Lectures on Symplectic Singularities

Monopole formula, Magnetic Quiver, Phase diagram

Amihay Hanany July 2021

Status Report

Symplectic singularities

- These lectures review the current understanding we have of moduli spaces for theories with 8 supercharges
- The focus is on
- Higgs branches in 3, 4, 5, 6 dimensions
- Coulomb branch in 3 dimensions

Symplectic singularities \& Physics

symplectic singularities

Characterization of Symplectic Singularities physical quantities - ordered by ease of computation

- Dimension (quaternionic)
- Global symmetry
- Phase (Hasse) diagram
- Representation content of the chiral ring (Hilbert Series)
- Highest weight generating function (HWG)
- Chiral ring - generators and relations

Dimension

Higgs branch

- If there is complete Higging
- $\operatorname{dim} \mathscr{H}=H-V$
- H is number of hyper multipets
- V is number of vector multipets

Dimension of Higgs branch
 Kibble 1967

- A theory with gauge group G and matter R
- If the gauge group G is broken to a subgroup H
. Decompose $R=\sum_{i} a_{i} r_{i} ; \quad$ Adj $=\operatorname{adj}+\sum_{i} b_{i} r_{i}$
- r_{i} - irreducible representations of H, a_{i}, b_{i} multiplicities, r_{0} - trivial representation
- New theory with gauge group H and matter $R^{\prime}=\sum_{i \neq 0}\left(a_{i}-b_{i}\right) r_{i}$
- $a_{i}-b_{i} \geq 0$
- $\operatorname{dim} \mathscr{H}=a_{0}-b_{0}$

Dimension of 3d Coulomb branch

- $\operatorname{dim} \mathscr{C}=r$
- rank of G

Global symmetry
 symplectic singularity

- $S U(2)_{R}$ acts on the moduli space
- rotates complex structures
- Pick one - holomorphic functions
- $U(1)$ inside gives weight to holmorphic functions
- weight n is the highest weight in the representation with spin $\frac{n}{2}$ under $S U(2)_{R}$
- functions of weight 2 are closed when paired under the symplectic form
- Form Lie Algebra
- adj of global symmetry is given by the set of all functions of weight 2

Global symmetry

Higgs branch

- In a quiver with flavor nodes of rank N_{i} the global symmetry is $S\left(\prod_{i} U\left(N_{i}\right)\right)$
- As quarks have weight 1 , on the Higgs branch we need to find all possible mesons
- They transform in the adjoint representation of the global symmetry

Global symmetry

Coulomb branch

- Balance of a gauge node - sum of node ranks connected to it minus twice its rank
- For a large class of quivers the subset of balanced nodes forms the Dynkin diagram for the non Abelian part of the global symmetry
- For the remaining n unbalanced nodes there is an additional $U(1)^{n-1}$ contribution to the global symmetry
- These combinatorial criteria need to be tested with an explicit evaluation of all functions of weight 2

Global symmetry
 Coulomb branch exercise

- Find the global symmetry for the quivers

- Show it is bigger than the symmetry expected by balance
- to be published in a paper with K. Gledhill

Phase (Hasse) diagrams

massless fields

- We characterize different phases by identifying the set of massless fields of the theory
- Theories with massive fields that have the same massless content are considered to be equivalent.
- They are in the same phase.

Massive fields

- Masses are functions of moduli in the theory
- As we move along the moduli space, masses of massive states vary.
- At some critical points some states become massless
- In such cases we say that the phase of the theory changes
- It contains more massless states.

Natural questions

- As we move from phase A to phase B with more massless fields:
- Characterise each phase - give some names
- How many moduli are tuned to get from A to B ?
- What is the geometry of these moduli?
- These are called transition moduli, as they move from phase A to phase B.

