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* Physical insight
* Reduce degrees of freedom
* Supply spectral information

» Simplification of master operators
/ * Suppression of decoherence
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Weak symmetry of master equation

d
° Quantum master 4 .. . T R _
equation (QME) - p(t) = —ilH, pe] + /; (JthJk Q{Jka,pt}> = L(p)

» Consider a unitary symmetry operatol/ , such thatl/ N =1

» States transform under the symmetry asl{(p) = U pU

* The master operator, L, is weakly symmetric with respect to unitary

symmetry U, iff
Z/{ £Z/[ T — ,C Symmetry condition |

[Buca, Prosen 2012], [Albert, Jiang 2014]



Quantum trajectories

* Conditional state evolves by stochastic B
Schrodinger equation: dpr = Blyy]dt
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[Dalibard, Castin, Molmer 1992]
[Wiseman, Milburn 2010]



Quantum trajectories

By = —iHegt) + i Hy — ¢ Tr(—iHogp + i0H ),  Heg = H — % S gl

* Conditional state evolves by stochastic ) T (1)
Schrodinger equation: dipy = Blipi|dt + Z (Tr T (7)) wt) Aqr, ¢

Tr(V) = szbJ,i, dqr,: € 10, 1}, dqy,t) = Tr| Tk ()] dt

[Dalibard, Castin, Molmer 1992]
[Wiseman, Milburn 2010]



Quantum trajectories

By = —iHegt) + i Hy — ¢ Tr(—iHogp + i0H ),  Heg = H — % S gl

* Conditional state evolves by stochastic D T (1)
Schrodinger equation: dipy = Blipi|dt + Z (Tr T (7)) wt) Aqr,t

Tr(V) = szbJ,i, dqr,: € 10, 1}, dqy,t) = Tr| Tk ()] dt

*Probability distribution for conditional state (¢, t)

*Evolves by the unravelled quantum master equation (UQME):
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| 5 P(,1) = W*Pw, t) |
- [Dalibard, Castin, Molmer 1992]

[Wiseman, Milburn 2010]



Quantum trajectories

By = —iHegt) + i Hy — ¢ Tr(—iHogp + i0H ),  Heg = H — % S gl

* Conditional state evolves by stochastic D T (1)
Schrodinger equation: dipy = Blipi|dt + Z (Tr T (7)) lbt) Aqr,t

Tr(V) = szbJ,i, dqr,: € 10, 1}, dqy,t) = Tr| Tk ()] dt

*Probability distribution for conditional state (¢, t)

*Evolves by the unravelled quantum master equation (UQME):

|5 P t) = W*Pw, t) |
N - _— [Dalibard, Castin, Malmer 1992]
N ‘Unravelled generator’ [Wiseman, Milburn 2010]



Symmetry of unravelled generator

(Symmetry of quantum trajectories)

. Consider unitary Y which acts as TP(¢, t) — P(Z/{TID, t)

superoperator

°*The unravelled generator,W‘L, IS symmetric with respect to
unitary symmetry (/, when

TWTTT — )/\/]L Conditionson H,.J, ..., J;?

Recall symmetry of master operator: \
ULU T — L  Symmetry condition I |



Symmetry of unravelled generator

(Symmetry of quantum trajectories)

* Group jump operators with the same destinations (for all initial
states) into sets such that

1,J € Sa = JilY) o< Jj|P) V|

» Collective action of each setis Aa(1) = »  J;(1))

JESa



Symmetry of unravelled generator

(Symmetry of guantum trajectories)

* Group jump operators with the same destinations (for all initial
states) into sets such that

1,J € Sa = JilY) o< Jj|P) V|

» Collective action of each setis Aa(1) = »  J;(1))

j€Sa
Types of jump sets 9
 Reset jumps:J; = \/Vk|xa) (k| for k€ S,

. Non-reset jumps:/;, = \,J ) for ke S, |



Symmetry of unravelled generator

(Symmetry of quantum trajectories)

* Group jump operators with the same destinations (for all initial
states) into sets such that

