 - 1 1

[2] 1
1

2
(1�t4)
(1�t2)3

1
(1�µ2t2)

[1, 1, 1] 0 - 1 1

[2, 1] 2
1 1

1 1
(1+4t2+t4)
(1�t2)4

1
(1�µ1µ2t2)

[3] 3
1 2

3
(1�t4)(1�t6)

(1�t2)8
(1�µ3

1µ
3
2t

12)
(1�µ1µ2t2)(1�µ1µ2t4)(1�µ3

1t
6)(1�µ3

2t
6)

[1, 1, 1, 1] 0 - 1 1

[2, 1, 1] 3
1 1 1

1 1
(1+t2)(1+8t2+t4)

(1�t2)6
1

(1�µ1µ3t2)

[2, 2] 4
1 2 1

2
(1+t2)2(1+5t2+t4)

(1�t2)8
1

(1�µ1µ3t2)(1�µ22t
4)

[3, 1] 5
1 2 2

1 2

(1+t2)(1+4t2+10t4+4t6+t8)
(1�t2)10

(1�µ3
1µ

3
2µ

3
3t

12)
(1�µ1µ3t2)(1�µ2

2t
4)(1�µ1µ3t4)(1�µ2

1µ2t6)(1�µ2µ2
3t

6)

[4] 6
1 2 3

4
(1�t4)(1�t6)(1�t8)

(1�t2)15 messy

Table 1: Nilpotent Orbits of SU(N) are specified by a partition [N] of N. The closure of the

nilpotent orbit can be computed as a Coulomb branch of a quiver. The Monopole Formula

can be used to compute the unrefined Hilbert Series (HS) as well as the the refined Hilbert

Series. The refined Hilbert Series can be neatly encoded in the Highest Weight Generating

Funtion (HWG). The µi label highest weights. Source: [1]
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Hilbert Series
Dimension of the Coulomb branch

• The complex dimension of the Coulomb branch is the order of the pole of 
 at H(t) t = 1



The global symmetry
a Lie algebra

• For each quiver there is an associated finite dimensional Lie algebra 


• Set 


•  are dimensions of (reducible) representations of 


•  is the dimension of the adjoint representation of 


• If  it is even and  is a Hilbert series for 


• The moduli space factorizes  with 

F

H(t) =
∞

∑
n=0

cntn

cn F

c2 F

c1 ≠ 0 H′�(t) = (1 − t)c1H(t) 𝒞′�

𝒞 = ℍ
c1
2 × 𝒞′� ℍ = ℂ2



A balanced node
conditions for symmetry

• A gauge node  is said to be balanced if the sum of node labels connected 
to it is 


• Set  to be the Cartan matrix


•  the vector of gauge node labels.    the vector of flavor labels


• Then the imbalance of the gauge nodes is the vector


•

ka
2ka

C

k f

b = f − Ck



Affine ADE quivers
all nodes are balanced

. . .

1

1 1

n

. . .
1

1

1

12 2

n − 3 1 2 3 2 1

2

1

1 2 3 4 3 2 1

2

1 2 3 4 5 6 4 2

3

a) b) c)

d) e)

Figure 2: A�ne ADE Dynkin quivers. a) Ân b) D̂n c) Ê6 d) Ê7 e) Ê8. Their Coulomb

branches are the minimal nilpotent orbit closure of the corresponding algebra, written an,

dn, and en respectively. Their Higgs branches are the Kleinian singularities corresponding

to the algebra, written An, Dn, and En respectively. It should be clear from context,

when a capital letter refers to the Kleinian singularity rather than a Dynkin diagram or an

algebra. The Hasse diagrams for both the Coulomb and Higgs branches are given in (1.5).

1. Black dots with a number n next to it: denote a leaf of quaternionic dimension n.

2. A line � with a label next to it, between two black dots: denotes the elementary slice

between two neighbouring leaves.

Now consider the a�ne Dynkin quivers of ADE (Figure 2). Their Coulomb branches

are minimal nilpotent orbit closures, while their Higgs branches are Kleinian singularities.

Both their Higgs and Coulomb branches consist of two symplectic leaves and the transverse

slice is the the branch itself. The respective Hasse diagrams are

HC =

an, dn or en

0

x

HH =

AN , Dn or En

0

1

. (1.5)

Where closures of minimal nilpotent orbits are denoted with a lower case and Kleinian

singularities with an upper case letter, note that A1 = a1, and

x =

���������������������

n for an
2n − 3 for dn
11 for e6
17 for e7
29 for e8

(1.6)
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The refined Hilbert Series
another ingredient

• For any node with node number  set  gradings


• 


• Introduce the fugacities 


• The refined Hilbert series is


•

ka ℂ*

Ja(m) =
ka

∑
i=1

ma
i

za

H(t, za) = ∑
m∈Λ̂/W

t2Δ(m)Pm(t)∏
a

zJa(m)
a



Global symmetry
dimensions are refined to characters

• Set 


•  are characters of the global symmetry 


•  is the character of the adj representation of 

H(t, za) =
∞

∑
n=0

cn(za)tn

cn(za) F

c2(za) F



Hasse diagrams
Quiver subtraction

• Recall the work of Kraft and Procesi who classified degenerations in closures 
of nilpotent orbits


• Minimal degenerations are of two types


• Klein singularity (ADE) — denoted by capital letters


• closure of a minimal nilpotent orbit of some algebra — denoted lower case


• This is reproduced and generalized with the Coulomb branch



Hasse diagrams for nilpotent orbits
taken from KP

If we make a diagram where the nodes are the orbits, and there are edges connecting

them where we found a KP transition we recover the KP Hasse diagram from fig. 37 (b).

Note that in this formalism the quaternionic dimension is just:

dim :=
X

j

M2j (6.17)

7 Results

With the matrix formalism we can write a computer algorithm that is able to calculate all

matrices (i.e. all brane configurations and all quivers) and KP transitions for all nilpotent

orbits of any slN algebra, starting from the matrix of the maximal nilpotent orbit.

7.1 Tables with Results from the Matrix Formalism

In this section we present all the results that have been produced with this algorithm. For

each value of N we include a table that contains all matrices for all models of the form

T�t(SU(N)). The corresponding partition and quaternionic dimension can be read from

the matrix and are also included. The quivers for both T�t(SU(N)) and T
�
t
(SU(N)) can

easily be recovered from the matrices, as was shown in the example in the next section.

