Lectures on Symplectic Singularities Monopole formula, Magnetic Quiver, Phase diagram

Amihay Hanany July 2021

Status Report Symplectic singularities

- These lectures review the current u theories with 8 supercharges
- The focus is on
- Higgs branches in 3, 4, 5, 6 dimensions
- Coulomb branch in 3 dimensions

These lectures review the current understanding we have of moduli spaces for

Symplectic singularities & Physics symplectic singularities MS CB HK 5 $\mathbf{\hat{n}}$

Characterization of Symplectic Singularities physical quantities — ordered by ease of computation

- Dimension (quaternionic)
- Global symmetry
- Phase (Hasse) diagram
- Representation content of the chiral ring (Hilbert Series)
- Highest weight generating function (HWG)
- Chiral ring generators and relations

Dimension Higgs branch

- If there is complete Higging
- $dim\mathcal{H} = H V$
- *H* is number of hyper multipets
- V is number of vector multipets

Dimension of Higgs branch Kibble 1967

- A theory with gauge group G and matter R
- If the gauge group G is broken to a subgroup H • Decompose $R = \sum_{i} a_i r_i$; Adj = adj + $\sum_{i} a_i r_i$
- r_i irreducible representations of H, a_i , b_i multiplicities, r_0 trivial representation
- New theory with gauge group H and matter R^\prime
- $a_i b_i \ge 0$
- $dim\mathcal{H} = a_0 b_0$

$$b_i r_i$$

$$= \sum_{i \neq 0} (a_i - b_i) r_i$$

Dimension of 3d Coulomb branch

- $dim\mathcal{C} = r$
- rank of G

Global symmetry symplectic singularity

- $SU(2)_R$ acts on the moduli space
- rotates complex structures
- Pick one holomorphic functions
- U(1) inside gives weight to holmorphic functions
- functions of weight 2 are closed when paired under the symplectic form
- Form Lie Algebra
- adj of global symmetry is given by the set of all functions of weight 2

• weight n is the highest weight in the representation with spin $\frac{n}{2}$ under $SU(2)_R$

Global symmetry Higgs branch

- In a quiver with flavor nodes of rank N_i the global symmetry is $S\left(\prod_{i} U(N_i)\right)$
- mesons
- They transform in the adjoint representation of the global symmetry

• As quarks have weight 1, on the Higgs branch we need to find all possible

Global symmetry Coulomb branch

- Balance of a gauge node sum of node ranks connected to it minus twice its rank
- For a large class of quivers the subset of balanced nodes forms the Dynkin diagram for the non Abelian part of the global symmetry
- For the remaining n unbalanced nodes there is an additional $U(1)^{n-1}$ contribution to the global symmetry
- These combinatorial criteria need to be tested with an explicit evaluation of all functions of weight 2

Global symmetry Coulomb branch exercise

- Find the global symmetry for the quivers
- Show it is bigger than the symmetry expected by balance
- to be published in a paper with K. Gledhill

Phase (Hasse) diagrams massless fields

- the theory
- Theories with massive fields that have the same massless content are considered to be equivalent.
- They are in the same phase.

We characterize different phases by identifying the set of massless fields of

Massive fields

- Masses are functions of moduli in the theory
- As we move along the moduli space, masses of massive states vary.
- At some critical points some states become massless
- In such cases we say that the phase of the theory changes
- It contains more massless states.

Natural questions

- As we move from phase A to phase B with more massless fields:
- Characterise each phase give some names
- How many moduli are tuned to get from A to B?
- What is the geometry of these moduli?
- These are called transition moduli, as they move from phase A to phase B.

Transition moduli

- Necessarily conical
- As we scale these moduli massive states remain massive
- massless states remain massless
- At the origin new massless states show up

Example: Free scalar field

- Consider a scalar field with mass *m*
- There are two phases
- $m \neq 0$ one dimensional phase with 0 massless states
- m = 0 zero dimensional phase with 1 massless state
- The transition modulus m parametrizes \mathbb{R}^+ which is conical, one dimensional

Minimal transitions

- Given a phase, a minimal transition is a minimal set of tuned moduli for moving to a new phase
- one edge.
- Two phases
- The origin
- Anything else
- An important problem find such minimal cases

The Hasse (phase) diagram for such moduli consists of 2 points connected by

Supersymmetry

- The discussion so far is very generic and can apply to any theory
- With supersymmetry we get a better control.
- Can compute masses with control over quantum corrections
- Can use geometric techniques to get exact results
- Will focus on theories with 8 supercharges
- look at Higgs branches in 3, 4, 5, 6d
- Coulomb branch in 3d

