Unitary Symmetries of Open Quantum Systems Trajectories

Calum Brown

Work with Robert Jack (Cambridge, UK) and Katarzyna Macieszczak (Warwick, UK)

Outline

Outline

Outline

Physical insight

Reduce degrees of freedom

Weak symmetry of master equation

Quantum master equation (QME)

$$\frac{d}{dt}\rho(t) = -i[H, \rho_t] + \sum_{k=1}^d \left(J_k \rho_t J_k^{\dagger} - \frac{1}{2} \{J_k^{\dagger} J_k, \rho_t\}\right) \equiv \mathcal{L}(\rho)$$

- ullet Consider a unitary symmetry operator U , such that $U^N=\mathbb{1}$
- States transform under the symmetry as $\mathcal{U}(\rho) = U \rho U^{\dagger}$
- The master operator, \mathcal{L} , is weakly symmetric with respect to unitary symmetry U, iff

$$\mathcal{ULU}^{\dagger} = \mathcal{L}$$

Symmetry condition I

 Conditional state evolves by stochastic Schrödinger equation:

$$d\psi_t = \mathcal{B}[\psi_t]dt + \sum_{k} \left(\frac{\mathcal{J}_k(\psi_t)}{\text{Tr}[\mathcal{J}_k(\psi_t)]} - \psi_t \right) dq_{k,t}$$

$$\mathcal{B}[\psi] = -iH_{\text{eff}}\psi + i\psi H_{\text{eff}}^{\dagger} - \psi \text{Tr}(-iH_{\text{eff}}\psi + i\psi H_{\text{eff}}^{\dagger}), \qquad H_{\text{eff}} = H - \frac{i}{2}\sum_{k}J_{k}^{\dagger}J_{k}$$

 Conditional state evolves by stochastic Schrödinger equation:

$$d\psi_t = \mathcal{B}[\psi_t]dt + \sum_k \left(\frac{\mathcal{J}_k(\psi_t)}{\text{Tr}[\mathcal{J}_k(\psi_t)]} - \psi_t\right) dq_{k,t}$$

$$\mathcal{J}_k(\psi) = J_k \psi J_k^\dagger, \qquad dq_{k,t} \in \{0,1\}, \qquad \mathbb{E}[dq_{k,t}] = \mathrm{Tr}[\mathcal{J}_k(\psi_t)]dt$$

$$\mathcal{B}[\psi] = -iH_{\text{eff}}\psi + i\psi H_{\text{eff}}^{\dagger} - \psi \text{Tr}(-iH_{\text{eff}}\psi + i\psi H_{\text{eff}}^{\dagger}), \qquad H_{\text{eff}} = H - \frac{\imath}{2} \sum_{k} J_{k}^{\dagger} J_{k}$$

 Conditional state evolves by stochastic Schrödinger equation:

$$d\psi_t = \mathcal{B}[\psi_t]dt + \sum_k \left(\frac{\mathcal{J}_k(\psi_t)}{\text{Tr}[\mathcal{J}_k(\psi_t)]} - \psi_t\right) dq_{k,t}$$

$$\mathcal{J}_k(\psi) = J_k \psi J_k^\dagger$$
, $dq_{k,t} \in \{0,1\}$, $\mathbb{E}[dq_{k,t}] = \mathrm{Tr}[\mathcal{J}_k(\psi_t)] dt$

- Probability distribution for conditional state $P(\psi,t)$
- Evolves by the unravelled quantum master equation (UQME):

$$\frac{\partial}{\partial t}P(\psi,t) = \mathcal{W}^{\dagger}P(\psi,t)$$

$$\mathcal{B}[\psi] = -iH_{\text{eff}}\psi + i\psi H_{\text{eff}}^{\dagger} - \psi \text{Tr}(-iH_{\text{eff}}\psi + i\psi H_{\text{eff}}^{\dagger}), \qquad H_{\text{eff}} = H - \frac{i}{2}\sum_{k}J_{k}^{\dagger}J_{k}$$

