Dept. of Cranio-Maxillofacial and Oral Surgery
Oral Biotechnology & Bioengineering

3D-printed bone substitutes From pores to adaptive density minimal surface microarchitectures

Franz E. Weber Prof. Dr. rer. nat. habil.

Universität Zürich

Osteoconduction

TISSUE ENGINEERING: Part B Volume 25, Namber 5, 2019 0. Mary Ann Liebert, Inc. DOI: 10.1089/ten.teb.2019.0047 termis. Tissue Engineering & Regenerative Medicine

Reconsidering Osteoconduction in the Era of Additive Manufacturing

Osteoconduction:

Three-dimensional process of ingrowth of sprouting capillaries, perivascular tissue, and osteoprogenitor cells from a **bony bed** into the three-dimensional structure of a porous implant to use it as **guiding cue** to **bridge the defect** with bony tissue.

Osteoconduction

termis. Tissue Engineeri & Regenerative I

NGINEERING: Part B 5, Number 5, 2019 In Liebert. Inc

Reconsidering Osteoconduction in the Era of Additive Manufacturing

Osteoconduction:

<u>Three-dimensional process</u> of ingrowth of sprouting capillaries, perivascular tissue, and osteoprogenitor cells from a **bony bed** into the three-dimensional structure of a porous implant to use it as **guiding cue** to **bridge the defect** with bony tissue.

			-

Lithography-based Additive Manufacturing of Calcium phoshate based implants

Debinding and sintern yields in:

- 1. no biological materials can be used initially (proteins, cells, bioactive substances)
- 2. Bioglass will transform from an amorphous to a crystalline state, will become a glass ceramic, and loose bioactivity.

Lithography-based Additive Manufacturing of Calcium phoshate based implants

Demand for debinding and sintern yields in:

- 1. no biological materials can be incorperated initially (proteins, cells, bioactive substances)
- 2. Bioglass will transform from an amorphes to a crystalline state, will become a glass ceramic, and loose bioactivity (above 500°C.)
- Calcium phosphates (HA) will loose their degradability, since temperatures above 900°C will increase crystal size and favors crystal perfection.

		TC	P-	base	ed s	scaf	folds
		P	ores	s and	bot	ttlene	ecks
	acronym	length of unit cell [mm]	pore diameter [mm]	bottleneck diameter [mm]	porosity [%]	Maximal transparency [%]	
C_15_12_05	C_10_5_5	1.0	0.5	0.5	35.95	19.64	
	C_10_07_05	1.0	0.7	0.5	47.40	19.64	
100	C_10_07_07	1.0	0.7	0.7	52.58	38.48	
	C_13_10_05	1.3	1.0	0.5	47.40	11.61	
	C_13_10_07	1.3	1.0	0.7	39.59	22.77	
3 8	C_13_10_10	1.3	1.0	1.0	56.00	46.47	
C_15_12_07	C_15_12_05	1.5	1.2	0.5	32.04	8.72	600,000
	C_15_12_07	1.5	1.2	0.7	37.06	17.10	and the second second
1.57	C_15_12_10	1.5	1.2	1.0	47.47	34.90	
	C_15_12_12	1.5	1.2	1.2	56,96	50.26	AN EXCHANCE
	C_18_15_12	1.8	1.5	1.2	47.46	34.90	
	C_20_17_05	2.0	1.7	0.5	35.64	2.42	and and and
	C_20_17_07	2.0	1.7	0.7	36.46	9.62	
G_15_12_10	C_20_17_12	2.0	1.7	1.2	44.87	28.27	000
	C_20_17_15	2.0	1.7	1.5	52.03	44.17	
						-	and the second second second
		Ghavor &	Weber F	E Fronti	ers in P		(2018)

	Microarchitecture induced early phase angiogenesis
Fil050G	outside edge initiade
Fil125G F F i i	
1.25 to 0 angio	tion of filament dimension and distance from 0.50 mm induces early stage differentiation and genesis and translates into osteoconductivity
Microar	

Ē	Microarchitecture orchestrates osteoconduction and bone augmentation
	Reduction of filament dimension and distance from 1.25 to 0.50 mm induces early stage differentiation and angiogenesis and translates into osteoconductivity
	Strait and curvy microarchitectures can be highly osteoconductive. No need for biomimetics
Ostescenductive microarchitec	The second
	osteoconduction and bone augmentation.