Phase Diagram Hasse diagram

- We form a diagram with two objects
- nodes and edges
- A node represents a phase (symplectic leaf)
- An edge represents a minimal transition (transverse slice) between a node A with some massless states to a node B with additional massless states

Basic Hasse diagrams - affine ADE quivers 2 symplectic leaves, minimal slices

$$x = \begin{cases} n & \text{for } a_n \\ 2n - 3 & \text{for } d_n \\ 11 & \text{for } e_6 \\ 17 & \text{for } e_7 \\ 29 & \text{for } e_8 \end{cases}$$

 $\mathfrak{H}_H = 0 \bullet$

Higgs branch of SU(3) with 6 flavors 3 symplectic leaves, 2 minimal slices

Phase diagram for SU(3) with 6 flavors Higgs mechanism — recall Kibble's method

- At the origin SU(3) is massless
- Now turn moduli such that SU(2) is massless
- $8 \rightarrow 3 + 2 + 2 + 1$
- $6 \times (3 \rightarrow 2 + 1)$
- SU(2) with remaining matter $4 \times 2 + 5 \times 1$
- 5 moduli which parametrize the Higgs branch of U(1) with 6 flavors
- SU(2) with 4 flavors

• Further Higgsing to give masses to SU(2) adds 5 more moduli for the Higgs branch of

Phase diagram for SU(3) with 6 flavors Coulomb branch – quiver subtraction

- The moduli space is given by the Coulomb branch of the 4 leg quiver
- Look for a sub quiver which is in the family of the affine Dynkin diagram
- Subtract and add flavors so that balance is preserved

Exercise SU(4) with 9 flavors

- Compute the Hasse diagram for the Higgs branch of this theory
- First going bottom up using the Higgs mechanism
- Second going top down using the method of Quiver Subtraction

 C_N

 G_2

SU(4) with 1 antisymm and 12 fundamentals 1210 d_{10} SU(3)SU(2)12121212 $\operatorname{Sp}(2)$ a_{11} \bigcirc SU(4) U(1) Λ^2 d_{12} SU(2) \mathcal{T} 12 $\operatorname{Sp}(1)$ a_{11} U(1) c_1 O(1)

Monopole formula — the ingredients per each node of label k

- $W = S_k$ the Weyl group of GL(k)
- $\hat{\Lambda}$ The (Langlands) dual lattice
- A set of integer numbers $\hat{\Lambda} = \mathbb{Z}^k \ni m = (m_1, \dots, m_k)$ magnetic charges
- $\hat{\Lambda}/W$ Principal Weyl chamber $m_1 \leq \cdots \leq m_k$
- Boundaries of the Weyl chamber when some m_i coincide
- H_m stabilizer of m in GL(k) a Levi subgroup of GL(k)
- d_i^m degrees of Casimir invariants of H_m

Example GL(2)

- S_2 the Weyl group of GL(2)
- A set of integer numbers $m = (m_1, m_2) magnetic$ charges
- Principal Weyl chamber $m_1 \leq m_2$
- Boundary of the Weyl chamber: $m_1 = m_2$
- H_m stabilizer of m in GL(2): $\begin{cases} (\mathbb{C}^*)^2 & \text{for } m_1 \neq m_2 \\ GL(2) & \text{for } m_1 = m_2 \end{cases}$

• d_i^m – degrees of Casimir invariants of H_m : $\begin{cases} (1,1) & \text{for } m_1 \neq m_2 \\ (1,2) & \text{for } m_1 = m_2 \end{cases}$

The gauge group **Quivers with no flavor nodes**

• Given a quiver with a set of nodes, each with labels k_a

• The gauge group is $\prod_{a} GL(k_a) /\mathbb{C}^*$

- corresponding dual lattice $\hat{\Lambda}$ and Weyl group W

The gauge group **Quivers with flavor nodes**

The gauge group is $GL(k_a)$ and the product is over gauge (circle) nodes \mathcal{A}

• In the presence of flavor (square) nodes there is no overall \mathbb{C}^* to divide by

Ungauging graph equivalence

2

1

2

2

=

n+1

The conformal dimension – $\Delta(m)$ \mathbb{C}^* grading on the Coulomb branch

- Given a quiver with a set of nodes, each with labels k_a
- $\Delta(m)$ is a sum of contributions from nodes and edges:
- For each node with magnetic charges m_i^a , $i = 1 \dots k_a$ there is a negative contribution

- $\sum_{i=1}^{n} |m_i^a - m_j^a|$ (associated with positive roots of $GL(k_a)$) $1 \leq i < j \leq k_a$

•
$$\frac{1}{2} \sum_{i=1}^{k_a} \sum_{j=1}^{k_b} |m_i^a - m_j^b|$$
 (associated with bifund

• For each edge connecting nodes a, b with magnetic charges m_i^a and m_j^b a positive contribution

damental representation)

The monopole formula Hilbert series of the Coulomb branch

- Given a quiver with all the ingredients defined so far
- Introduce a variable t
- The Hilbert series is given by (flavor nodes have fixed *m*. Set to 0.)