The algorithm can also provide the nature of the KP transition that is required in each

step. These have been added to the matrix data in the form of Hasse diagrams9.

sl2

A1

Matrix Partition dim

 
0 2 0

0 1 0

!
2 1

 
1 0 1

0 0 0

!
1,1 0

Table 5: Results obtained applying the matrix formalism to sl2.

9
Note that there is an equivalence a1 = A1

– 51 –

sl3

A2

a2

Matrix Partition dim

 
0 3 0 0

0 2 1 0

!
3 3

 
1 1 1 0

0 1 1 0

!
2,1 2

 
2 0 0 1

0 0 0 0

!
1,1,1 0

Table 6: Results obtained applying the matrix formalism to sl3.

sl4

A3

A1

a1

a3

Matrices � dim

 
0 4 0 0 0

0 3 2 1 0

!
4 6

 
1 2 1 0 0

0 2 2 1 0

!
3,1 5

 
2 0 2 0 0

0 1 2 1 0

!
2,2 4

 
2 1 0 1 0

0 1 1 1 0

!
2,1,1 3

 
3 0 0 0 1

0 0 0 0 0

!
1,1,1,1 0

Table 7: Results obtained applying the matrix formalism to sl4.
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sl3

A2

a2

Matrix Partition dim

 
0 3 0 0

0 2 1 0

!
3 3

 
1 1 1 0

0 1 1 0

!
2,1 2

 
2 0 0 1

0 0 0 0

!
1,1,1 0

Table 6: Results obtained applying the matrix formalism to sl3.

sl4

A3

A1

a1

a3

Matrices � dim

 
0 4 0 0 0

0 3 2 1 0

!
4 6

 
1 2 1 0 0

0 2 2 1 0

!
3,1 5

 
2 0 2 0 0

0 1 2 1 0

!
2,2 4

 
2 1 0 1 0

0 1 1 1 0

!
2,1,1 3

 
3 0 0 0 1

0 0 0 0 0

!
1,1,1,1 0

Table 7: Results obtained applying the matrix formalism to sl4.
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sl5

A4

A2

a1

A1

a2

a4

Matrices � dim

 
0 5 0 0 0 0

0 4 3 2 1 0

!
5 10

 
1 3 1 0 0 0

0 3 3 2 1 0

!
4,1 9

 
2 1 2 0 0 0

0 2 3 2 1 0

!
3,2 8

 
2 2 0 1 0 0

0 2 2 2 1 0

!
3,1,1 7

 
3 0 1 1 0 0

0 1 2 2 1 0

!
2,2,1 6

 
3 1 0 0 1 0

0 1 1 1 1 0

!
2,1,1,1 4

 
4 0 0 0 0 1

0 0 0 0 0 0

!
1,1,1,1,1 0

Table 8: Results obtained applying the matrix formalism to sl5.
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sl6

A5

A3

a1

A2

A1

A2

a2

a1

a2

A1

a3

a5

Matrices � dim

 
0 6 0 0 0 0 0

0 5 4 3 2 1 0

!
6 15

 
1 4 1 0 0 0 0

0 4 4 3 2 1 0

!
5,1 14

 
2 2 2 0 0 0 0

0 3 4 3 2 1 0

!
4,2 13

 
2 3 0 1 0 0 0

0 3 3 3 2 1 0

!
4,1,1 12

 
3 0 3 0 0 0 0

0 2 4 3 2 1 0

!
3,3 12

 
3 1 1 1 0 0 0

0 2 3 3 2 1 0

!
3,2,1 11

 
3 2 0 0 1 0 0

0 2 2 2 2 1 0

!
3,1,1,1 9

 
4 0 0 2 0 0 0

0 1 2 3 2 1 0

!
2,2,2 9

 
4 0 1 0 1 0 0

0 1 2 2 2 1 0

!
2,2,1,1 8

 
4 1 0 0 0 1 0

0 1 1 1 1 1 0

!
2,1,1,1,1 5

 
5 0 0 0 0 0 1

0 0 0 0 0 0 0

!
1,1,1,1,1,1 0

Table 9: Results obtained applying the matrix formalism to sl6.
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sl7

A6

A4

a1

A3

A2

A2

A1

A1

a2

A2

A1

a3

A1

a2

a2

a4

a6

Matrices � dim

 
0 7 0 0 0 0 0 0

0 6 5 4 3 2 1 0

!
7 21

 
1 5 1 0 0 0 0 0

0 5 5 4 3 2 1 0

!
6,1 20

 
2 3 2 0 0 0 0 0

0 4 5 4 3 2 1 0

!
5,2 19

 
2 4 0 1 0 0 0 0

0 4 4 4 3 2 1 0

!
5,1,1 18

 
3 1 3 0 0 0 0 0

0 3 5 4 3 2 1 0

!
4,3 18

 
3 2 1 1 0 0 0 0

0 3 4 4 3 2 1 0

!
4,2,1 17

 
4 0 2 1 0 0 0 0

0 2 4 4 3 2 1 0

!
3,3,1 16

 
3 3 0 0 1 0 0 0

0 3 3 3 3 2 1 0

!
4,1,1,1 15

 
4 1 0 2 0 0 0 0

0 2 3 4 3 2 1 0

!
3,2,2 15

 
4 1 1 0 1 0 0 0

0 2 3 3 3 2 1 0

!
3,2,1,1 14

 
5 0 0 1 1 0 0 0

0 1 2 3 3 2 1 0

!
2,2,2,1 12

 
4 2 0 0 0 1 0 0

0 2 2 2 2 2 1 0

!
3,1,1,1,1 11

 
5 0 1 0 0 1 0 0

0 1 2 2 2 2 1 0

!
2,2,1,1,1 10

 
5 1 0 0 0 0 1 0

0 1 1 1 1 1 1 0

!
2,1,1,1,1,1 6

 
6 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

!
1,1,1,1,1,1,1 0

Table 10: Results obtained applying the matrix formalism to sl7.
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Minimal degenerations
A & a
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Quiver subtraction
algorithm

• Given a quiver, identify sub quivers which are in the list of minimal 
degenerations


• align and subtract


• rebalance — add/remove flavors to nodes such that their imbalance is 
preserved