 Conditional state evolves by stochastic Schrödinger equation:

$$d\psi_t = \mathcal{B}[\psi_t]dt + \sum_k \left(\frac{\mathcal{J}_k(\psi_t)}{\text{Tr}[\mathcal{J}_k(\psi_t)]} - \psi_t\right) dq_{k,t}$$

$$\mathcal{J}_k(\psi) = J_k \psi J_k^\dagger$$
, $dq_{k,t} \in \{0,1\}$, $\mathbb{E}[dq_{k,t}] = \mathrm{Tr}[\mathcal{J}_k(\psi_t)] dt$

- Probability distribution for conditional state $P(\psi,t)$
- Evolves by the unravelled quantum master equation (UQME):

[Dalibard, Castin, Mølmer 1992] [Wiseman, Milburn 2010]

(Symmetry of quantum trajectories)

Consider unitary superoperator

$$\Upsilon$$
 which acts as $\Upsilon P(\psi,t) = P(\mathcal{U}^\dagger \psi,t)$

•The unravelled generator, \mathcal{W}^{\dagger} , is symmetric with respect to unitary symmetry U, when

$$\Upsilon \mathcal{W}^\dagger \Upsilon^\dagger = \mathcal{W}^\dagger$$
 Conditions on $H, J_1 \ldots, J_d$?

Recall symmetry of master operator:

$$\mathcal{ULU}^\dagger = \mathcal{L}$$
 Symmetry condition I

(Symmetry of quantum trajectories)

 Group jump operators with the same destinations (for all initial states) into sets such that

$$i, j \in S_{\alpha} \Leftrightarrow J_i | \psi \rangle \propto J_j | \psi \rangle \quad \forall | \psi \rangle$$

• Collective action of each set is $\mathcal{A}_{lpha}(\psi) = \sum_{j \in S_{lpha}} \mathcal{J}_{j}(\psi)$

(Symmetry of quantum trajectories)

 Group jump operators with the same destinations (for all initial states) into sets such that

$$i, j \in S_{\alpha} \iff J_i | \psi \rangle \propto J_j | \psi \rangle \quad \forall | \psi \rangle$$

• Collective action of each set is $\mathcal{A}_{lpha}(\psi) = \sum_{j \in S_{lpha}} \mathcal{J}_{j}(\psi)$

Types of jump sets

Reset jumps: $J_k = \sqrt{\gamma_k} |\chi_{\alpha}\rangle \langle \xi_k| \text{ for } k \in S_{\alpha}$

Non-reset jumps: $J_k = \lambda_k J^{(\alpha)}$ for $k \in S_{\alpha}$

(Symmetry of quantum trajectories)

 Group jump operators with the same destinations (for all initial states) into sets such that

$$i, j \in S_{\alpha} \iff J_i | \psi \rangle \propto J_j | \psi \rangle \quad \forall | \psi \rangle$$

• Collective action of each set is $\mathcal{A}_{lpha}(\psi) = \sum_{j \in S_{lpha}} \mathcal{J}_{j}(\psi)$

Types of jump sets

Reset jumps: $J_k = \sqrt{\gamma_k} |\chi_{\alpha}\rangle \langle \xi_k| \text{ for } k \in S_{\alpha}$

Non-reset jumps: $J_k = \lambda_k J^{(\alpha)}$ for $k \in S_{\alpha}$

Symmetry condition II

Then $\Upsilon \mathcal{W}^\dagger \Upsilon^\dagger = \mathcal{W}^\dagger$ ff

$$\mathcal{U}(H) = H, \quad \mathcal{U}\mathcal{A}_{\alpha}\mathcal{U}^{\dagger} = \mathcal{A}_{\pi(\alpha)} \ \forall \alpha$$

(Current) Summary

system

QME

Density matrix $\dot{\rho} = \mathcal{L}\rho$

(Current) Summary

system

Implications of symmetry on dynamics

Symmetric Master equation $\mathcal{ULU}^{\dagger} = \mathcal{L}$

Symmetric unravelled generator $\Upsilon \mathcal{W}^\dagger \Upsilon^\dagger = \mathcal{W}^\dagger$

