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Introduction

F We wish to study systems which donot have symplectic structure (or group action)
and study if they are a semi-classical limit of some quantum system as ~ goes to
zero. A Poisson structure is needed but it is induced from another Poisson manifold
where the manifold is embedded, usually a symplectic manifold (for Fedosov-type
quantization) and CPn or Cn (in case of Berezin-type of quantization).

F In [3] Berezin had focussed on Kähler manifolds and that too very special ones,
and in [9] Fedosov had focussed on symplectic manifolds. We will talk of Berezin
and Fedosov-type quantizations on smooth manifolds. The first one uses coherent
states in a very essential way. The literature on coherent states is vast, see for in-
stance a review by Ali, Gazeau, Antoine and Mueller [1]. After Berezin’s orginal
work [3], Berezin quantization has been generalized to many domains and mani-
folds, see Englis [8] for an example.

F We embed a compact smooth manifold into CPn (using Whitney embedding or any
other embedding) and pull back coherent states from CPn [5]. Role of CPn or Cn
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can be taken by other appropriate manifolds too. For instance, we can embed the
compact smooth manifold in a symplectic manifold of twice the dimension which
has a reproducing kernel Hilbert space (namely coherent states).

F In [3] Berezin gave a way of defining a star product on the symbol of bounded
linear operators acting on a Hilbert space (with a reproducing kernel) on a Kähler
manifold under certain conditions. There is a parameter in the theory (namely
~) such that in the limit ~ → 0 the star product tends to usual product and the
commutator of the star product is proportional to the Poisson bracket upto first
order. This is called the correspondence principle.

F We embed a compact smooth manifold into CPn and pull back the reproducing
kernel Hilbert space. Pullback coherent states give symbols of bounded linear op-
erators induced from those corresponding to CPn and it is easy to see that they
satisfy the correspondence principle.

F In this context we recall that in [5], R.D. and Ghosh had considered pull back co-
herent states and totally real submanifolds of CPn and defined pull back operators
and their CPn-symbols and showed that they satisfied the correspondence princi-
ple. This was part of Ghosh’s thesis [11]. Our present work is a generalization
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of this, as we donot need the condition totally real submanifolds. The condition
of totally real submanifolds can give topological obstructions, so we circumvent
that.

F R.D. and Ghosh had also defined in [6] a Berezin-type quantization on even dimen-
sional compact manifolds (of real dimension 2d) by removing a set of measure zero
and embedding it into CP d. This was part of Ghosh’s thesis [11]. In this work our
approach is slightly different. We embed a d real dimensional manifold into CP d.

F In [9] Fedosov constructs a deformation quantization on symplectic manifolds. We
embed a smooth compact manifold of real dimension d into any symplectic mani-
fold of real dimension 2d by the Whitney embedding and induce the Fedosov quan-
tization on the submanifold.

F All the quantizations depend on the embedding.
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1 Review of Geometric Quantization

and Coherent states on CP n

F Berezin considers CPn as a homogenous Kähler manifold and obtains the quanti-
zation. We give a local picture.

F Let U0 ⊂ CPn given by U0 = {τ0 6= 0} where [τ0, ...., τn] are homogeneous coor-
dinates on CPn. Let (µ1, µ2, ...µn) be inhomogenous coordinates on U0 ≡ Cn such
that [1, µ1, µ2, ..., µn] ∈ U0.

Here CPn = ∪ni=0Ui, where Ui is the set of (µ0, ...µi−1, 1, µi+1, ..., µn), Ui are the
inhomogenous coordinate neighborhoods.

F The Fubini-Study form is given by ΩFS =
∑n
i,j=1 ΩFSij dµi ∧ dµ̄j , where the Kähler

metric G and the Kähler form ΩFS are related by ΩFS(X,Y ) = G(IX, Y ).

F The Poisson bracket of two functions t and s:

{t, s}FS =
∑n
i,j=1 ΩijFS

(
∂t
∂µ̄j

∂s
∂µi
− ∂s

∂µ̄i
∂t
∂µj

)
where (ΩijFS) are the matrix coefficients
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of the inverse of the matrix (ΩFSij ) of the Fubini-Study form.