• get a smaller quiver


• repeat till reaching a minimal degeneration



Quiver subtraction
nilpotent cone of  — step 1A5
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Quiver subtraction
nilpotent cone of  — step 2A5
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Quiver subtraction
nilpotent cone of  — steps 3A5
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Quiver subtraction
nilpotent cone of  — steps 4A5
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Quiver subtraction
nilpotent cone of  — steps 5A5
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Quiver subtraction
nilpotent cone of  — steps 6A5
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Quiver subtraction
nilpotent cone of  — step 7A5
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Quiver subtraction
nilpotent cone of  — step 8A5
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Quiver subtraction
nilpotent cone of  — final diagramA5
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sl6

A5

A3

a1

A2

A1

A2

a2

a1

a2

A1

a3

a5

Matrices � dim

 
0 6 0 0 0 0 0

0 5 4 3 2 1 0

!
6 15

 
1 4 1 0 0 0 0

0 4 4 3 2 1 0

!
5,1 14

 
2 2 2 0 0 0 0

0 3 4 3 2 1 0

!
4,2 13

 
2 3 0 1 0 0 0

0 3 3 3 2 1 0

!
4,1,1 12

 
3 0 3 0 0 0 0

0 2 4 3 2 1 0

!
3,3 12

 
3 1 1 1 0 0 0

0 2 3 3 2 1 0

!
3,2,1 11

 
3 2 0 0 1 0 0

0 2 2 2 2 1 0

!
3,1,1,1 9

 
4 0 0 2 0 0 0

0 1 2 3 2 1 0

!
2,2,2 9

 
4 0 1 0 1 0 0

0 1 2 2 2 1 0

!
2,2,1,1 8

 
4 1 0 0 0 1 0

0 1 1 1 1 1 0

!
2,1,1,1,1 5

 
5 0 0 0 0 0 1

0 0 0 0 0 0 0

!
1,1,1,1,1,1 0

Table 9: Results obtained applying the matrix formalism to sl6.
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Brane Webs and Magnetic Quivers
5d Higgs branches

• We turn to a collection of methods to derive quivers from brane systems


• Our first set of examples are brane webs which help deriving many moduli 
spaces at weak and strong coupling



E3 = A1 × A2
A union of two cones

Figure 1: Toric diagram corresponding to the 5d SQCD theory with SU(2) gauge group

and Nf = 2.

1
g2 ,mi, a→ 0

Figure 2: Five brane webs (dual to the toric diagram in figure 1) corresponding to the

5d SQCD theory with SU(2) gauge group and Nf = 2 before and after taking the gauge

coupling g to infinity and all the masses mi as well as the VEV a of the adjoint scalar field

to zero. The horizontal lines represent D5-branes, the vertical lines represent NS5-branes

and the diagonal lines represent (1,−1) five branes. Each circle represents a seven brane

of the same type as the five brane that ends on it.

Where minAk denotes the closure of the minimal nilpotent orbit1 of sl(k + 1,C), and both
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cases computed in [4] are consistent with having multiplicity 1 to all edges in the quiver,

and consist of one component on the Higgs branch. Thus we have a third way of deriving

the results of [4]. The computation is demonstrated below with a collection of explicit

examples.

Classical Higgs branches are known to be trivial for Nf < 2, but as one tunes the

gauge coupling to infinity, new flat directions show up and the Higgs branch emerges

from these new moduli. A simple example of such a phenomenon is 5d SYM with gauge

group G with CS level k = 0 as discussed in [3]. There are no matter fields, hence no

classical moduli space, but there are new flat directions due to the appearance of massless

instantons at infinite coupling. The resulting moduli space is C
2
�Zh where h is the dual

Coxeter number of the gauge group G. Restricting G to be SU(Nc) with level k = 0 we

find that there is a new Higgs branch at infinite coupling, contrary to the classical intuition

which associates Higgs branches to matter fields (alternatively, one should start thinking

about instanton operators as generating new matter degrees of freedom, which di↵er from

free hypermultiplets). The results of this paper show that there is another Nf = 0 theory

with a non trivial H∞. If we set �k� = Nc we find a new moduli space of the form C
2
�Z2 for

any Nc. Similar observations arise for Nf = 1. For example there is an interesting pattern

of Higgs branches for SU(3) with 1 flavor. For CS levels 1�2, 3�2, 5�2, 7�2 and 9�2 we find

that H∞ is trivial for �k� = 3�2, is C2
�Z3 for �k� = 1�2, 9�2, and is C2

�Z2 for �k� = 5�2, 7�2.

A very rich pattern of H∞ as the CS level is varied.

The paper is organized as follows. In section 2 we start our analysis by re deriving some

known results from the brane webs, thus establishing tools which allow the computation

of the combinatorial (quiver) data for cases that were not known so far. In section 3

we establish the general conjecture that explains how to obtain the quiver data from the

5-brane webs. In section 4 we explore new notions derived from the application of the

conjecture to 5d brane webs whose corresponding H∞ was not previously known. These

are the union of three cones and the intersection of several cones. In section 5 we provide

a full classification of the Higgs branch at infinite coupling H∞ of the three parameter

family of 5d N = 1 SQCD theories with gauge group SU(Nc), Nf fundamental flavors,

and CS level k. These results were not known before and have been obtained by applying

the conjecture defined in section 3. Section 6 contains some concluding statements. An

appendix A has been included with an example that illustrates a detailed computation.

2 Known Examples

2.1 E3 – Union of Two Cones

Let us discuss a well known example: Nc = 2, Nf = 2. The level is not crucial here, as

the CS density is identically 0 for an SU(2) gauge theory. The Higgs branch at infinite

coupling is the union [25, 26]:

H∞
�

�
�
�

�

2��
○

SU(2)0
�

�
�
�

�

=minA2 ∪minA1 (2.1)
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Figure 4: Stable intersection between two tropical curves. Left: the original tropical

curves. Center: a small deformation that moves the curves away from each other. Right:

dual toric diagram. The stable intersection is the sum over the areas of polygons in the

toric diagram that have edges of both colours. In this case is 1 + 1 = 2.

Let us discuss the second point in more detail. For phase (a) the intersection number I

between two 5-branes (p1, q1) and (p2, q2) has already been defined as the absolute value

of the determinant3:

I{(p1, q1), (p2, q2)} = Abs��
p1 q1

p2 q2
�� . (2.4)

Hence, the intersection between any pair of 5-branes from the set (1,0), (0,1) and

(1,−1) is always of value 1. Therefore, the 3d quiver corresponding to phase (a) is a

complete graph [30] with three nodes, and edge multiplicity 1, as depicted in equation 2.2.