Implications of symmetry on dynamics

Symmetric Master equation $\mathcal{ULU}^{\dagger} = \mathcal{L}$

- For initial state ρ_0 , solution of QME is given by path $\rho_{[0,\tau)}$
- For the symmetry transformed initial state $\mathcal{U}(\rho_0)$, the solution of QME is the path $\mathcal{U}(\rho_{[0,\tau)})$
- For symmetric initial state

$$\mathcal{U}(\rho_0) = \rho_0 \implies \mathcal{U}(\rho_t) = \rho_t$$

Symmetric unravelled generator $\Upsilon \mathcal{W}^\dagger \Upsilon^\dagger = \mathcal{W}^\dagger$

Implications of symmetry on dynamics

Symmetric Master equation $\mathcal{ULU}^{\dagger} = \mathcal{L}$

- For initial state ρ_0 , solution of QME is given by path $\rho_{[0,\tau)}$
- For the symmetry transformed initial state $\mathcal{U}(\rho_0)$ the solution of QME is the path $\mathcal{U}(\rho_{[0,\tau)})$
- For symmetric initial state

$$\mathcal{U}(\rho_0) = \rho_0 \implies \mathcal{U}(\rho_t) = \rho_t$$

Symmetric unravelled generator $\Upsilon \mathcal{W}^\dagger \Upsilon^\dagger = \mathcal{W}^\dagger$

- For initial distribution P_0 , the solution of UQME is given by path $P_{[0,\tau)}$
- For the symmetry transformed initial distribution $\Upsilon(P_0)$, the solution of UQME is given by $\operatorname{path}\Upsilon(P_{[0,\tau)})$
- For symmetric initial distribution

$$\Upsilon(P_0) = P_0 \implies \Upsilon(P_t) = P_t$$

• Symmetry of stochastic trajectories $p(\psi_{[0,t)}|\psi_0) = p\big(\mathcal{U}(\psi_{[0,t)})|\mathcal{U}(\psi_0)\big)$

Trajectories with measurement records

• Now consider trajectories of (ψ_t, \mathbf{q}_t)

$$d\psi_t = \mathcal{B}[\psi_t]dt + \sum_k \left(\frac{\mathcal{J}_k(\psi_t)}{\text{Tr}[\mathcal{J}_k(\psi_t)]} - \psi_t\right) dq_{k,t}$$
(SSE)

ullet These 'labelled trajectories' evolve with generato ${\mathcal W}_F^\dagger$,

$$\frac{\partial}{\partial t} P_t(\psi, \mathbf{q}) = \mathcal{W}_F^{\dagger} P_t(\psi, \mathbf{q})$$

• Introduce unitary symmetry operator Υ_F , which acts as $\Upsilon_F P_t(\psi, \mathbf{q}) = P_t(\mathcal{U}^\dagger \psi, \pi^{-1}(\mathbf{q}))$

Trajectories with measurement records

• Now consider trajectories of (ψ_t, \mathbf{q}_t)

$$d\psi_t = \mathcal{B}[\psi_t]dt + \sum_k \left(\frac{\mathcal{J}_k(\psi_t)}{\text{Tr}[\mathcal{J}_k(\psi_t)]} - \psi_t\right) dq_{k,t}$$
(SSE)

ullet These 'labelled trajectories' evolve with generato ${\mathcal W}_F^\dagger$,

$$\frac{\partial}{\partial t} P_t(\psi, \mathbf{q}) = \mathcal{W}_F^{\dagger} P_t(\psi, \mathbf{q})$$

• Introduce unitary symmetry operator Υ_F , which acts as $\Upsilon_F P_t(\psi, \mathbf{q}) = P_t(\mathcal{U}^\dagger \psi, \pi^{-1}(\mathbf{q}))$

The generator is symmetric, $\Upsilon_F \mathcal{W}_F^\dagger \Upsilon_F^\dagger = \mathcal{W}_F^\dagger$ iff

$$\mathcal{U}(H)=H, \qquad \mathcal{U}(J_k)=J_{\pi(k)}e^{i\phi_k} \quad \forall k \qquad \text{Symmetry condition III}$$