F Let H⊗m be the m-th tensor product of the hyperplane section bundle H on CPn.
Recall that mΩFS is its curvature form and mΦFS is a local Kähler potential where
emΦFS(µ,µ̄) = (1 + |µ|2)m. Let {φi}Ni=1 be an orthonormal basis for the space of
holomorphic sections.

F On U0 the sections of H⊗m are functions since the bundle is trivial when restricted
to U0. They can be identified with polynomials in {µi}ni=1 of degree at most m.

F Let ~ = 1
m be a parameter. Then {φi} depend on ~.

F We define

dV (µ) = |ΩnFS(µ)|U0
| = G(µ)Πn

i=1|dµi ∧ dµ̄i| = G(µ)|dµ ∧ dµ̄| = |dµ∧dµ̄|
(1+|µ|2)n+1 to be a

volume form on U0 which is identified with Cn, where G = det[gij |U0
].

Then V =
∫
Cn dV =

∫
Cn

|dµ∧dµ̄|
(1+|µ|2)n+1 <∞.

F Let (c(m))−1 =
∫
U0

1
(1+|ν|2)m dV (ν) =

∫
U0
e−mΦFS(ν,ν̄)dV (ν)

Let an innerproduct on the space of functions on U0 be defined as
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〈f, g〉 = c(m)

∫
U0

f(ν)g(ν)

(1 + |ν|2)m
dV (ν) = c(m)

∫
U0

f(ν)g(ν)e−mΦFS(ν,ν̄)dV (ν).

F Also, D(q1,q2,...qn;q) = c(m)
∫
U0

|ν1|2q1 ...|νn|2qn
(1+|ν|2)m dV (ν), where q′is are all possible posi-

tive integers such that q1 + ...+ qn = q; q = 0, ...,m.

Let Φ(q1,q2,...,qn;q)(µ) = 1√
D(q1,...,qn;q)

µq11 ...µ
qn
n where q1 + ...+ qn = q; q = 0, ...,m.

It is easy to check that {Φ(q1,...,qn;q)} are orthonormal in Cn with respect to the inner
product defined as above and are restriction of a basis for sections of H⊗m to U0.
The span of these form a Hilbert space with the above inner product.

F Definition: The Rawnsley-type coherent states [15], [16] are given on U0 by ψµ
reading as follows:

ψµ(ν) :=
∑
q1+q2+...+qn=q;q=0,1,...,m Φ(q1,q2,...,qn;q)(µ)Φ(q1,q2,...,qn;q)(ν).

In short hand notation ψµ :=
∑
I ΦI(µ)ΦI where the multi-index I = (q1, ..., qn; q)

runs over the set q1 + ...+ qn = q; q = 0, ...,m.

F This is a reproducing kernel in the sense below.

E Reproducing kernel property. If Ψ is any other section, then 〈ψµ,Ψ〉 = Ψ(µ). In
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particular, 〈ψµ, ψν〉 = ψν(µ).

E Resolution of identity property:

c(m)

∫
U0

〈Ψ1, ψµ〉 〈ψµ,Ψ2〉 e−mΦFS(µ,µ̄)dV (µ) = 〈Ψ1,Ψ2〉 .

In particular,

c(m)

∫
U0

〈ψν , ψµ〉 〈ψµ, ψν〉 e−mΦFS(µ,µ̄)dV (µ) = 〈ψν , ψν〉 .

E Overcompleteness property holds.

The proofs of these are easy and can be found for instance in [6]. It is in general
true of Rawnsley type coherent states.
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2 A reproducing kernel Hilbert space
on a compact smooth manifolds and

coherent states
F In this section we construct a reproducing kernel Hilbert space and coherent states

on a compact smooth manifolds by emedding it into CP d. This generalizes a result
of R.D.and Ghosh [5]. We proceed similar to [5], but we donot need the “totally
real” condition. We use the Whitney embedding of any compact smooth manifold.
Any other smooth embedding will also work.