Phase (b) is more complicated because one needs to compute the intersection between the

two sub webs. This can be done by introducing an idea from tropical geometry [33]. In

tropical geometry each of the brane sub webs can be seen as a tropical curve. Then, their

stable intersection can be defined as in [33]. Let us review the idea of stable intersection

by computing it in the case of the sub webs of phase (b). This is represented in figure 4.

The left diagram in figure 4 depicts the two curves. The diagram in the center represents

the same curves after they have been moved a small distance apart from each other. Now,

the points at which the curves intersect can be treated as the intersection of two di↵erent

5-branes of the form (p1, q1) and (p2, q2). This can be computed by using the determinant

in equation 2.4. The stable intersection is defined as the sum over all such intersection

numbers. Note that a di↵erent deformation of the initial brane system, where the sub

webs are moved apart in a di↵erent direction, always results in the same value for the

stable intersection. Alternatively, the intersection numbers can be computed from the dual

toric diagram. The dual toric diagram of the displaced sub webs is displayed at the right

of figure 4. This toric diagram has four di↵erent polygons: two squares and two triangles.

The stable intersection is given by the total area of all the polygons that have edges of

both colors. In this case, the triangles do not contribute, since their edges are of a single

color. The two squares contribute, and the sum of their areas is 2.

Hence, the stable intersection between the two sub webs in phase (b) has value of 2.

This value corresponds to the number of edges (or hypermultiplets) between the corre-

sponding gauge groups of the quiver in equation 2.3. Equivalently one can think of 1 D3

brane which is stretched between the sub webs per each intersection point.

3
The intersection number is used as a CS term for a 3d theory on the world volume of the D3 brane in

[39]. In the present work we focus on the world volume theory living on the five branes.
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Figure 1: Toric diagram corresponding to the 5d SQCD theory with SU(2) gauge group

and Nf = 2.

1
g2 ,mi, a→ 0

Figure 2: Five brane webs (dual to the toric diagram in figure 1) corresponding to the

5d SQCD theory with SU(2) gauge group and Nf = 2 before and after taking the gauge

coupling g to infinity and all the masses mi as well as the VEV a of the adjoint scalar field

to zero. The horizontal lines represent D5-branes, the vertical lines represent NS5-branes

and the diagonal lines represent (1,−1) five branes. Each circle represents a seven brane

of the same type as the five brane that ends on it.

Where minAk denotes the closure of the minimal nilpotent orbit1 of sl(k + 1,C), and both

cones minA2 and minA1 intersect at the origin. Physically, this moduli space is the moduli

space of 1 E3 instanton. The single instanton can either be an SU(3) instanton or an

SU(2) instanton, but not both. Hence this leads to the union structure 2.1. For each of

these cones there is a di↵erent 3d N = 4 quiver, for which the cone is the Coulomb branch.

Note that the cone minA2 (resp. minA1) is isomorphic to the reduced moduli space of one

A2 (resp. A1) instanton on C
2. Hence, the 3d quivers are just the corresponding a�ne

Dynkin diagrams [15]:
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The closure of the minimal nilpotent orbit of sl(k + 1,C) is normally denoted as Ō(2,1k−1) in the

mathematical literature [34], or also as ak in [35]. We started using the notation minAk in [36, 37], since

it can be extended to exceptional groups which don’t have partition data like the partition (2,1k−1) in

Ō(2,1k−1), and it can also be extended to non minimal orbits of small dimensions, i.e. the closure of the

next to minimal orbit is denoted as n.minAk .
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(a) (b)

Figure 3: Two distinct phases of brane webs, representing two di↵erent components of the

Higgs branch of SU(2) with Nf = 2 at infinite coupling. (a) Corresponds to a component

of the Higgs branch with quaternionic dimension dH = 3 − 1 = 2. (b) Corresponds to a

component of the Higgs branch with quaternionic dimension dH = 2− 1 = 1. Compare with

Figure 30 of [29].

where C3d() denotes the 3d Coulomb branch. One can see that both cones are recognizable

as di↵erent phases on the brane diagram. In order to obtain the brane system, remember

that the toric diagram [2] can be obtained, and it is represented2 in figure 1. Figure 2

represents the five brane web corresponding to this theory (dual to the toric diagram). On

the left of figure 2 the gauge coupling is finite and the masses and the VEV of the adjoint

scalar field are di↵erent from zero. On the right of the same figure the gauge coupling is

taken to infinity and all the masses as well as the VEV of the adjoint scalar field is set to

zero (i.e. at the origin of the Coulomb branch). Before taking this limit, there is a single

web that can move along the 7-branes, and hence the Higgs branch is trivial, remembering

to factor out overall position moduli. After taking this limit, there are new possibilities

of breaking the web into sub webs. In particular, there are two possibilities, represented

in figure 3, where di↵erent colors correspond to di↵erent sub webs. In phase (a) there

are three di↵erent segments that move along the perpendicular directions to the paper,

spanned by the seven branes. In phase (b) there are two di↵erent sub webs. The transition

from (a) to (b) can only take place when all sub webs realign and combine into a single web.

This web corresponds to the origin of the cones, indicating that the intersection between

the two cones is at a single point – the origin.

The new perspective that was missing until the present work is that the quivers in

equations 2.2 and 2.3 can be read directly from the brane webs. The goal of this paper

is to establish the tools that allow such reading and to put them to use in the analysis

of the three parameter family of 5d N = 1 theories with gauge group SU(Nc), number of

fundamental flavors Nf and Chern Simons level k.

For the current example one can deduce the following:

1. Each separate brane sub web corresponds to a di↵erent gauge node with group U(1)

in the quiver.

2. The links between the nodes in the quiver (corresponding to hypermultiplets of the

3d N = 4 theory) are given by the intersection numbers between the branes.

2
See for example figure 2 in [38] which contains all toric diagrams employed for the En cases in the

present section.
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Necklace Quiver
E4 = A4

Figure 5: Toric diagram corresponding to the 5d N = 1 SQCD theory with SU(2) gauge

group and Nf = 3.

1
g2 ,mi, a→ 0

Figure 6: Five brane webs corresponding to the 5d SQCD theory with SU(2) gauge group

and Nf = 3 before and after taking the gauge coupling g to infinity and all the masses mi

as well as the VEV a of the adjoint scalar field to zero. Note that coincident 5-branes are

depicted slightly apart in the right-hand diagram. This is done to make the diagram easier

to read, but the branes at the center of the diagram that look parallel to each other should

be considered as fully coincident.