(Current) Summary

system

(Current) Summary

Joint state

 Dilation of the QME leads to unitary evolution of the system + environment joint state, given by the continuous matrix product state (cMPS)

$$|\Psi_t\rangle = \int_{\mathbf{m}_t} |\varphi_t(\mathbf{m}_t)\rangle \otimes |d\mathbf{m}_t\rangle$$

$$|\varphi_t(\mathbf{m_t})\rangle = e^{-iH_{\text{eff}}(t-t_n)}J_{j_n}\dots e^{-iH_{\text{eff}}(t_2-t_1)}J_1e^{-iH_{\text{eff}}t_1}|\psi_0\rangle$$
, $|d\mathbf{m}_t\rangle = dB_{j_n,t_n}^{\dagger}\dots dB_{j_1,t_1}^{\dagger}|\text{vac}\rangle$, $dB_{j,t}dB_{k,t}^{\dagger} = \delta_{jk}dt$

• Evolves as $d|\Psi_t\rangle = -idH_t|\Psi_t\rangle$

with Hamiltonian
$$dH_t \equiv H \otimes \mathbb{1}_E \, dt + i \sum_{j=1}^d \left(J_j \otimes dB_{j,t}^\dagger - J_j^\dagger \otimes dB_{j,t} \right)$$

Symmetry of cMPS

• Define unitary operation on environment $\mathcal{U}_E(\cdot) = U_E(\cdot)U_E^\dagger$

 ullet cMPS is symmetric with respect to symmetry $^{\mathcal{U}\otimes\mathcal{U}_E}$, that is $^{\mathcal{U}\otimes\mathcal{U}_E(dH'_t)}=dH'_t$

Symmetry of cMPS

- Define unitary operation on environment $\mathcal{U}_E(\cdot) = U_E(\cdot)U_E^{\dagger}$
- ullet cMPS is symmetric with respect to symmetry $^{\mathcal{U}\otimes\mathcal{U}_E}$, that is $^{\mathcal{U}\otimes\mathcal{U}_E(dH'_t)}=dH'_t$

$$\mathcal{ULU}^\dagger = \mathcal{L}$$
 and \mathcal{U}_E is taken as $\mathcal{U}_E(dB_{j,t}) = \sum_k \mathbf{U}_{jk} dB_{k,t}$ Symmetry condition I

Symmetry of cMPS

- Define unitary operation on environment $\mathcal{U}_E(\cdot) = U_E(\cdot)U_E^{\dagger}$
- ullet cMPS is symmetric with respect to symmetry $^{\mathcal{U}\otimes\mathcal{U}_E}$, that is $^{\mathcal{U}\otimes\mathcal{U}_E(dH'_t)}=dH'_t$

$$\mathcal{ULU}^\dagger = \mathcal{L}$$
 and \mathcal{U}_E is taken as $\mathcal{U}_E(dB_{j,t}) = \sum_k \mathbf{U}_{jk} dB_{k,t}$

$$J'_j = J_j - \frac{1}{d_s} \operatorname{Tr}(J_j), \quad \mathcal{U}(J'_j) = \sum_k \mathbf{U}_{jk} J'_k$$

Symmetry condition I

(Current) Summary

(Current) Summary

Dephasing of cMPS (measured CMPO)

- Quanta detected via projective measurement in the environment basis formed by dB's.
- Continuous matrix product operator (cMPO) for dephased joint state $\ensuremath{R_t}$

$$R_t = \int p(\mathbf{m}_t | \psi_0) \, \psi_t(\mathbf{m}_t) \otimes |d\mathbf{m}_t\rangle \langle d\mathbf{m}_t|$$

• Evolution $dR_t = d\mathbb{L}_t(R_t)$

$$d\mathbb{L}_{t}(R_{t}) = -i \left[(H_{\text{eff}} \otimes \mathbb{1}_{E}) R_{t} - R_{t} (H_{\text{eff}}^{\dagger} \otimes \mathbb{1}_{E}) \right] dt$$
$$+ \sum_{k=1}^{d} (J_{k} \otimes dB_{k,t}^{\dagger}) R_{t} (J_{k}^{\dagger} \otimes dB_{k,t})$$

Dephasing of cMPS (measured CMPO)