Transition moduli

- Necessarily conical
- As we scale these moduli massive states remain massive
- massless states remain massless
- At the origin new massless states show up

Example: Free scalar field

- Consider a scalar field with mass m
- There are two phases
- $m \neq 0$ one dimensional phase with 0 massless states
- $m=0$ zero dimensional phase with 1 massless state
- The transition modulus m parametrizes \mathbb{R}^{+}which is conical, one dimensional

Minimal transitions

- Given a phase, a minimal transition is a minimal set of tuned moduli for moving to a new phase
- The Hasse (phase) diagram for such moduli consists of 2 points connected by one edge.
- Two phases
- The origin
- Anything else
- An important problem - find such minimal cases

Supersymmetry

- The discussion so far is very generic and can apply to any theory
- With supersymmetry we get a better control.
- Can compute masses with control over quantum corrections
- Can use geometric techniques to get exact results
- Will focus on theories with 8 supercharges
- look at Higgs branches in 3, 4, 5, 6d
- Coulomb branch in 3d

Phase Diagram

Hasse diagram

- We form a diagram with two objects
- nodes and edges
- A node represents a phase (symplectic leaf)
- An edge represents a minimal transition (transverse slice) between a node A with some massless states to a node B with additional massless states

Basic Hasse diagrams - affine ADE quivers

2 symplectic leaves, minimal slices
a)

$$
x= \begin{cases}n & \text { for } a_{n} \\ 2 n-3 & \text { for } d_{n} \\ 11 & \text { for } e_{6} \\ 17 & \text { for } e_{7} \\ 29 & \text { for } e_{8}\end{cases}
$$

$$
\mathfrak{H}_{C}=0 \bullet a_{n}, d_{n} \text { or } e_{n}
$$

Higgs branch of SU(3) with 6 flavors

3 symplectic leaves, 2 minimal slices

Hasse diagram Magnetic quiver

Hasse diagram Effective theory

Phase diagram for SU(3) with 6 flavors

Higgs mechanism - recall Kibble's method

- At the origin $\mathrm{SU}(3)$ is massless
- Now turn moduli such that $\operatorname{SU}(2)$ is massless
- $8 \rightarrow 3+2+2+1$
- $6 \times(3 \rightarrow 2+1)$
- $\operatorname{SU}(2)$ with remaining matter $4 \times 2+5 \times 1$
- 5 moduli which parametrize the Higgs branch of $U(1)$ with 6 flavors
- Further Higgsing to give masses to $\operatorname{SU}(2)$ adds 5 more moduli for the Higgs branch of SU(2) with 4 flavors

Phase diagram for SU(3) with 6 flavors

Coulomb branch - quiver subtraction

- The moduli space is given by the Coulomb branch of the 4 leg quiver
- Look for a sub quiver which is in the family of the affine Dynkin diagram
- Subtract and add flavors so that balance is preserved

Exercise

SU(4) with 9 flavors

- Compute the Hasse diagram for the Higgs branch of this theory
- First going bottom up using the Higgs mechanism
- Second going top down using the method of Quiver Subtraction

$\mathbf{G} 2$ with \mathbf{N} hypers of fundamental matter

SU(4) with 1 antisymm and 12 fundamentals

Monopole formula - the ingredients

 per each node of label k- $W=S_{k}$ - the Weyl group of $G L(k)$
- $\hat{\Lambda}$ - The (Langlands) dual lattice
- A set of integer numbers $\hat{\Lambda}=\mathbb{Z}^{k} \ni m=\left(m_{1}, \ldots, m_{k}\right)$ - magnetic charges
- $\hat{\Lambda} / W$ - Principal Weyl chamber $m_{1} \leq \cdots \leq m_{k}$
- Boundaries of the Weyl chamber - when some m_{i} coincide
- H_{m} - stabilizer of m in $G L(k)$ - a Levi subgroup of GL(k)
- d_{i}^{m} - degrees of Casimir invariants of H_{m}

Example

GL(2)

- S_{2} - the Weyl group of $G L(2)$
- A set of integer numbers $m=\left(m_{1}, m_{2}\right)$ - magnetic charges
- Principal Weyl chamber $m_{1} \leq m_{2}$
- Boundary of the Weyl chamber: $m_{1}=m_{2}$
- H_{m} - stabilizer of m in $G L(2): \begin{cases}\left(\mathbb{C}^{*}\right)^{2} & \text { for } m_{1} \neq m_{2} \\ G L(2) & \text { for } m_{1}=m_{2}\end{cases}$
- d_{i}^{m} - degrees of Casimir invariants of $H_{m}: \begin{cases}(1,1) & \text { for } m_{1} \neq m_{2} \\ (1,2) & \text { for } m_{1}=m_{2}\end{cases}$

The gauge group
 Quivers with no flavor nodes

- Given a quiver with a set of nodes, each with labels k_{a}
. The gauge group is $\left[\prod_{a} G L\left(k_{a}\right)\right] / \mathbb{C} *$
- corresponding dual lattice $\hat{\Lambda}$ and Weyl group W