•
$$H(t) = \sum_{m \in \hat{\Lambda}/W} t^{2\Delta(m)} P_m(t)$$

•
$$P_m(t) = \prod_i \frac{1}{1 - t^{2d_i^m}}$$

Example — the trivial case **Coulomb branch of** $\mathbb{H}^n = \mathbb{C}^{2n}$

- For a finite A type quiver:
- A linear quiver with n+1 gauge nodes, each with label 1, connected by n edges
- The Coulomb branch is \mathbb{H}^n
- The Hilbert series is

•
$$H(t) = \frac{1}{(1-t)^{2n}} = 1 + 2nt + n(2)$$

$(2n+1)t^2 + \dots$

Examples — from the world of nilpotent orbits Simple quivers and their Hilbert Series

Nilpotent Orbit	$\operatorname{Dim}_{\mathbb{H}}$	Quiver	HS	HWG
[1, 1]	0	_	1	1
[2]	1		$\frac{(1-t^4)}{(1-t^2)^3}$	$\frac{1}{(1-\mu^2 t^2)}$
$\left[1,1,1 ight]$	0	_	1	1
[2,1]	2		$\frac{(1+4t^2+t^4)}{(1-t^2)^4}$	$\frac{1}{(1-\mu_1\mu_2t^2)}$
[3]	3	$\bigcirc \qquad \bigcirc \qquad \bigcirc \qquad 3 \\ \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \bigcirc \qquad \\ 1 \qquad 2 \qquad \qquad$	$\left \begin{array}{c} \frac{(1-t^4)(1-t^6)}{(1-t^2)^8} \end{array} \right $	$\frac{(1-\mu_1^3\mu_2^3t^{12})}{(1-\mu_1\mu_2t^2)(1-\mu_1\mu_2t^4)(1-\mu_1^3t^6)(1-\mu_2^3t^6)}$
[1, 1, 1, 1]	0	_	1	1
[2, 1, 1]	3		$\left \begin{array}{c} \frac{(1+t^2)(1+8t^2+t^4)}{(1-t^2)^6} \end{array} \right $	$\frac{1}{(1-\mu_1\mu_3t^2)}$
[2,2]	4	$\begin{array}{ c c c } 2 \hline \\ 0 \hline \\ 1 & 2 & 1 \\ \hline \\ \end{array}$	$\left \begin{array}{c} \frac{(1+t^2)^2(1+5t^2+t^4)}{(1-t^2)^8} \end{array} \right $	$\frac{1}{(1-\mu_1\mu_3t^2)(1-\mu_2^2t^4)}$
[3,1]	5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{(1+t^2)(1+4t^2+10t^4+4t^6+t^8)}{(1-t^2)^{10}}$	$\frac{(1-\mu_1^3\mu_2^3\mu_3^3t^{12})}{(1-\mu_1\mu_3t^2)(1-\mu_2^2t^4)(1-\mu_1\mu_3t^4)(1-\mu_1^2\mu_2t^6)(1-\mu_2\mu_3^2t^6)}$
[4]	6	$ \begin{array}{c} $	$\frac{(1-t^4)(1-t^6)(1-t^8)}{(1-t^2)^{15}}$	messy

Hilbert Series Dimension of the Coulomb branch

• The complex dimension of the CouH(t) at t = 1

The complex dimension of the Coulomb branch is the order of the pole of

The global symmetry a Lie algebra

• For each quiver there is an associated finite dimensional Lie algebra F

• Set
$$H(t) = \sum_{n=0}^{\infty} c_n t^n$$

- c_n are dimensions of (reducible) representations of F
- c_2 is the dimension of the adjoint representation of F
- If $c_1 \neq 0$ it is even and $H'(t) = (1 t)^{c_1} H(t)$ is a Hilbert series for \mathscr{C}'
- The moduli space factorizes $\mathscr{C} = \mathbb{H}^{\frac{c_1}{2}} \times \mathscr{C}'$ with $\mathbb{H} = \mathbb{C}^2$