1, € Sa & Jiltp) o< Jj[) V|

» Collective action of each setis Aa(1) = »  J;(1))

jESa
e - Symmetry conditionll

[ Tvoes of iump sets e
‘5 P . P . Then TWTTT — V,\/ﬁf
Reset jumps:J; = \/yx[xa)(Ek| for k€ Sy | |
L UH)=H, UAU' = A, Va
. Non-reset jumps.j,. = \,J ) forke S, | |
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Implications of symmetry on dynamics

Symmetric Master equation

ULUT = [

Symmetric unravelled generator
TWITH = Wi




Implications of symmetry on dynamics

Symmetric Master equation

ULUT =

* For initial state £q solution of QME is
given by path pi -

“For the symmetry transformed initial
state U (po,)the solution of QME is the

path 2/ (pg )

* For symmetric Initial state
U(po) = po = U(pt) = pr

Symmetric unravelled generator
TWITT = Wi




Implications of symmetry on dynamics

Symmetric Master equation

ULUT =

Symmetric unravelled generator
YTWITT = Wi

» For initial distribution £, the solution
of UQME is given by path P,

* For initial state £0 solution of QME is
given by path pi -

*For the symmetry transformed initial
distribution Y (Fp)the solution of
UQME is given by pathY (P )

“For the symmetry transformed initial
state U (po)the solution of QME is the

path Z/{(IO[O,T) )

* For symmetric initial distribution
Y(P)=FP = Y(F)=PF

* For symmetric Initial state
U(po) = po = U(pt) = pr

* Symmetry of stochastic trajectories
p(w[o,t) o) = p(M(w[o,w)W(%))



Trajectories with measurement records

* Now consider trajectories of (¢, q) dipy = Blyr]dt + Z (Trjgszpt m) A

(SSE)
* These ‘labelled trajectories’ evolve with generatoﬂ/\/r ,

0

Ept(wv q) — W;“Pt(wa q)

» Introduce unitary symmetry operatof! ¢, which acts as Y rP;:(¢),q) = P.(U™, 7~ (q))



Trajectories with measurement records

. . . VACD
* Now consider trajectories of (¢, q) dipy = Blyr]dt + Z (Tr YAC) m) A

(SSE)
* These ‘labelled trajectories’ evolve with generatoﬂ/\/r ,

0

Ept(wv q) — W;“Pt(wa q)

» Introduce unitary symmetry operatof! ¢, which acts as Y rP;:(¢),q) = P.(U™, 7~ (q))

' The generator is symmetric, 1 FW}T}, — W};ﬁ

| UH)=H, U(Jp)=Jype'® Yk  Symmetry condition Il
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(Current) Summary

Trajectories +
measurement records

system + time records ! system
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Dilation of the QME leads to unitary evolution of the system +
environment joint state, given by the continuous matrix product state

(cMPS)

W) = / or(me)) ® dm,)

‘Spt(mt» _ e—iHeff(t—tn)Jjn o e—iHeff(tQ—tl)Jle—iHefftl ‘w0>, |dmt> — dB;fn L dB;1;t1 |VaC> dBj,tdBli,t — 5jkdt

yln y

Evolves as d|V,;) = —idH;|V,)
d
with Hamiltonian dH, = H @ Lpdt+iy_ (J;©dBl, - J] ©dB;,)
j=1
[Hudson, Parthasarathy 1984]
[Verstraete, Cirac 2010]



Symmetry of cMPS

* Define unitary operation on environment Ug(-) = UE(-)U;

° / /
cMPS is symmetric with respect to symmetry USUE \hatis U®Up(dH;) =4H,



Symmetry of cMPS

» Define unitary operation on environment Uz (-) = Ug(-)UL

° / /
cMPS is symmetric with respect to symmetry 43 UE, that Is U®Up(dH,) ﬁl Hy

T — and Ug istaken as dB.; ;) = - Symmetry
ULUT = L B U (dBj1) ZUjkdBk’t condition |



Symmetry of cMPS

» Define unitary operation on environment Uz (-) = Ug(-)UL

° / /
cMPS is symmetric with respect to symmetry 43 UE, that Is U®Up(dH,) ﬁl Hy

’ ULUT = £ and Ug istakenas Ug(dB;;) = ZUjkdBk,t

\

J: = J; C]ilTr(Jj), U(J;) = Z U J, Symmetry condition |
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discard

system + environment : system + time records E system
: trace E QME
cMPS —_———————— > Density matrix |
average : average
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Dephasing of cMPS (measured CMPO)