The gauge group

Quivers with flavor nodes

- In the presence of flavor (square) nodes there is no overall \mathbb{C}^{*} to divide by

The gauge group is $\prod G L\left(k_{a}\right)$ and the product is over gauge (circle) nodes a

Ungauging

 graph equivalence

Ungauging

graph equivalence

The conformal dimension $-\Delta(m)$
 \mathbb{C}^{*} grading on the Coulomb branch

- Given a quiver with a set of nodes, each with labels k_{a}
- $\Delta(m)$ is a sum of contributions from nodes and edges:
- For each node with magnetic charges $m_{i}^{a}, i=1 \ldots k_{a}$ there is a negative contribution
- $-\sum_{1 \leq i<j \leq k_{a}}\left|m_{i}^{a}-m_{j}^{a}\right|$ (associated with positive roots of $\left.G L\left(k_{a}\right)\right)$
- For each edge connecting nodes a, b with magnetic charges m_{i}^{a} and m_{j}^{b} a positive contribution
- $\frac{1}{2} \sum_{i=1}^{k_{a}} \sum_{j=1}^{k_{b}}\left|m_{i}^{a}-m_{j}^{b}\right|$ (associated with bifundamental representation)

The monopole formula

Hilbert series of the Coulomb branch

- Given a quiver with all the ingredients defined so far
- Introduce a variable t
- The Hilbert series is given by (flavor nodes have fixed m. Set to 0 .)
- $H(t)=\sum_{m \in \hat{\Lambda} / W} t^{2 \Delta(m)} P_{m}(t)$
- $P_{m}(t)=\prod_{i} \frac{1}{1-t^{2 d_{i}^{m}}}$

Example - the trivial case

Coulomb branch of $\mathbb{H}^{n}=\mathbb{C}^{2 n}$

- For a finite A type quiver:
- A linear quiver with $n+1$ gauge nodes, each with label 1 , connected by n edges
- The Coulomb branch is \mathbb{H}^{n}
- The Hilbert series is
. $H(t)=\frac{1}{(1-t)^{2 n}}=1+2 n t+n(2 n+1) t^{2}+\ldots$

Examples - from the world of nilpotent orbits

Simple quivers and their Hilbert Series

Nilpotent Orbit	$\mathrm{Dim}_{\mathbb{H}}$	Quiver	HS	HWG
$[1,1]$	0	-	1	1
[2]	1	$\begin{gathered} 2 \square \\ 0 \\ 1 \end{gathered}$	$\frac{\left(1-t^{4}\right)}{\left(1-t^{2}\right)^{3}}$	$\frac{1}{\left(1-\mu^{2} t^{2}\right)}$
[1, 1, 1]	0	-	1	1
[2, 1]	2		$\frac{\left(1+4 t^{2}+t^{4}\right)}{\left(1-t^{2}\right)^{4}}$	$\frac{1}{\left(1-\mu_{1} \mu_{2} t^{2}\right)}$
[3]	3		$\frac{\left(1-t^{4}\right)\left(1-t^{6}\right)}{\left(1-t^{2}\right)^{8}}$	$\frac{\left(1-\mu_{1}^{3} \mu_{2}^{3} t^{12}\right)}{\left(1-\mu_{1} \mu_{2} t^{2}\right)\left(1-\mu_{1} \mu_{2} t^{4}\right)\left(1-\mu_{1}^{3} t^{6}\right)\left(1-\mu_{2}^{3} t^{6}\right)}$
[1, 1, 1, 1]	0	-	1	1
[2, 1, 1]	3		$\frac{\left(1+t^{2}\right)\left(1+8 t^{2}+t^{4}\right)}{\left(1-t^{2}\right)^{6}}$	$\frac{1}{\left(1-\mu_{1} \mu_{3} t^{2}\right)}$
[2, 2]	4		$\frac{\left(1+t^{2}\right)^{2}\left(1+5 t^{2}+t^{4}\right)}{\left(1-t^{2}\right)^{8}}$	$\frac{1}{\left(1-\mu_{1} \mu_{3} t^{2}\right)\left(1-\mu_{2}^{2} t^{4}\right)}$
$[3,1]$	5		$\frac{\left(1+t^{2}\right)\left(1+4 t^{2}+104^{4}+4 t^{6}+t^{8}\right)}{\left(1-t^{2}\right)^{10}}$	$\frac{\left(1-\mu_{1}^{3} \mu_{2}^{3} \mu_{3}^{3} t^{12}\right)}{\left(1-\mu_{1} \mu_{3} t^{2}\right)\left(1-\mu_{2}^{2} t^{4}\right)\left(1-\mu_{1} \mu_{3} t^{4}\right)\left(1-\mu_{1}^{2} \mu_{2} t^{6}\right)\left(1-\mu_{2} \mu_{3}^{2} t^{6}\right)}$
[4]	6		$\frac{\left(1-t^{4}\right)\left(1-t^{6}\right)\left(1-t^{8}\right)}{\left(1-t^{2}\right)^{15}}$	messy

