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Status Report

Symplectic singularities

* These lectures review the current understanding we have of moduli spaces for

theories with 8 supercharges
* The focus is on
 Higgs branches in 3, 4, 5, 6 dimensions

e Coulomb branch in 3 dimensions
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Characterization of Symplectic Singularities

physical quantities — ordered by ease of computation

 Dimension (quaternionic)

e Global symmetry

 Phase (Hasse) diagram

* Representation content of the chiral ring (Hilbert Series)
* Highest weight generating function (HWG)

* Chiral ring - generators and relations



Dimension
Higgs branch

* |f there is complete Higging
e dim#A =H-YV
o H is number of hyper multipets

e Vis number of vector multipets



Dimension of Higgs branch
Kibble 1967

* A theory with gauge group G and matter R
 |If the gauge group G is broken to a subgroup H

Decompose R = Z ar; Adj = adj + z br;
' i

l

» 1; — irreducible representations of H, a,, b, multiplicities, 1, — trivial representation

New theory with gauge group H and matter R’ = Z (a,— b)r,
0



Dimension of 3d Coulomb branch

o dim€ =r
e rank of G



Global symmetry

symplectic singularity

» SU(2)p acts on the moduli space

e rotates complex structures
* Pick one — holomorphic functions

* U(1) inside gives weight to holmorphic functions

n
. Weight n is the highest weight in the representation with spin Y under SU(2)x

* functions of weight 2 are closed when paired under the symplectic form
* Form Lie Algebra

» adj of global symmetry is given by the set of all functions of weight 2



Global symmetry
Higgs branch

» In a quiver with flavor nodes of rank /V; the global symmetry is
s [ [uav
i

* As quarks have weight 1, on the Higgs branch we need to find all possible
mesons

* They transform in the adjoint representation of the global symmetry



Global symmetry

Coulomb branch

 Balance of a gauge node — sum of node ranks connected to it minus twice
Its rank

* For a large class of quivers the subset of balanced nodes forms the Dynkin
diagram for the non Abelian part of the global symmetry

» For the remaining 7 unbalanced nodes there is an additional U(1)"~!
contribution to the global symmetry

 These combinatorial criteria need to be tested with an explicit evaluation of all
functions of weight 2



Global symmetry

Coulomb branch exercise 2 9®
5 O

* Find the global symmetry for the quivers g 2

> O
(

 Show it is bigger than the symmetry expected by balance

* to be published in a paper with K. Gledhill

O




Phase (Hasse) diagrams

massless fields

* We characterize different phases by identifying the set of massless fields of
the theory

e Theories with massive fields that have the same massless content are
considered to be equivalent.

* They are in the same phase.



Massive fields

 Masses are functions of moduli in the theory

 As we move along the moduli space, masses of massive states vary.
* At some critical points some states become massless

* |n such cases we say that the phase of the theory changes

e |t contains more massless states.



Natural questions

 As we move from phase A to phase B with more massless fields:
 Characterise each phase — give some names

« How many moduli are tuned to get from A to B?

 What is the geometry of these moduli?

* These are called transition moduli, as they move from phase A to phase B.



Transition moduli

* Necessarily conical
e As we scale these moduli massive states remain massive
e massless states remain massless

* At the origin new massless states show up



Example: Free scalar field

e Consider a scalar field with mass m

 There are two phases
« m % 0 one dimensional phase with 0 massless states

« m = () zero dimensional phase with 1 massless state

e The transition modulus m parametrizes R™* which is conical, one dimensional



Minimal transitions

* Given a phase, a minimal transition is a minimal set of tuned moduli for
moving to a new phase

 The Hasse (phase) diagram for such moduli consists of 2 points connected by
one edge.

 Two phases
* The origin
* Anything else

* An important problem — find such minimal cases



Supersymmetry

* The discussion so far is very generic and can apply to any theory
 With supersymmetry we get a better control.

 Can compute masses with control over guantum corrections

e Can use geometric technigues to get exact results

* Will focus on theories with 8 supercharges

* |look at Higgs branches in 3, 4, 5, 6d

e Coulomb branch in 3d



Phase Diagram

Hasse diagram

 We form a diagram with two objects
 nodes and edges

* A node represents a phase (symplectic leaf)

* An edge represents a minimal transition (transverse slice) between a node A
with some massless states to a node B with additional massless states



2 symplectic leaves, minimal slices
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Higgs branch of SU(3) with 6 flavors

3 symplectic leaves, 2 minimal slices

Hasse diagram

® 10

® 5

® 0

Magnetic quiver

1 1
@)