F Let Md be a compact smooth manifold of real dimension d. Let ε : M → R2d be any
embedding (for instance Whitney embedding). Let i : R2d → CP d be the inclusion
such thatR2d is identified with U0 ⊂ CP d and χ = i◦ε. It is clear that χ : M → CP d

is an embedding and that ε : M → ε(M) is a diffeomorphism. Let Σ = ε(M).

F LetHm be the sections of H⊗m with norm denoted for short as ||s||CPd .

Rukmini Dey µ ¶ ToC · ¸ Berezin-type quantization page 9 of ??



Let Ψ(q1,q2,...,qn;q)(µ) = 1√
D(q1,...,qn;q)

µq11 ...µ
qn
n where q1 + ...+ qn = q; q = 0, ...,m be

an orthonormal basis for it as mentioned in the previous section.

F Let H1m = i∗(Hm) be the pullback Hilbert space on Σ = ε(M). The norm on H1m

is given by ||s̃||Σ = mins∈Hm
{||s||CPd : s̃ = s ◦ i}.

LetH2m = χ∗(Hm) be the pullback Hilbert space onM . Thus if s̃ ∈ H2m, it is of the
form s̃ = s ◦ χ. The norm onH2m is given by ||s̃||M = mins∈Hm{||s||CPd : s̃ = s ◦ χ}.

F Let ε−1 : Σ→M be the inverse of ε on Σ.

F H1m andH2m are Hilbert spaces in the respective norms.

For proof see for instance [13].

F Let ηI be an orthonormal basis forH2m.

Definition:
The Rawnsley-type coherent states on M are defined locally as

ψp =
∑l
k=1 ηIk(p)ηIk where p ∈M .

As before they are overcomplete, have reproducing kernel property, resolution
of identity property.
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3 Local induced Poisson structure on
a smooth manifold embedded in a

symplectic manifold
F Let (X,ω) be a symplectic manifold of real dimension 2n. By cell decomposition,

there is a top dimensional open cell, U ⊂ X such that U is homeomorphic to R2n

and X \U is of dimension lower than 2n. Let M be a compact smooth manifold
of dimension d (not necessarily even). We can embed it by Whitney embedding
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theorem in U since the latter is homeomorphic to R2n.

(There could be other embeddings too from Md to X2n, what follows holds for all
of them).

F Let {V, (x1, y1, ...xn, yn)} be an open neighbourhood of X2n special in the sense
that the embedding ε looks simply,

U = V ∩ ε(M) = {(x1, x2, ...x2n−1, x2n)|xd+1, ..., xd+1+s = 0}.
On UM = ε−1(U) to be {(m1, ...,md) = (x1, x2, ...., xd)}, where d is the dimen-
sion of M . Let ε−1 : ε(M) → M and ∂

∂mi
= ε−1
∗ ( ∂

∂xi
). Similarly dmi = ε∗(dxi),

i = 1, ..., d .
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3.1 Local Poisson structure from embedding a
compact smooth manifold in a compact

symplectic manifold
F Let ι be the inclusion map such that ι : ε(M) → X . and f1, f2 ∈ C∞(M).

We know ε−1 : ε(M) → M pulls back f1, f2 to ε(M).and f1 = ε∗ ◦ ι∗(F1) and
f2 = ε∗ ◦ι∗(F2), where ι∗(F1), ι∗(F2) are any extensions of ε−1∗(f1) and ε−1∗(f2).
Let i, j = 1...d such that We can define the Poisson structure as

{f, g}M := ε∗

 d∑
i,j=1

ωij
∂ι∗(F1)

∂xi

∂ι∗(F2)

∂xj

 .

where ∂
∂xi

does not occur in this sum if xi it is one of {xd+1, ..., xd+1+s} which
are zero on ε(M).

F The induced Poisson bracket {f, g}M is independent of the choice of the exten-
sion ι∗(F1) and ι∗(F2).
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From now on we will not use ι anymore when it is obvious that we are referring to
the restriction of F ∈ C∞(X) to ε(M).