Hilbert Series

Dimension of the Coulomb branch

- The complex dimension of the Coulomb branch is the order of the pole of $H(t)$ at $t=1$

The global symmetry

a Lie algebra

- For each quiver there is an associated finite dimensional Lie algebra F
- Set $H(t)=\sum_{n=0}^{\infty} c_{n} t^{n}$
- c_{n} are dimensions of (reducible) representations of F
- c_{2} is the dimension of the adjoint representation of F
- If $c_{1} \neq 0$ it is even and $H^{\prime}(t)=(1-t)^{c_{1}} H(t)$ is a Hilbert series for \mathscr{C}^{\prime}
- The moduli space factorizes $\mathscr{C}=\mathbb{H}^{\frac{c_{1}}{2}} \times \mathscr{C}^{\prime}$ with $\mathbb{H}=\mathbb{C}^{2}$

A balanced node

conditions for symmetry

- A gauge node k_{a} is said to be balanced if the sum of node labels connected to it is $2 k_{a}$
- Set C to be the Cartan matrix
- k the vector of gauge node labels. f the vector of flavor labels
- Then the imbalance of the gauge nodes is the vector
- $b=f-C k$

Affine ADE quivers

all nodes are balanced
a)

d)

e)

The refined Hilbert Series

another ingredient

- For any node with node number k_{a} set \mathbb{C}^{*} gradings
- $J_{a}(m)=\sum_{i=1}^{k_{a}} m_{i}^{a}$
- Introduce the fugacities z_{a}
- The refined Hilbert series is
. $H\left(t, z_{a}\right)=\sum_{m \in \hat{\Lambda} / W} t^{2 \Delta(m)} P_{m}(t) \prod_{a} z_{a}^{J_{a}(m)}$

Global symmetry

dimensions are refined to characters

. Set $H\left(t, z_{a}\right)=\sum_{n=0}^{\infty} c_{n}\left(z_{a}\right) t^{n}$

- $c_{n}\left(z_{a}\right)$ are characters of the global symmetry F
- $c_{2}\left(z_{a}\right)$ is the character of the adj representation of F

Hasse diagrams

Quiver subtraction

- Recall the work of Kraft and Procesi who classified degenerations in closures of nilpotent orbits
- Minimal degenerations are of two types
- Klein singularity (ADE) - denoted by capital letters
- closure of a minimal nilpotent orbit of some algebra - denoted lower case
- This is reproduced and generalized with the Coulomb branch

Hasse diagrams for nilpotent orbits

 taken from KP$$
A_{1} A_{\bullet}^{\mathfrak{s l}_{2}}
$$

Minimal degenerations
A \& a

Quiver subtraction

algorithm

- Given a quiver, identify sub quivers which are in the list of minimal degenerations
- align and subtract
- rebalance - add/remove flavors to nodes such that their imbalance is preserved
- get a smaller quiver
- repeat till reaching a minimal degeneration

Quiver subtraction

 nilpotent cone of A_{5} - step 1

Quiver subtraction

nilpotent cone of A_{5} - step 2

Quiver subtraction

nilpotent cone of A_{5} - steps 3

Quiver subtraction

nilpotent cone of A_{5} - steps 4

Quiver subtraction

nilpotent cone of A_{5} - steps 5

Quiver subtraction

nilpotent cone of A_{5} - steps 6

Quiver subtraction

nilpotent cone of A_{5} - step 7

Quiver subtraction

nilpotent cone of A_{5} - step 8

Quiver subtraction

nilpotent cone of A_{5} - final diagram

Brane Webs and Magnetic Quivers

5d Higgs branches

- We turn to a collection of methods to derive quivers from brane systems
- Our first set of examples are brane webs which help deriving many moduli spaces at weak and strong coupling