- Quanta detected via projective measurement in the environment basis formed by dB's.
- Continuous matrix product operator (cMPO) for dephased joint $$R_t$$

$$R_t = \int p(\mathbf{m}_t | \psi_0) \, \psi_t(\mathbf{m}_t) \otimes |d\mathbf{m}_t\rangle \langle d\mathbf{m}_t|$$

• Evolution $dR_t = d\mathbb{L}_t(R_t)$

$$d\mathbb{L}_{t}(R_{t}) = -i \left[(H_{\text{eff}} \otimes \mathbb{1}_{E}) R_{t} - R_{t} (H_{\text{eff}}^{\dagger} \otimes \mathbb{1}_{E}) \right] dt$$
$$+ \sum_{k=1}^{d} (J_{k} \otimes dB_{k,t}^{\dagger}) R_{t} (J_{k}^{\dagger} \otimes dB_{k,t})$$

Symmetry

- Symmetric measured cMPO has $(\mathcal{U}\otimes\mathcal{U}_E)d\mathbb{L}_t(\mathcal{U}\otimes\mathcal{U}_E)^\dagger=d\mathbb{L}_t$
- This occurs iff $\mathcal{U}(H)=H,$ $\mathcal{U}(J_k)=J_{\pi(k)}e^{i\phi_k}$ $\forall k$ Symmetry condition III

(Current) Summary

(Current) Summary

Summary

- Characterised the conditions for weak unitary symmetry to be present in quantum trajectories and their measurement records. [By considering gauge freedoms of unravelled generator]
- Showed that there always exists a dilation of a symmetric QME such that the corresponding cMPS has a separable symmetry (and vice versa).
- Considered dephasing of the cMPS, which corresponds to quantum trajectories and their measurement records, in which these objects share symmetry conditions.
- Applications: eigenfunctions of generator, numerical simplification, support of operators, physical insight
- Future outlook: non-unitary symmetries, approximate symmetry, resource theory of asymmetry

Appearing on arXiv soon: [Brown, Jack, Macieszczak] [Brown, Macieszczak, Jack]

Summary

Objects in each layer either all symmetric or all non-symmetric

Appearing on arXiv soon:

[Brown, Jack, Macieszczak] [Brown, Macieszczak, Jack]

Summary

Objects in each layer either all symmetric or all non-symmetric

Appearing on arXiv soon:

[Brown, Jack, Macieszczak] [Brown, Macieszczak, Jack]

Unravelled generator

$$\mathcal{W}^{\dagger}[P_t(\psi)] = -\nabla \cdot [P_t(\psi)\mathcal{B}(\psi)] + \int d\psi' \left[P_t(\psi')W(\psi',\psi) - P_t(\psi)W(\psi,\psi')\right]$$

$$\mathcal{B}(\psi) = -iH_{\text{eff}}\psi + i\psi H_{\text{eff}}^{\dagger} - \psi \text{Tr}(-iH_{\text{eff}}\psi + i\psi H_{\text{eff}}^{\dagger})$$

$$W(\psi, \psi') = \sum_{j} \delta\left(\psi' - \frac{\mathcal{J}_{j}(\psi)}{\text{Tr}[\mathcal{J}_{j}(\psi)]}\right) \text{Tr}[\mathcal{J}_{j}(\psi)]$$

When do different continuous measurements yield identical quantum trajectories?

When do different continuous measurements yield identical quantum trajectories?

Symmetry condition II:

• We have that $\Upsilon \mathcal{W}^\dagger \Upsilon^\dagger = \mathcal{W}^\dagger$

$$\mathcal{U}(H) = H, \quad \mathcal{U}\mathcal{A}_{\alpha}\mathcal{U}^{\dagger} = \mathcal{A}_{\pi(\alpha)} \,\, \forall \alpha$$

• Two representations of \mathcal{L} , given by $\tilde{H}, \tilde{J}_1, \ldots, \tilde{J}_{\tilde{d}}$ and H, J_1, \ldots, J_d have equal trajectory generators,

 $ilde{\mathcal{W}}=\mathcal{W}$, iff

$$\tilde{H} = H + r \mathbb{1}, \quad \tilde{\mathcal{A}}_{\alpha} = \mathcal{A}_{\pi(\alpha)} \quad \forall \alpha$$

Recall: $i, j \in S_{\alpha} \Leftrightarrow J_i | \psi \rangle \propto J_j | \psi \rangle \ \forall | \psi \rangle$

$$\mathcal{A}_{\alpha}(\psi) = \sum_{j \in S_{\alpha}} \mathcal{J}_{j}(\psi)$$

When do different continuous measurements yield identical quantum trajectories?