On this particular example, we have found a way to read the 3d quivers that describe

(via equations 2.1, 2.2 and 2.3) theH∞ of the 5d theory. Let us explore some more examples

where the H∞ is already known in the next sections. After that we provide the final answer

on reading the 3d quiver for the whole 3 parameter family of 5d SQCD theories, an answer

which is actually more general and applies for any five brane web.

2.2 E4 – Necklace Quiver

Let us now turn to Nc = 2, Nf = 3. The corresponding toric diagram is represented in

figure 5. The brane system at finite and infinite coupling is depicted in figure 6. This case

is di↵erent from the previous example, in the sense that there is a unique way of maximally

dividing the system at the infinite coupling limit into sub webs. Correspondingly, the Higgs

branch has one component. The subdivision is depicted in figure 7. It is known [25] that

the Higgs branch of the theory at infinite coupling is the closure of the minimal nilpotent

orbit of sl(5,C):

H∞
�

�
�
�

�

3��
○

SU(2)
�

�
�
�

�

=minA4 (2.5)

This space is isomorphic to the reduced moduli space of one A4 instanton on C
2 and can

also be written as the Coulomb branch of a 3d N = 4 quiver gauge theory where the quiver
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Figure 7: Brane web of SU(2) with Nf = 3 at infinite coupling. There are 5 di↵erent sub

webs depicted in di↵erent colors.

Displaced Branes Toric Diagram
Stable

Intersection

1

1

1

Table 2: Stable Intersections of the sub webs of E4.

is the a�ne Dynkin diagram of A4 [15]:

minA4 = C
3d

�

�
�
�
�
�
�
�

�

1
○

� �
○
1
− ○

1
− ○

1
− ○

1

�

�
�
�
�
�
�
�

�

(2.6)

In the sub division of branes of figure 7 there are 5 di↵erent sub webs that can move

between seven branes, generating the Higgs branch at infinite coupling (represented with

di↵erent colors: red, blue, green, orange and purple). Once again, each of them corresponds

to a di↵erent gauge node in equation 2.6, each with multiplicity 1 as there is one copy of

each sub web. Equation 2.6 indicates that each of the sub webs needs to be connected

to two and only two other sub webs. Let us see how it works. The orange segment can

only connect with the red web and the blue segment, and the purple segment can only

connect with the red web and the green segment. This leaves only one possibility: the

green segment and the blue segment need to be connected by a single link, and the red

web needs to be disconnected from the blue segment and the green segment. The stable

intersection between any pair (red, blue), (red, green) and (blue, green) is of value 1,
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green segment and the blue segment need to be connected by a single link, and the red

web needs to be disconnected from the blue segment and the green segment. The stable

intersection between any pair (red, blue), (red, green) and (blue, green) is of value 1,
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Figure 8: Toric diagram corresponding to the 5d SQCD theory with SU(2) gauge group

and Nf = 4.

see the corresponding dual toric diagrams in table 2. The new feature introduced in this

example is the possibility of di↵erent sub webs ending on the same 7-brane. We see that if

two sub webs end on the same 7-brane from opposite sides, we consider the corresponding

gauge nodes connected by a link (i.e. the connection between orange and blue, or between

orange and red). However, if two sub webs end on the same 7-brane on the same side, this

contributes with −1 to the number of links between the corresponding gauge nodes. This

e↵ect removes the link between red and blue (similarly, red and green) that would arise due

to their stable intersection, leaving their corresponding gauge group nodes disconnected.

One can summarize these observations in the following:

Summary 1 (Quiver edge multiplicity – Stable Intersection) The number of edges

between two gauge nodes corresponding to two di↵erent brane sub webs is equal to the stable

intersection between the sub webs plus the contribution from the 7-branes. The contribu-

tion from a 7-brane is positive if the sub webs end on it from opposite sides, and negative

otherwise.

With this rule, the 3d quiver as read from the diagram in figure 7 is:

1
○

� �
○
1
− ○

1
− ○

1
− ○

1
(2.7)

Hence, one recovers the quiver that describes the H∞ via equations 2.5 and 2.6. It is

interesting to see that even though the brane system does not resemble a necklace, the

intersection numbers between brane webs do form a necklace quiver. This quiver has

the feature that all edges have multiplicity 1 and the brane system has only one way to

maximally divide it into sub webs, hence is part of the quivers which were computed in [4]

in full agreement.

2.3 E5 – Node Multiplicity

Let us study the SU(Nc) 5d SQCD theory with parameter Nc = 2 and number of flavors

Nf = 4. The toric diagram is depicted in figure 8 and the brane system at finite and infinite

coupling is depicted in figure 9. The Higgs branch at infinite coupling is the reduced moduli

space of one D5 instanton on C
2. This space is a hyperKähler cone, isomorphic to the
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1
g2 ,mi, a→ 0

Figure 9: Five brane webs corresponding to the 5d SQCD theory with SU(2) gauge group

and Nf = 4 before and after taking the gauge coupling g to infinity and all the masses mi

as well as the VEV a of the adjoint scalar field to zero.

closure of the minimal nilpotent orbit of so(10,C):

H∞
�

�
�
�

�

4��
○

SU(2)
�

�
�
�

�

=minD5 (2.8)

This space can be found as the Coulomb branch of a 3d N = 4 quiver which is the a�ne

Dynkin diagram of D5 [15]:

minD5 = C
3d

�

�
�
�

�

○
1
−

1
○�
○
2
−

1
○�
○
2
− ○

1

�

�
�
�

�

(2.9)

The new feature of this example that does not occur in the previous two examples is

the appearance of nodes of rank higher than 1 in the 3d quiver of 2.9. This is easy to relate

to the brane web: a number of n identical sub webs corresponds to a single node of rank

n. Figure 10 depicts the subdivision of the brane system into the maximal number of sub

webs. There are two segments in blue that are identical and correspond to one of the nodes

of rank 2, and two segments in green that are identical and correspond to the other rank

2 node. In order to establish the links in the 3d quiver, consider a single copy of each sub

web. For example, a single blue segment has stable intersection of 1 with a single green

segment, therefore there is a single link with multiplicity one between them (there are no

extra contributions to the number of links since they do not share any common 7-branes).