$E_{3}=A_{1} \times A_{2}$
 A union of two cones

$\mathcal{H}_{\infty}\left(\begin{array}{c}\stackrel{2}{\square} \\ \stackrel{\square}{\circ} \\ S U(2)_{0}\end{array}\right)=\overline{\min _{A_{2}}} \cup \overline{\min _{A_{1}}}$

$$
\begin{aligned}
& \rightarrow \underbrace{0}_{0} \xrightarrow[0]{\circ} \xrightarrow[0]{\frac{1}{g^{2}, m_{i}, a \rightarrow 0}} \\
& \overline{\min _{A_{1}}}=\mathcal{C}^{3 d}\left(\begin{array}{l}
1 \\
0 \\
\| \\
0 \\
1 \\
\end{array}\right)
\end{aligned}
$$

Necklace Quiver

$E_{4}=A_{4}$

$\xrightarrow{\frac{1}{g^{2}}, m_{i}, a \rightarrow 0}$

$E_{5}=D_{5}$ Node multiplicity

SU(2) with 4 flavors

$$
\begin{array}{llll}
& \begin{array}{lll}
1 & 1 \\
0 & 0 \\
& 1 & \mid \\
0 & 1 & \\
0 & 0 & 0 \\
1 & 2 & 2
\end{array} & 0 \\
0
\end{array}
$$

$\begin{aligned} & E_{6} \\ & \text { Exceptional algebra in brane physics }\end{aligned} \quad \mathcal{H}_{\infty}\left(\begin{array}{c}5 \\ 1 \\ 1 \\ S U(2)\end{array}\right)=\overline{\min _{E_{6}}}$

SYM - Edge Multiplicity

$\mathcal{H}_{\infty}\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ S U\left(N_{c}\right) 0\end{array}\right)=\mathbb{C}^{2} / \mathbb{Z}_{N_{c}}$
$S U(N)_{0}$

$$
\mathbb{C}^{2} / \mathbb{Z}_{N_{c}}=\mathcal{C}^{3 d}\binom{\circ \xlongequal{N_{c}} \stackrel{\circ}{1}}{1}
$$

Union of 3 cones

new physics

$\stackrel{1}{\circ} \xlongequal{4} \quad \stackrel{1}{\circ}$
$\underset{1}{\circ}-\underset{1}{\circ}-\underset{1}{0}-\underset{1}{\circ}-\underset{1}{0}$

$\xrightarrow{\frac{1}{g^{2}} \rightarrow 0}$

intersection of cones

of 2 cones and of 3 cones

$C_{1} \cap C_{2}=\overline{\mathrm{n} \cdot \min _{A_{5}}}$

$C_{1} \cap C_{2} \cap C_{3}=\overline{\min _{A_{5}}}$

4d $\mathcal{N}=2$ SU(6) with fundamental matter

union of 2 cones

$N_{f}=1 \quad N_{f}=2 \quad N_{f}=3 \quad N_{f}=4 \quad N_{f}=5 \quad N_{f}=6 \quad N_{f}=7 \quad N_{f}=8 \quad N_{f}=9 \quad N_{f}=10 \quad N_{f}=11 \quad N_{f}=12 \quad N_{f}=13$

physical effects in 6d

Small instanton transition: 1T <-> 29 H

6d - small instanton transition
 SU(2) with 10 flavors

- The Classical Higgs branch - minimal nilpotent orbit of SO(20)
- The moduli space of $1 \mathrm{SO}(20)$ instanton on \mathbb{C}^{2}

6d - tensionless strings and discrete gauging

SU(2) with 4 flavors

- When n M5 branes coincide on an A-type singularity an S_{n} group is gauged
- There is symmetry reduction for the A_{1}, but not for higher values

6d - tensionless strings and S_{2} gauging

SU(3) with 6 flavors

- Phase diagram - finite / infinite coupling

Summary

Changing the way we think

- Magnetic Quivers - encodes all data needed to understand strongly coupled moduli spaces
- Phase (Hasse) diagrams - changes the way we analyze symplectic singularities
- Brane systems - very instrumental in getting this progress
- Monopole formula - opened the window to all recent achievements

Thank you!