Symmetry condition II:

• We have that $\Upsilon \mathcal{W}^\dagger \Upsilon^\dagger = \mathcal{W}^\dagger$

$$ilde{H}=\mathcal{U}(H),\;\; ilde{\mathcal{J}}_{j}\equiv\mathcal{U}\mathcal{J}_{k}\mathcal{U}^{\dagger}$$

ullet Two representations of ${\mathcal L}$, given by

we have that 1 VV'1' = Viff $\mathcal{U}(H) = H, \quad \mathcal{U}\mathcal{A}_{\alpha}\mathcal{U}^{\dagger} = \mathcal{A}_{\pi(\alpha)} \ \forall \alpha$ $\tilde{H}, \tilde{J}_{1}, \ldots, \tilde{J}_{\tilde{d}} \ \text{ and } \ H, J_{1}, \ldots, J_{d}$ have equal trajectory generators,

$$ilde{\mathcal{W}}=\mathcal{W}$$
 , iff

$$\tilde{H} = H + r \mathbb{1}, \quad \tilde{\mathcal{A}}_{\alpha} = \mathcal{A}_{\pi(\alpha)} \quad \forall \alpha$$

When do different continuous measurements yield identical quantum trajectories?

• We have that $\Upsilon \mathcal{W}^\dagger \Upsilon^\dagger = \mathcal{W}^\dagger$

$$\mathcal{U}(H) = H, \quad \mathcal{U}\mathcal{A}_{\alpha}\mathcal{U}^{\dagger} = \mathcal{A}_{\pi(\alpha)} \ \forall \alpha$$

$$ilde{H}=\mathcal{U}(H),\;\; ilde{\mathcal{J}}_{j}\equiv\mathcal{U}\mathcal{J}_{k}\mathcal{U}^{\dagger}$$

Symmetry condition II:
• Two representations of
$$\mathcal{L}$$
, given by We have that $\Upsilon \mathcal{W}^{\dagger} \Upsilon^{\dagger} = \mathcal{W}^{\dagger}$ \tilde{H} $\tilde{H}, \tilde{J}_1, \ldots, \tilde{J}_{\tilde{d}}$ and H, J_1, \ldots, J_d have equal trajectory generators,

$$ilde{\mathcal{W}}=\mathcal{W}$$
 , iff

$$\tilde{H} = H + r \mathbb{1}, \quad \tilde{\mathcal{A}}_{\alpha} = \mathcal{A}_{\pi(\alpha)} \quad \forall \alpha$$

Types of jump sets

Reset jumps: $J_k = \sqrt{\gamma_k} |\chi_\alpha\rangle\langle\xi_k|$ for $k \in S_\alpha$

Non-reset jumps: $J_k = \lambda_k J^{(\alpha)}$ for $k \in S_{\alpha}$

Two representations of $\mathcal L$, given by $\tilde H, \tilde J_1, \dots, \tilde J_{\tilde d}$ and H, J_1, \dots, J_d have equal trajectory generators $\tilde{\mathcal W}^\dagger = \mathcal W^\dagger$, iff

$$ilde{H} = H + r \mathbb{1}$$
 and $ilde{J}_j = \sum_{k=1}^d \mathbf{V}_{jk} J_k'$

where
$$\mathbf{V}=\sum_{lpha}\mathbf{V}^{(lpha)}$$
 $\mathbf{V}_{ik}^{(lpha)}=0$ unless $j\in ilde{S}_lpha,\ k\in S_{\pi(lpha)}$

$$\sum_{j \in \tilde{S}_{\alpha}} (\mathbf{V}_{jk}^{(\alpha)})^* \mathbf{V}_{jk'}^{(\alpha)} = \delta_{kk'} \quad \text{for} \quad k, k' \in S_{\pi(\alpha)}$$