. Quanta detected via projective measurement in the environment basis formed by
dB’s.
Continuous matrix product operator (cMPO) for dephased joint

" state L

R, = / p(m|tho) e (my) ® |dme)dm,

dt

» Evolution dR; = dL;(R;) dLy(Ry) = —i | (Heg ® 1 5)R, — Ry(H! s @ 1)
] d
+> (Jx®@dB] ,)Ry(J®dBy 1)
k=1




Dephasing of cMPS (measured CMPO)

. Quanta detected via projective measurement in the environment basis formed by
dB’s.
Continuous matrix product operator (cMPO) for dephased joint

" state Ity

R, = / p(m|tho) e (my) ® |dme)dm,

* Evolution th — d Jt(Rt) dL:(R:) = —1 _(Heff & ]]-E)Rt — Rt(HeTﬂc 029 :I]-E)_ dt
I . i

+> (Jk®dB; ) Ri(J @dBy +)
k=1

Symmetry

- Symmetric measured cMPO has(Ud @ Ug)dL;(U @ Ug)" = dL;

* This occurs iff U(H)=H,  U(Jp) = J.()e'”* Vk  Symmetry condition Il
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Characterised the conditions for weak unitary symmetry to be present in quantum
trajectories and their measurement records. [By considering gauge freedoms of
unravelled generator]

Showed that there always exists a dilation of a symmetric QME such that the
corresponding cMPS has a separable symmetry (and vice versa).

Considered dephasing of the cMPS, which corresponds to quantum trajectories and
their measurement records, in which these objects share symmetry conditions.

Applications: eigenfunctions of generator, numerical simplification, support of operators,
physical insight

Future outlook: non-unitary symmetries, approximate symmetry, resource theory of
asymmetry

Appearing on arXiv soon:

[Brown, Jack, Macieszczak]
[Brown, Macieszczak, Jack]
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Unravelled generator

WHP,($)] = —V - [P.(6)B()] + / 0 [P0 )W (4, ) — Po(h)W (b, )
B(v) = —iHegt) 4 itpH g — Y Tr(—iHogep + i H ')

Ji(¥)
Tr[T5(4)

W0 = Yoo ( v R0



Gauge transformations of unravelled generator

When do different continuous measurements yield identical guantum trajectories?



Gauge transformations of unravelled generator

When do different continuous measurements yield identical quantum trajectories”?

Symmetry condition :L“ . ' +Two representations ofL , given by
.WehavethatTWTT:’ : I:I,jl,...,jd* and H,Jla...,a]d
UH)=H, UAU" = A;) Vo : have equal trajectory generators,
' OW =W iff

~ ~

H=H+rl, As=Aya VYo

Recall: i,j €S, < J;|¢) < J:|u) V|o)

Aa(¥) = > Ti(¥)

JESa



Gauge transformations of unravelled generator

When do different continuous measurements yield identical quantum trajectories”?

Symmetry condition II:

» We have that YWTTT = )Aiff
UH)=H, UAU" = A, Ya

» Two representations ofL , given by
_H,Ji,...,J; and H,Ji,...,Ja

have equal trajectory generators,

~

W =W iff

J=ugut :
H=H+rl, As=Aya VYo

~

H = U(H)



Gauge transformations of unravelled generator

When do different continuous measurements yield identical quantum trajectories”?

Symmetry condition II:

» We have that YWTTT = )Aiff
UH)=H, UAU" = A, Ya

» Two representations ofL , given by
~H,Ji,...,J; and H,J1,...,Ja

have equal trajectory generators,

~

W =W iff

~

H=UH), Jj=UTU"

~ ~

H=H+r1l, A, = Aﬂ(a) Vo
Types of jJump sets

Reset jumps: J, = \/i|xa) (& for k € S,

Non-reset jumps: J, = \.,J'¥ for k € S,



Gauge transformations of unravelled generator

~

Two representations ofL , givenby H,J1,...,J; and H,Ji,...,Jq
have equal trajectory generatorsW‘L — WTiff

~

d
H=H+rl and J;j=) Vi
k=1

where V = ZV(O‘)
V;Z‘) — 0 unless j € §a, k & Sﬂ(a)

3 (V' V) =6 for kK € Sp(a)

JjESa