F The ambient space being symplectic the bracket induced by the symplectic form
is Poisson i.e. satisfies the Jacobi identity. This can be proved by the fact that in
Darboux coordinates the non-degenerate Poisson bracket looks like that in Eu-
clidean space. On ε(M) (and hence on M ) the induced Poisson structure, even
though degenerate, also satisfy Jacobi identity (which can be proved by restrict-
ing the structure of the Poisson bracket on the ambient manifold in Darboux
coordinates).
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4 Induced Berezin-type quantization

on compact smooth manifolds
(This is work done for a conference in Cotonou, Benin and published in [4]).

F Let M be a compact smooth manifold.
Let χ : M 7→ CPn as previously explained.

F Let us continue on CPn and recall the Berezin quantization on it.

F Notation: As in [3], we denote by Lm(µ, µ̄) = 〈ψµ, ψµ〉 = ψµ(µ), Lm(µ, ν̄) =

〈ψµ, ψν〉 = ψν(µ).

Let Â be a bounded linear operator acting on H. Then, as in [3], one can define
a symbol of the operator as

A(ν, µ̄) =

〈
ψν , Âψµ,

〉
〈ψν , ψµ〉

.

One can show that one can recover the operator from the symbol by a formula

Rukmini Dey µ ¶ ToC · ¸ Berezin-type quantization page 15 of ??



[3].

F Let Â1, Â2 be two such operators and let Â1 ◦ Â2 be their composition.

Then the symbol of Â1 ◦ Â2 will be given by the star product defined as in [3]:

(A1 ∗A2)(µ, µ̄)

= c(m)

∫
U0

A1(µ, ν̄)A2(ν, µ̄)
Lm(µ, ν̄)Lm(ν, µ̄)

Lm(µ, µ̄)Lm(ν, ν̄)
Lm(ν, ν̄)e−mΦ̃(ν,ν̄)dV (ν),

where recall 1
c(m) =

∫
U0
e−mΦFS(ν,ν̄)dV (ν).

This is the symbol of Â1 ◦ Â2.

F Theorem [Berezin]

Let µ ∈ Cn.

The star product satisfies the correspondence principle:

1. limm→∞(A1 ? A2)(µ, µ̄) = A1(µ, µ̄)A2(µ, µ̄),

2. limm→∞m(A1 ? A2 −A2 ? A1)(µ, µ̄) = i{A1, A2}FS(µ, µ̄).

F See [3], [6] for proof.
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4.1 Induced operators and correspondence

principle

F Let Â be a bounded linear operator fromHm to itself. Now we turn to M .

Let B̂ = χ∗(Â) be a bounded linear operator from H2m = χ∗(Hm) to itself. It is
defined by χ∗(Â)(χ∗(s)) = χ∗(Âs). Given B̂, Â is not unique. Suppose we have
B̂ = χ∗(Â1) = χ∗(Â2). Let Â be the one of lowest norm i.e. if B̂ = χ∗(Â) =

χ∗(Â1), then ||Â1|| ≥ ||Â||.
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F Definition: Let B : M ×M → C be the symbol of B̂ in the coherent states ψp,

i.e. B(p, p) =
〈ψp,B̂(ψp)〉M
〈ψp,ψp〉M and B(p, q) =

〈ψp,B̂(ψq)〉M
〈ψp,ψq〉M .

Here the norm is defined as before.

F B(p, q) =
〈sχ(p),Â(sχ(q))〉CPd
〈sχ(p),sχ(q)〉CPd

= A(χ(p), χ(q)), where B̂ = χ∗(Â) and Â is the one

of lowest norm over all Ĉ such that B̂ = χ∗(Ĉ).

F Proof
ψp = χ∗(sχ(p)), where sχ(p) =

∑l
k=1 ΦIk(χ(p))ΦIk is the coherent state in Hm.

This is because ηIk = χ∗(ΦIk).

B(p, q) =
B̂(ψq)(p)
ψq(p)

=
Â(sχ(q))(χ(p))

sχ(q)(χ(p)) =
〈sχ(p),Â(sχ(q))〉CPd
〈sχ(p),sχ(q)〉CPd

.