Similarly, a single blue segment ends on the same 7-brane as the orange segment, and they

do it on opposite sides, hence there is a single link between them (just as between the blue

and orange segments in figure 7). Therefore, the quiver as read from the brane system in

figure 10 is:

○
1
−

1
○�
○
2
−

1
○�
○
2
− ○

1
(2.10)

This quiver indeed describes the correct Higgs branch, according to equations 2.8 and 2.9.
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Figure 10: Maximal subdivision of the brane web of SU(2) with Nf = 4 at infinite

coupling.

Figure 11: Toric diagram corresponding to the 5d SQCD theory with SU(2) gauge group

and Nf = 5.

1
g2 ,mi, a→ 0

Figure 12: Five brane webs corresponding to the 5d SQCD theory with SU(2) gauge

group and Nf = 5 before and after taking the gauge coupling g to infinity all the masses

mi as well as the VEV a of the adjoint scalar field to zero.

2.4 E6 - 7-Brane Contributions without Stable Intersection

The next example considers the case of Nc = 2, Nf = 5. In this case there is no need to

compute stable intersections between sub webs, since all the contributions to the number

of links between two gauge nodes in the 3d quiver are given by the ending of the di↵erent

sub webs on shared 7-branes. The toric diagram is depicted in figure 11 and the brane

system is represented in figure 12. The Higgs branch at infinite coupling is isomorphic to

the reduced moduli space of one E6 instanton on C
2 (alternatively, it can also be described
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Figure 13: Maximal subdivision of the brane web of SU(2) with Nf = 5 at infinite

coupling.
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Hence the H∞ has a single component, as can be seen from the fact that there is a unique

maximal subdivision of the brane system, figure 13. This space can be found as the

Coulomb branch of a 3d N = 4 quiver which is the a�ne Dynkin diagram of E6 [15]:

minE6 = C
3d
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According to the rules developed in the previous examples, the quiver can be read directly

from the brane configuration in figure 13:

○
1
− ○

2
−

○ 1�
○ 2�
○
3
− ○

2
− ○

1
(2.13)

This is precisely the expected result. Note that once more, n multiple identical copies of

the same sub web correspond to a single gauge node with a rank n. In this case there is no

need to compute stable intersections, since none of the di↵erent sub webs intersect. The

number of links between the di↵erent gauge nodes of equation 2.13 are only determined by

di↵erent sub webs ending on the same 7-brane from opposite directions.

2.5 Super Yang-Mills – Edge Multiplicity

Another well known result [3] is the Higgs branch at infinite coupling of Super Yang-Mills

SU(Nc) with no flavors, Nf = 0, and CS level k = 0. The brane system is depicted in figure
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Figure 13: Maximal subdivision of the brane web of SU(2) with Nf = 5 at infinite

coupling.
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SYM — Edge Multiplicity
SU(N)0

(−Nc,1) (0,1)

(0,1) (Nc,−1)

1
g2 , ai → 0

(−Nc,1) (0,1)

(0,1) (Nc,−1)

Figure 14: 5d brane web corresponding to Super Yang-Mills theory with gauge group

SU(Nc), Nf = 0 and CS level k = 0. The diagram on the right corresponds to the limit

where the gauge coupling is taken to infinity and the VEVs ai of the adjoint scalar field to

zero.

14. The Higgs branch at infinite coupling is [3]4:

H∞
�

�
�
�

�

0��
○

SU(Nc)0
�

�
�
�

�

= C
2
�ZNc (2.14)

This can be written as the Coulomb branch of a 3d quiver with two gauge nodes of

rank 1 and a number of Nc hypermultiplets between them. Let us write it as the complete

graph:

C
2
�ZNc = C

3d
� ○

1

Nc
�� ○

1
� (2.15)

The same quiver is read from the brane picture in figure 15, since there are only two

segments, corresponding to the two di↵erent nodes, and the stable intersection between

them is just their intersection number I:

I{(−Nc,1), (0,1)} = Abs��
−Nc 1

0 1
�� = Nc (2.16)

Hence, the 3d quiver read directly from the branes is:

○
1

Nc
�� ○

1
(2.17)

Equipped with the examples above, we are now ready to generalize to the main result

of this paper for the 3 parameter family of SQCD theories.

3 Conjecture

In this section we present the main conjecture that contains all the information on reading

the combinatorial data for the Higgs branch of the 5d theory from the brane web. Note that

4
For Nc = 2 this was identified in [25] and confirmed by the brane picture in [2].
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(−Nc,1) (0,1)

(0,1) (Nc,−1)

Figure 15: Maximal subdivision of the brane web of SU(Nc) with Nf = 0 and k = 0 at

infinite coupling.

this technique is not restricted to infinite coupling, or to 5d theories where the gauge group

is a single factor. Furthermore, it can also be used to obtain subspaces of the Higgs branch,

if the subdivision of the brane web is not maximal. In section 5 we use this conjecture

to obtain the Higgs branches at infinite coupling for the 3 parameter family of 5d N = 1

SQCD theories with gauge group SU(Nc), number of colors Nf and CS level k.

Before stating the conjecture, let us define three quantities that can be computed

for any pair of brane sub webs in a given five brane web. The first thing that can be

computed is the stable intersection (which in this section is denoted as SI), as explained

in section 2 and in [33], by slightly displacing the sub webs with respect to each other, and

adding the area of polygones with two colors in the toric dual diagram (see the example

in figure 4). The next quantity that can be computed is the contribution to the number of

hypermultiplets from 5-branes ending on the same 7-brane. Let the 7-branes shared by two

di↵erent brane sub webs be denoted as Ai (i = 1,2,3, ...). For each Ai, one can compute

the following two quantities:

• Xi = number of combinations of two 5-branes from the di↵erent brane sub webs which

are attached to Ai on opposite sides.

• Yi = number of combinations of two 5-branes from the di↵erent brane sub webs which

are attached to Ai on the same sides.

Please see appendix A for an explicit computation of the quantities SI, Xi and Yi in

a given example.

Conjecture 1 Given a five brane web divided into sub webs that can move along the di-

rections spanned by the 7-branes placed at the end of each (p, q) brane, the moduli space

generated by this motion is given as the moduli space of dressed monopole operators of a

quiver. The quiver can be obtained in the following way. Each set of m identical sub webs

corresponds to a di↵erent gauge node with group U(m) in the quiver. Given a pair of gauge

nodes in the quiver, the number of edges E between them is determined by selecting two

sub webs, one corresponding to each node, and computing for them their stable intersection

SI, as well as the quantities Xi and Yi (defined above) for all the 7-branes Ai shared by

the di↵erent sub webs. The number of edges E is given by

E = SI +�

i

Xi −�
i

Yi . (3.1)
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Figure 14: 5d brane web corresponding to Super Yang-Mills theory with gauge group

SU(Nc), Nf = 0 and CS level k = 0. The diagram on the right corresponds to the limit

where the gauge coupling is taken to infinity and the VEVs ai of the adjoint scalar field to

zero.