Hasse diagram
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Effective theory
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SU(3)



Phase diagram for SU(3) with 6 flavors

Higgs mechanism — recall Kibble’s method

* At the origin SU(3) is massless

 Now turn moduli such that SU(2) is massless
¢« 8—>3+2+2+1
c 6X3—-22+1)

e SU(2) with remaining matter4 X2 + 35 X 1
* 5 moduli which parametrize the Higgs branch of U(1) with 6 flavors

* Further Higgsing to give masses to SU(2) adds 5 more moduli for the Higgs branch of
SU(2) with 4 flavors



Phase diagram for SU(3) with 6 flavors

Coulomb branch — quiver subtraction

 The moduli space is given by the Coulomb branch of the 4 leg quiver
* ook for a sub quiver which is in the family of the affine Dynkin diagram

* Subtract and add flavors so that balance is preserved



Exercise
SU(4) with 9 flavors

 Compute the Hasse diagram for the Higgs branch of this theory
* First going bottom up using the Higgs mechanism

 Second going top down using the method of Quiver Subtraction



G2 with N hypers of fundamental matter
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SU(4) with 1 antisymm and 12 fundamentals
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Monopole formula — the ingredients

per each node of label &

« W =3, — the Weyl group of GL(k)

A\

A\ — The (Langlands) dual lattice

o A set of integer numbers A=ZFKom= (my, ...,m,) — magnetic charges
« A/W — Principal Weyl chamber m; < - < my

» Boundaries of the Weyl chamber — when some m; coincide

» H — stabilizer of m in GL(k) — a Levi subgroup of GL(k)

» d" — degrees of Casimir invariants of H,,



Example
GL(2)

+ S, — the Weyl group of GL(2)
» A set of integer numbers m = (m,, m,) — magnetic charges
 Principal Weyl chamber m; < m,

» Boundary of the Weyl chamber: m, = m,

C*)2
H,, — stabilizer of m in GL(2): (C*)*  form, # m,
. GL(2) for ml — m2

(1,1) form,; # m,
(1,2) for ml —_ m2

® l

d;" — degrees of Casimir invariants of H, : {



The gauge group

Quivers with no flavor nodes

- Given a quiver with a set of nodes, each with labels k_

_ The gauge group is [H GL(ka)] [C*

e corresponding dual lattice A and Weyl group W



The gauge group
Quivers with flavor nodes

* In the presence of flavor (square) nodes there is no overall C* to divide by

_ The gauge group is H GL(k,) and the product is over gauge (circle) nodes

A



Ungauging

graph equivalence




Ungauging

graph equivalence




The conformal dimension — A(m)

C* grading on the Coulomb branch

» Given a quiver with a set of nodes, each with labels k,
« A(m) is a sum of contributions from nodes and edges:

« For each node with magnetic charges ml.“, i = 1...k, there is a negative contribution

_ Z | m;* —m;'| (associated with positive roots of GL(k,))
1<i<j<k,

. For each edge connecting nodes a, b with magnetic charges ml.“ and m? a positive contribution

J
1 kK
s Z 2 | m;" — mjb | (associated with bifundamental representation)

i=1 j=1



The monopole formula

Hilbert series of the Coulomb branch

* Given a quiver with all the ingredients defined so far
* |Introduce a variable

* The Hilbert series is given by (flavor nodes have fixed m. Set to 0.)

Hity= ), 2P (1)

meA/W

1
Ea0=]] | — 724y

l



Example — the trivial case

Coulomb branch of H" = C#”

* For afinite A type quiver:

* A linear quiver with n+1 gauge nodes, each with label 1, connected by n
edges

e The Coulomb branch is H"

e The Hilbert series Is

1
L HO) =————=1+2nt+nQ2n+ Dt* + ...
(1 —1)*"



Examples — from the world of nilpotent orbits

Simple quivers and their Hilbert Serles

Nilpotent Orbit | Dimy Quiver HWG
1,1] 0 1 1
2
[2] 1 f (1_t4) 1
1 1—12)3 = 4212)
[1,1,1] 0 1 1
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Hilbert Series

Dimension of the Coulomb branch

 The complex dimension of the Coulomb branch is the order of the pole of
H()atr=1



The global symmetry

a Lie algebra

» For each quiver there is an associated finite dimensional Lie algebra [

o0

Set H(t) = 2 c,t"

n=0

» ¢, are dimensions of (reducible) representations of F
* ¢, is the dimension of the adjoint representation of F
» If c; # Qitis even and H'(¥) = (1 — 1)“'H(¢) is a Hilbert series for 6"

» The moduli space factorizes € = [I-I]C71 X €' with H = C?