F Definition:
LetB1 andB2 be symbols of B̂1 and B̂2 bounded linear operators onH2m. Then
B1 ∗B2 is the symbol of B̂1 ◦ B̂2, [3].
One sees that B̂1 ◦ B̂2 = χ∗(Â1 ◦ Â2), where we can take Â1 ◦ Â2 is the one of the
least norm.
Then, B1 ∗ B2 = χ∗(A1 ∗ A2) where the second one is CP d star product. Let
{B1, B2}M (p, p) be the induced Poisson bracket.
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F Theorem The star product on the symbol of bounded linear operators on H2m

satisfies the correspondence principle:

(1) limm→∞(B1 ∗B1)(p, p) = B1(p, p)B2(p, p).

(2) limm→∞m(B1 ∗B2 −B2 ∗B1)(p, p) = i{B1, B2}M (p, p).

F Proof: This follows from the fact that A1 ∗A2 satisfy the correspondence princi-
ple, see Theorem 4 (Berezin).
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5 Fedosov star product on “algebra” of
observables on compact smooth

manifolds
F This is work in progress by Satyen Patel ( for his MSc thesis project) and R.D.

F The problem Fedosov answers for symplectic manifolds is as follows: (quoted from
his seminal paper [9]):
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“The problem is to define an associative multiplication operation *, depending on
parameter h (Planck constant), of two functions so that the space C∞(M) with
usual linear operators and *-product would be a formal deformation of commu-
tative algebra of functions with a Poisson bracket. More exactly it means the fol-
lowing. Let Z be the linear space, the elements of which are formal series

a = a(x, h) =
∑
k

ak(x)hk

where ak(x) ∈ C∞(M). Further for any a, b ∈ Z let an associative product opera-
tion

a ∗ b = c =
∑

ck(x)hk

be defined with the following properties:

(i) ck are polynomials in ak, bk and their derivatives;

(ii) c0(x) = a0(x)b0(x)

(iii) [a, b] = a ∗ b − b ∗ a = −ih{a0, b0} + ... , where dots mean the terms of higher
orders in h.

The algebra Z is called the algebra of quantum observables. Property (i) means
the locality of *-product, property (ii) means that algebra Z is a deformation of the

Rukmini Dey µ ¶ ToC · ¸ Berezin-type quantization page 22 of ??



commutative algebra ofC∞ functions, property (iii) is the so-called correspondence
principle.”

F Fedosov constructs this ∗ product for a symplectic manifold X . which has a
non-degenerate Possion structure induced by the symplectic form. Our aim is
to define this on a smooth manifold M embedded in X , which has a possibly
degenerate Poisson structure locally, induced from the one on X .

F Let (X,ω) be a symplectic manifold of real dimension 2n. By cell decomposition,
there is a top dimensional open cell, U ⊂ X such that U is homeomorphic to R2n

and X \U is of dimension lower than 2n. Let M be a compact smooth manifold
of dimension d (not necessarily even). We can embed it by Whitney embedding
theorem in U since the latter is homeomorphic to R2n.

(There could be other embeddings too from Md to X2n, what follows holds for all
of them).

F Let {V, (x1, y1, ...xn, yn)} be an open neighbourhood of X2n special in the sense
that the embedding ε looks simply,U = V ∩ε(M) = {(x1, x2, ...x2n−1, x2n)|xd+1, ..., xd+1+s =

0}. On UM = ε−1(U) to be {(m1, ...,md) = (x1, x2, ...., xd)}, where d is the di-
mension of M . Let ε−1 : ε(M) → M and ∂

∂mi
= ε−1

∗ ( ∂
∂xi

). Similarly dmi =

ε∗(dxi), i = 1, ..., d .
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5.1 Local Poisson structure from embedding a
compact smooth manifold in a compact

symplectic manifold
F Let ι be the inclusion map such that ι : ε(M) → X . and f1, f2 ∈ C∞(M).