14. The Higgs branch at infinite coupling is [3]4:

H∞
�

�
�
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�

0��
○

SU(Nc)0
�

�
�
�

�

= C
2
�ZNc (2.14)

This can be written as the Coulomb branch of a 3d quiver with two gauge nodes of

rank 1 and a number of Nc hypermultiplets between them. Let us write it as the complete

graph:

C
2
�ZNc = C

3d
� ○

1

Nc
�� ○

1
� (2.15)

The same quiver is read from the brane picture in figure 15, since there are only two

segments, corresponding to the two di↵erent nodes, and the stable intersection between

them is just their intersection number I:

I{(−Nc,1), (0,1)} = Abs��
−Nc 1

0 1
�� = Nc (2.16)

Hence, the 3d quiver read directly from the branes is:

○
1

Nc
�� ○

1
(2.17)

Equipped with the examples above, we are now ready to generalize to the main result

of this paper for the 3 parameter family of SQCD theories.

3 Conjecture

In this section we present the main conjecture that contains all the information on reading

the combinatorial data for the Higgs branch of the 5d theory from the brane web. Note that

4
For Nc = 2 this was identified in [25] and confirmed by the brane picture in [2].
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Figure 17: After Hanany-Witten

transition. SI = 0,∑iXi = Nc.

of the quiver ensured by the property of the stable intersection. We keep the detailed study

of this point as our future work.

4 New Notions

We proceed with examples which demonstrate new features that arise after utilizing Con-

jecture 1 in the analysis of 5d Higgs branches.

4.1 Union of Three Cones

Let us study the case of 5d N = 1 SQCD with gauge group SU(5), with Nf = 6 fundamental

flavors and CS level k = 1. The corresponding toric diagram is depicted in figure 18. The

brane web of the theory and the limit where the coupling is taken to infinity are depicted

in figure 19. The Higgs branch at infinite coupling H∞ was not known before the present

paper. Now we are able to compute it as the moduli space of dressed monopole operators,

by maximally dividing the brane system into sub webs and then applying Conjecture 1.

We see in the example of SU(2) with two flavors that there are two di↵erent ways of

maximally subdividing the brane system (figure 3), and this implies that H∞ is the union

of two cones (it has two components). In the present case, there are three di↵erent ways

of maximally subdividing the brane web, see figure 20. This means that the Higgs branch

at infinite coupling is a union of three cones:

H∞
�

�
�
�

�

6��
○

SU(5)1
�

�
�
�

�

= C1 ∪C2 ∪C3 (4.1)

The three cones C1, C2 and C3 are computed utilizing Conjecture 1 on each di↵erent

maximal subdivision, to obtain a particular quiver. These quivers are depicted on the

– 19 –

Figure 18: Toric diagram corresponding to the 5d SQCD theory with SU(5) gauge group,

number of flavors Nf = 6 and CS level k = 1.

1
g2 → 0

Figure 19: Brane system for 5d SQCD with gauge group SU(5), Nf = 6 flavors and CS

level k = 1 before and after taking the gauge coupling to infinity.

bottom of figure 20. Hence:
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(4.4)

In this way, Conjecture 1 can be utilized to derive new properties of 5d theories at

infinite coupling that were not understood before.
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Figure 20: Di↵erent components of the Higgs branch at infinite coupling of 5d SQCD with

gauge group SU(5), Nf = 6 flavors and CS level k = 1. None of the three web sub divisions

can be a sub division of the other two. Note that the red and the blue sub webs in the

rightmost web cannot be further subdivided due to s-rule. The quiver which is obtained

by applying Conjecture 1 is depicted underneath each phase. Note that in table 3 these

three di↵erent phases receive labels III, I and II from left to right.

4.2 The Intersection of Several Cones

In fact, Conjecture 1 can also be used to specify the intersection between any pair of cones

in equation 4.1. Given two sub divisions, for example the first and the second from the left

in figure 20, find the maximal subdivision S such that both brane systems are subdivisions

of S. S is depicted in figure 21. The intersection of both cones is then the moduli space of

dressed monopole operators given by the quiver associated to S via Conjecture 1.

Hence, we have:

C1 ∩C2 = C
3d

�

�
�
�
�

�

○
1
−

1
○� �

○
2
− ○

2
− ○

2
− ○

1

�

�
�
�
�

�

(4.5)

Note that this space is the closure of the next to minimal nilpotent orbit of sl(6,C):

C
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�

= n.minA5 (4.6)

Therefore, we obtain the result:

C1 ∩C2 = n.minA5 (4.7)

We believe that this result nicely illustrates the power behind Conjecture 1. Similarly,

the triple intersection between all three components C1 ∩ C2 ∩ C3 can also be identified.

The maximal subdivision S
′ such that all brane systems in figure 20 are subdivisions of S′

is depicted in figure 22. The corresponding quiver can be obtained via Conjecture 1, such

that the triple intersection is defined as the space of dressed monopole operators:
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(4.8)

The space of dressed monopole operators in equation 4.8 can be identified with the

reduced moduli space of one A5 instanton on C
2 [15], or equivantley with the closure of

the minimal nilpotent orbit of sl(6,C):

C1 ∩C2 ∩C3 =minA5 (4.9)

5 Computation of H∞ for SQCD

In this section we present a classification of the Higgs branch at infinite coupling of the

class of 5d N = 1 SQCD theories with gauge group SU(Nc), number of flavors Nf and CS

level k, represented by the following 5d quiver:

Nf��
○

SU(Nc)k (5.1)
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Nf = 1 Nf = 2 Nf = 3 Nf = 4 Nf = 5 Nf = 6 Nf = 7 Nf = 8 Nf = 9 Nf = 10 Nf = 11 Nf = 12 Nf = 13
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Figure 7: This figure displays the explicit Hasse diagrams as given in generic form in Table 7, in the particular case Nc = 6, and for

1  Nf  13.

The case Nf = 10 could also be represented as a d2 � a3 � a5 � a7 � a9 diagram.