A balanced node conditions for symmetry

- to it is $2k_a$
- Set C to be the Cartan matrix
- k the vector of gauge node labels. f the vector of flavor labels
- Then the imbalance of the gauge nodes is the vector
- b = f Ck

• A gauge node k_a is said to be balanced if the sum of node labels connected

Affine ADE quivers all nodes are balanced

The refined Hilbert Series another ingredient

• For any node with node number k_a set \mathbb{C}^* gradings

$$J_a(m) = \sum_{i=1}^{k_a} m_i^a$$

- Introduce the fugacities z_a
- The refined Hilbert series is

•
$$H(t, z_a) = \sum_{m \in \hat{\Lambda}/W} t^{2\Delta(m)} P_m(t) \prod_a z_a^{J_a}$$

(m)

Global symmetry dimensions are refined to characters

• Set
$$H(t, z_a) = \sum_{n=0}^{\infty} c_n(z_a) t^n$$

- $c_n(z_a)$ are characters of the global symmetry F
- $c_2(z_a)$ is the character of the adj representation of F

Hasse diagrams Quiver subtraction

- Recall the work of Kraft and Procesi who classified degenerations in closures of nilpotent orbits
- Minimal degenerations are of two types
- Klein singularity (ADE) denoted by capital letters
- closure of a minimal nilpotent orbit of some algebra denoted lower case
- This is reproduced and generalized with the Coulomb branch

Hasse diagrams for nilpotent orbits taken from KP

Quiver subtraction algorithm

- Given a quiver, identify sub quivers which are in the list of minimal degenerations
- align and subtract
- rebalance add/remove flavors to nodes such that their imbalance is preserved
- get a smaller quiver
- repeat till reaching a minimal degeneration

1

Quiver subtraction nilpotent cone of A_5 — final diagram

Brane Webs and Magnetic Quivers 5d Higgs branches

- We turn to a collection of methods to derive quivers from brane systems Our first set of examples are brane webs which help deriving many moduli spaces at weak and strong coupling

$E_3 = A_1 \times A_2$ A union of two cones

$$\mathcal{H}_{\infty} \begin{pmatrix} 2 \\ 0 \\ SU(2)_{0} \end{pmatrix} = \overline{\min_{A_{2}}} \cup \overline{\min_{A_{1}}}$$

$$\overset{\bigcirc}{\longrightarrow} \qquad \overset{\bigcirc}{\longrightarrow} \qquad \overset{\bigcirc}{\longrightarrow} \qquad \overset{\bigcirc}{\min_{A_{2}}} = \mathcal{C}^{3d} \begin{pmatrix} \circ \\ 1 \end{pmatrix}$$

$$\xrightarrow{\longrightarrow} \qquad \overset{\bigcirc}{\longrightarrow} \qquad \overset{\bigcirc}{\min_{A_{1}}} = \mathcal{C}^{3d} \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Necklace Quiver $E_4 = A_4$

$$\overline{\min_{E_6}} = \mathcal{C}^{3a}$$

SYM – **Edge Multipl** $SU(N)_0$

Ficity
$$\mathcal{H}_{\infty}\begin{pmatrix} 0\\ 0\\ 0\\ SU(N_{c})_{0} \end{pmatrix} = \mathbb{C}^{2}/\mathbb{Z}_{N_{c}}$$

$$\mathbb{C}^2/\mathbb{Z}_{N_c} = \mathcal{C}^{3d} \left(\begin{array}{c} \circ \stackrel{N_c}{=} \circ \\ 1 & 1 \end{array} \right)$$

Union of 3 cones new physics

intersection of cones of 2 cones and of 3 cones

4d $\mathcal{N} = 2$ SU(6) with fundamental matter union of 2 cones

physical effects in 6d Small instanton transition: 1T <-> 29 H

6d — small instanton transition SU(2) with 10 flavors

- The Classical Higgs branch minimal nilpotent orbit of SO(20)
- The moduli space of 1 SO(20) instanton on \mathbb{C}^2

6d — tensionless strings and discrete gauging SU(2) with 4 flavors

- When n M5 branes coincide on an A-type singularity an S_n group is gauged
- There is symmetry reduction for the A_1 , but not for higher values

6d — tensionless strings and S_2 gauging SU(3) with 6 flavors

• Phase diagram — finite / infinite coupling

Summary Changing the way we think

- Magnetic Quivers encodes all data needed to understand strongly coupled moduli spaces
- Phase (Hasse) diagrams changes the way we analyze symplectic singularities
- Brane systems very instrumental in getting this progress
- Monopole formula opened the window to all recent achievements

Thank you !