We know ε−1 : ε(M) → M pulls back f1, f2 to ε(M).and f1 = ε∗ ◦ ι∗(F1) and
f2 = ε∗ ◦ι∗(F2), where ι∗(F1), ι∗(F2) are any extensions of ε−1∗(f1) and ε−1∗(f2).
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Let i, j = 1...d such that We can define the Poisson structure as

{f, g}M := ε∗

 d∑
i,j=1

ωij
∂ι∗(F1)

∂xi

∂ι∗(F2)

∂xj

 .

where xi does not occur in this sum if it is one of {xd+1, ..., xd+1+s} which are
zero on ε(M).

F The induced Poisson bracket {f, g}M is independent of the choice of the exten-
sion ι∗(F1) and ι∗(F2).

From now on we will not use ι anymore when it is obvious that we are referring to
the restriction of F ∈ C∞(X) to ε(M).

F The ambient space being symplectic the bracket induced by the symplectic form
is Poisson i.e. satisfies the Jacobi identity. This can be proved by the fact that in
Darboux coordinates the non-degenerate Poisson bracket looks like that in Eu-
clidean space. On ε(M) (and hence on M ) the induced Poisson structure, even
though degenerate, also satisfy Jacobi identity (which can be proved by restrict-
ing the structure of the Possion bracket on the ambient manifold in Darboux
coordinates).
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5.2 Fedosov star product on Z(M) and the

correspondence principle

5.2.1 The star product

a) Review of Fedosov star product on the symplectic manifold (X,ω) and its induc-
tion to M .

F Note that we can choose a local coordinate (x1, ...x2n, y1, ..., y2n) on TX such
that locally on a special neighbourhood Oε(M) of T (ε(M)) has coordinates
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(x1, x2, ...., xd, 0, 0, ..., 0, y1, ..., yd, 0, 0, ..0).

F Sections of the bundle of Weyl algebras W on X locally look like a(x, y, h) =∑
2k+l≥0 h

kak,i1...il(x)yi1 ...yil where ak,i1...il(x) are symmetric covariant tensor
fields on X .

F Let us consider a and b two elements of the Weyl algebra Wx for x ∈ M . We
know from Fedosov [9] that
a ◦ b :=

∑∞
k=0−( ih2 )k 1

k!ω
i1j1 ...ωikjk ∂ka

∂yi1∂yi2 ...∂yikjk
∂kb

∂yi1∂yi2 ...∂yikjk
.

F This can be defined on ε(M) by setting all the ∂
∂yi

= 0 if i = d+ 1, ...., n, i.e. the
yi donot appear if they are identically zero locally on the special neighbourhood
Oε(M) on T (ε(M)).

F Then, to define on M , we push forward the contravariant tensors by ε−1
∗ and

pull back covariant tensors by ε∗.

F For sections of the Weyl bundle W, we first restrict to ε(M) and then on M one
can define
ã(x, y, h) =

∑
2k+l≥0 h

kε∗(ak,i1...il(x))(ε−1
∗ (y))i1 ...(ε−1

∗ (y))il) where we omit those
indices which donot appear in the special neighbourhood Oε(M) on T (ε(M)).

F In [9] Fedosov also introduces differential forms on X which take values in W .
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a(x, y, h) =
∑

2k+l≥0 h
kak,i1...ip,j1...jp(x)yi1 ...yipdxj1 ∧ ... ∧ dxjq ,

such that ak,i1...ip,j1...jp(x) are covariant tensor fields which are symmetric w.r.t.
indices i1, ..., ip and antisymmetric w.r.t. indices j1, ..., jq .

F In order to define it on M , we do as before, namely, omit the indices which are
identically zero in Oε(M) and pull back the covariant tensors by ε and push back
contravariant tensors by ε−1. Once again we restrict to ε(M) and then define for
M .

Namely, on M ,

ã(x, y, h) :=
∑

2k+l≥0 h
kε∗(ãk,i1...ip,j1...jp(x))ε−1

∗ (y)i1 ...ε−1
∗ (y)ipε∗(dx

j1∧...∧dxjq )
where x ∈ ε(M). Here too, notice, we omit those indices which are identically
zero in the special neighbourhood Oε(M) on T (ε(M)).
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Definition of the star product
F Let Z(X) be the algebra of quantum observables for X and c0, d0 be in Z(X). Let
WD be a flat Weyl bundle (w.r.t. a flat connection) on W . Then for each c0 there is
a (unique) lift c = σ−1(c0) to WD such that the symbol σ(c) = c0.