Note that the maximal height of the diagram is 5, which is the rank of the gauge group. It is reached only when Nf � 2Nc � 2 = 10.

One can see that for Nf < Nc = 6 there is only the mesonic branch. The baryonic branch appears for Nf = 6, and then grows in

dimension from 1 (for Nf = Nc = 6) to 25 (for Nf = 2Nc � 2 = 10) where it equals the dimension of the mesonic branch. Then the

baryonic branch takes over, and contains the mesonic branch as a sub-cone for Nf � 2Nc � 1 = 11.

–
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physical effects in 6d
Small instanton transition: 1T <—> 29 H

the use of branes makes the discrete gauging relation between the various Higgs branches manifest.
In more detail, the conjecture of [22] asserts that the 6d Higgs branches corresponding to (2.8) and
(2.12) are related via gauging of discrete permutation groups. The Type IIA picture in phase (2.7)
exhibits an Sn symmetry due to the indistinguishable nature of the NS5s. When the NS5 branes
are coincident as in (2.11) the discrete ∏i Sni group is gauged.

2.4 Small E8 instanton transition: M5 branes near M9 plane

The other extreme is a system of M5 branes near an M9 plane which do also exhibit various phases

A0 × × × × ×M5 M9
x
6

x
7,8,9,10

(2.13)

depending on whether the M5 branes are outside the M9 or inside. Here, C2 is conveniently treated
as C

2�Z1, i.e. the A0 singularity. Correspondingly, in the Type IIA picture there is a single D6
brane.

Single M5. Consider a single M5 near an M9. The phase where the M5 is outside the M9 has
the following brane system:

A0 ×M5 M9
x
6

x
7,8,9,10

(2.14)

It can be described in Type IIA as follows3:

⇔ electric quiver:
1 1

(2.15)

Note that there is no choice of boundary condition involved. Since there is only one D6 and all
eight D8 are strictly speaking on top of the O8− orientifold, one may connect the D6 to any of the
D8s. In addition, the brane system in (2.15) only displays one side of the entire brane content as
all the mirror objects outside the O8− behave identical to their counterparts. That being said, note
that the depicted NS5s are technically half NS5 branes.

Similar to above, one can move to the phase of the brane system where all D6s are suspended
between D8s by pulling one D8 from infinity, one obtains

⇔ magnetic quiver:

1

1

(2.16)

3In the remaining brane diagrams we will omit the labels for the di↵erent branes. The brane diagrams are either
M-theory or Type IIA diagrams and follow the conventions established in diagrams (2.1) and (2.2) respectively.
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Note again that one U(1) gauge node originates from the D6 suspended between two D8s, while
the other U(1) stems from the NS5 (once again the neutral hypermultiplet that also corresponds to
the NS5 has been omitted in the depiction of the magnetic quiver, since it does not contribute to
the 3d Coulomb branch). The relation between the electric and magnetic quiver is given in terms
of their associated moduli spaces

H6d �electricquiver (2.15)� = C3d �
magnetic
quiver (2.16)� = C2 = H . (2.17)

However, there is another phase of the 6d system which is reached when the M5 approaches
the M9 plane. In Type IIA the half NS5 can be moved towards the O8− through the D8s via a
transition with brane creation [8, Sec. 3.2]. As first step, one moves the half NS5 behind the last
D8 and takes care of brane creation as follows:

(2.18)

Next, one merges the half NS5 on the orientifold with its mirror image, then splits them along
the O8− such that these are free to move vertically. All the newly created D6s become unfrozen and
are now free to move along the vertical directions as well. Recalling that a D6 stretched between a
D8 and its mirror image does not lead to a massless BPS state, the D6s in the last two segments
closest to the O8− need to be rearranged as follows:

(2.19)

In the last brane system the 8 D6s in the interval between the rightmost D8 and the O8− have
been connected with their mirror images. From this, one can read o↵ the magnetic quiver using
the rules established before

1 1 2 3 4 5 6 4 2

3

(2.20)

This result deserves some comments. Firstly, the bifurcation in the magnetic quiver is a direct
consequence of the brane picture (2.19). In more detail, there is a stack of three D6s between the
7th and 8th D8s starting from the left, as well as a stack of four D6s between the 8th and the 7th
D8s, but these D6s go all the way through the O8−. By the previous arguments, the stack of three
and four D6 give rise to an U(3) and an U(4) magnetic vector multiplets, respectively, which are
both connected via magnetic bifundamental hypermultiplets to the U(6) gauge node from the stack
of six D6s in between the 6th and 7th D8s. Secondly, the U(2) node at the very right of the quiver
results from the two half NS5 branes that can move freely along the O8−. The setting is similar to
the discrete gauging argument of (2.11): the two half NS5 branes on the O8− are coincident with
the di↵erence that the magnetic adjoint hypermultiplet is frozen due to the orientifold projection;
we would like to relate this e↵ect also to the fact that the NS5s on the O8− cannot move in the
x
6 direction. The resulting U(2) magnetic gauge node is connected via a magnetic bifundamental
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6d — small instanton transition
SU(2) with 10 flavors

• The Classical Higgs branch — minimal nilpotent orbit of SO(20)


• The moduli space of 1 SO(20) instanton on ℂ2SU(2)-[SO(20)] finite and infinite coupling in 6d:

4 5 6 7 8 4

5

1 2 2 2 2 2 2 2 1

1 1

1 2 3 4 5 6 7 8 5 2

4

d10 d10

e8

–
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6d — tensionless strings and discrete gauging
SU(2) with 4 flavors

• When n M5 branes coincide on an -type singularity an  group is gauged


• There is symmetry reduction for the , but not for higher values

A Sn

A1SU(2)-[SO(8)] finite and infinite coupling in 6d:

1 2 1

1 1

1 2 1

2

d4 b3

a1

–
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–



6d — tensionless strings and  gaugingS2
SU(3) with 6 flavors

• Phase diagram — finite / infinite couplingSU(3)-[6] finite and infinite coupling in 6d:

a5

d4

a5

b3

a1

Sp(2)-[SO(24)] finite and infinite coupling in 6d:

d12

d10

d12

d10

e8
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Summary
Changing the way we think

• Magnetic Quivers — encodes all data needed to understand strongly coupled 
moduli spaces


• Phase (Hasse) diagrams — changes the way we analyze symplectic 
singularities


• Brane systems — very instrumental in getting this progress


• Monopole formula — opened the window to all recent achievements



Thank you !