A balanced node

conditions for symmetry

- A gauge node k , is said to be balanced if the sum of node labels connected
to it is 2k
« Set C to be the Cartan matrix

» k the vector of gauge node labels. f the vector of flavor labels

 Then the imbalance of the gauge nodes is the vector

. b=f—Ck



Affine ADE quivers

all nodes are balanced

a) 1 b) 1 1 c) 20
Q( >@ 12\2 _ Q/ijl O
! 1 " — 9

n

2o O
w2 )

d) 20 e) 30

2o O

o ®



The refined Hilbert Series

another ingredient

» For any node with node number k, set C* gradings

K,
S m)= ) m¢
=1

» Introduce the fugacities z,

* The refined Hilbert series is

H(t 7 ) _ Z t2A(m)P (t)HZJ (m)

meA/W



Global symmetry

dimensions are refined to characters

o0

 SetH(t,z,) = Z ¢, (z,)1"
n=0

. ¢,(z,) are characters of the global symmetry F

* (5(z,) is the character of the adj representation of F



Hasse diagrams

Quiver subtraction

* Recall the work of Kraft and Procesi who classified degenerations in closures
of nilpotent orbits

 Minimal degenerations are of two types
« Klein singularity (ADE) — denoted by capital letters
» closure of a minimal nilpotent orbit of some algebra — denoted lower case

* This is reproduced and generalized with the Coulomb branch
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Minimal degenerations
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Quiver subtraction

algorithm

* (Given a quiver, identify sub quivers which are in the list of minimal
degenerations

* align and subtract

e rebalance — add/remove flavors to nodes such that their imbalance is
preserved

e get a smaller quiver

e repeat till reaching a minimal degeneration



Quiver subtraction

nilpotent cone of A, — step 1

2o O




Quiver subtraction

nilpotent cone of A; — step 2
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Quiver subtraction

nilpotent cone of A; — steps 3

1
A




Quiver subtraction

nilpotent cone of A, — steps 4
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Quiver subtraction

nilpotent cone of A; — steps 5
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Quiver subtraction

nilpotent cone of A; — steps 6
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Quiver subtraction

nilpotent cone of A; — step 7
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Quiver subtraction

nilpotent cone of A; — step 8
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Quiver subtraction

nilpotent cone of A; — final diagram
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Brane Webs and Magnetic Quivers
5d Higgs branches

* We turn to a collection of methods to derive quivers from brane systems

e QOur first set of examples are brane webs which help deriving many moduli
spaces at weak and strong coupling
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Necklace Quiver
E, = A,

A




Es = D; Node multiplicity

SU(2) with 4 flavors
! O—— O g%,m a—>0\
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Exceptional algebra in brane physics
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SYM — Edge Multiplicity
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Union of 3 cones :
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Intersection of cones

of 2 cones and of 3 cones

______
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4d .1/ = 2 SU(6) with fundamental matter

union of 2 cones

A\ a ds ds ds
® o o 1 "o ® ® ®
a1 \ a2 as a4 as a6
® ® o o Az ® ® ® ® ®
a1 a2 \ as a4 as ag ary as
° ® ® o o A3 ® ® ® ® ® ®
al a as A\ a4 as ag a7 as ag @10
° ° ® ® o o 1 e ® ® ® ® ® ®
‘ a1 ‘ as a3 ay A\ as ag ar as ag a10 a11 a12
® ® ® ® ® O '@ ® ® ® ® ® ® ®

Ny=1 Nj=2 N;f=3 N;=4 N;=5 Ny=6 Ny=7 N;f=8 N;y=9 N;=10 Ny =11 N;=12 N; =13



physical effects in 6d

Small instanton transition: 1T <—>29 H
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6d — small instanton transition
SU(2) with 10 flavors

* The Classical Higgs branch — minimal nilpotent orbit of SO(20)

 The moduli space of 1 SO(20) instanton on C?

&




6d — tensionless strings and discrete gauging
SU(2) with 4 flavors

» When n M5 branes coincide on an A-type singularity an S, group is gauged

» There is symmetry reduction for the A, but not for higher values




6d — tensionless strings and $, gauging
SU(3) with 6 flavors

 Phase diagram — finite / infinite coupling




Summary
Changing the way we think

 Magnetic Quivers — encodes all data needed to understand strongly coupled
moduli spaces

 Phase (Hasse) diagrams — changes the way we analyze symplectic
singularities

 Brane systems — very instrumental in getting this progress

« Monopole formula — opened the window to all recent achievements



Thank you !