F One can recover c from its symbol c0 as follows, [9] pg. 222: c = c0 + ∂ic0y
i +

1
2∂i∂jc0y

iyj + ....− 1
24Rijklω

lm∂mc0y
iyjyk + ....

F By (3.14) [9]

c0 ∗Fed d0 := σ(σ−1(c0) ◦ σ−1(d0)).

where recall fiberwise on Wx the ◦ is defined to be
c0 ◦ d0 :=

∑∞
k=0−( ih2 )k 1

k!ω
i1j1 ...ωikjk ∂kc0

∂yi1∂yi2 ...∂yikjk
∂kd0

∂yi1∂yi2 ...∂yikjk
.

F Let Z(X) and Z(M) denote the algebra of quantum observables for X and M re-
spectively, WD be the flat Weyl bundle (w.r.t. a fixed flat connection ) on X and
Wε(M) be the bundle on ε(M) which is obtained by restricting the bundleWD(X) on
ε(M) and omitting all convariant and contravariant tensors which involve indices
i = d+ 1, ..., n.
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F Let c0, d0 ∈ Z(X) be arbitrary extensions of a0, b0 ∈ Z(M). We know, page 232, [9]
that c0, d0 are symbols of c, d (flat sections of Weyl algebra WD(X)).
What follows is independent of choice of the extension c, d.
Let ã, b̃ be ã = φ(c) and b̃ = φ(d) be in φ(WD). Then there is a formula to go from the
symbols c0, d0 to c, d and vice versa. It is easy to see that that if ã = φ(c), b̃ = φ(d)

then the symbol of these is exactly ã0, b̃0 respectively.

F Thus ã0 and b̃0 be symbols of ã, b̃ ∈ W̃ = φ(WD|ε(M)) where φ is the push-forward
and pull-back map, i.e. φ denotes push forward of covariant tensors by ε∗ and pull-
back of contravariant tensors by ε−1

∗ and we omit from W (X) indices which involve
i = d+ 1, ..., n.

F Since ε : M → ε(M) is a diffeomorphism, we have given ã0, there is a unique a0

such that ã0 = ε∗(a0).

F Define the star product for ã0 and b̃0 as:

ã0 ∗ b̃0 = ε∗(a0) ∗ ε∗(b0) := ε∗(a0 ∗F b0)

where ∗F denotes star product which is the Fedosov star product ∗Fed on ε(M) with
no derivatives ∂

∂xi
or forms dxi appear for i = d+ 1, ..., n.
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F It is obvious that (ã0 + b̃0) ∗ c̃0 := ã0 ∗ c̃0 + b̃0 ∗ c̃0

F In fact, a0 ∗F b0 = 0 if a0|ε(M) = 0 This holds since ∗F doesnot involve any derivative
or forms with indices from d+ 1 and above.

F Associativity follows from this.

F One can show that the correspondence principle also follows because it holds for
∗Fed.

Namely if ã0, b̃0 ∈ Z(M). Then

1. limh→0 ã0 ∗ b̃0 = ã0b̃0

2. limh→0
1
h (ã0 ∗ b̃0 − b̃0 ∗ ã0) = {a0, b0}M .
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Further directions:

Some questions:

E How important is the role of CPn and Cn for Berezin-type of quantization We can
replace them with some other symplectic/Poisson manifold N where N has repro-
ducing kernel Hilbert space (coherent states), Berezin/Odzijewicz/Fedosov quanti-
zation.

E Can this be generalized to other methods of deformation quantization.

E Physical Examples in which this method could be useful
Is it useful to study integral and fractional Quantum Hall effect, Berry’s phase and
some other phenomenon like spin, magnetic monopole, Aharonov-Bohm Effect with
the view of applying this method of quantization or where the Hilbert space is ob-
tained from restriction of the Hilbert space of quantization of CPn ( or Cn), yet the
parameter space is some other n-manifold.
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