Currents

$$
j_{\mu}^{a}=i\left(\phi^{\dagger} T^{a} \partial_{\mu} \phi-\partial_{\mu} \phi^{\dagger} T^{a} \phi\right)
$$

$O(N)$ currents.

$$
\begin{aligned}
& =i(v+e)^{2}\left[n_{0}^{\top} \xi T^{a} \partial_{\mu} \xi n_{0}-n_{0}^{\top} \partial \xi^{\top} T^{a} \xi n_{0}\right] \\
& \sim i v^{2}\left[n_{0}^{\top} T^{a} \partial_{\mu} \pi n_{0}+n_{0}^{\top} \partial_{\mu} \pi T^{a} n_{0}\right]
\end{aligned}
$$

$\sim-2 v \partial_{\mu} \pi^{a}$ for broken generators

$$
\langle 0| j^{\mu}|\pi\rangle=2 \text { iv } P_{\mu} \quad \begin{array}{ll}
\otimes \cdots *_{p} \\
j^{\mu}
\end{array}
$$

broken currents create $G B$ from vacuum.
cCWZ

Generalize the construction to GIFI breaking in an arbiterry theory:

$$
\equiv(x)=e^{i x \cdot \pi} \quad(\text { cruz uses } \xi)
$$

parametrizes the local vacuum. (near N pole. global structure not studied here ।
 under global G transformation

$$
\begin{aligned}
g \equiv & =\Xi^{\prime} h \\
\text { i. } g \equiv(x) & =\equiv^{\prime}(x) h(x)
\end{aligned}
$$

h depends on x because it depends

$$
\text { ie. } \quad=\rightarrow g=h^{-1}
$$

and we wont a Lagrangian invariant under this symmetry. The symmetry is realized non-linearly through exponentials of generators.

For the $O(N)$ model $h n_{0}=n_{0}$

$$
\text { so } \equiv n_{0} \rightarrow g \equiv n_{0}
$$

Note: g is global (does not depend on x) h is local (depends on x)
$Q C D$

$$
L=\sum_{r}\left(\overline{q_{r}} i \not \supset q_{r}-m_{r} \bar{q}_{r}\right)-\frac{1}{4} G_{\mu v}^{*} G^{\mu x}+\frac{\theta g^{2}}{32 \pi^{2}} G_{r}^{*} \widetilde{G}_{\mu v}^{A}
$$

For light quarks (u, d, s) we can treat m_{r} as a perturbation and expand in m

$$
\begin{aligned}
& \quad \bar{q} i \not D q=\bar{q}_{L} i \not D q_{L}+\bar{q}_{R} i \not D q_{R} \\
& \bar{q} q=\bar{q}_{L} q_{R}+\bar{q}_{R} q_{L} \\
& q=\left(\begin{array}{l}
u \\
d \\
s
\end{array}\right) \\
& L=\quad \bar{q} i \not p q=\bar{q}_{L} i \not D q_{L}+\bar{q}_{R} i \phi p q_{R}
\end{aligned}
$$

Theory has an $S U(B)_{L}$ SUI) $)_{R}$ gloat chiral symmetry

$$
q_{L}(x) \rightarrow L q_{L}(x) \quad q_{R}(x) \rightarrow R q_{R}(x)
$$

There are also two $U(1)$ symmetries
$v(1)_{V}: q(x) \rightarrow e^{i \alpha} q(x)$: Baryon number
VITA: $q_{L}(x) \rightarrow e^{i \alpha} q_{L}(x)$: broken due to
$q_{2}(x) \rightarrow e^{-i \alpha} q_{2}(x)$ the anomaly

$$
\partial_{\mu}\left(\bar{q} \gamma^{r} \gamma_{5} q\right)=N_{f} \frac{g^{2}}{32 \pi^{2}} G_{\mu}^{\lambda} \tilde{G}^{2} \alpha x \quad G_{0123}=+1
$$

For $U(1)$ we have $U(1)_{L}$ and $U(1)_{R}$ or $V(1)_{V}$ and $U(1)_{A}$. But not for the non-abelian part $\operatorname{SU}(N)_{A}$ is not a group. The commutator
of two axial generators is a vector generator

The other quarks c, b, t are heavy quarks, and treated using HQET as an expansion in $1 / \mathrm{m}$.
$Q C D$ has a $\operatorname{SU}(3)_{C} \times \operatorname{SU}(3)_{R}=G$ symmetry. This is spontaneously broken to $H=S U(3)_{v}$ non-perturbatively by a condensate $\left\langle\bar{q}_{r} q_{s}\right\rangle=C \delta r s$ so we have the symmetry breaking $\operatorname{SH}(3)_{L} \times S U(3)_{R} \rightarrow S U(3)_{v}$ and 8 goldstone bosons $\left(\pi^{+}, \pi^{-}, \pi^{0}\right)\left(K^{+}, K^{\circ}\right)$ (K°, K^{-}) and η. There is no $9^{\text {th }} G B$ for the $V(1)_{A} \rightarrow$ (was the η^{\prime} puzzle)
(Can use chiral rotations to move ALPS into M and compute masses et c using $X P T$)

$$
L=\bar{q}_{L} i \nabla \phi q_{L}+\bar{q}_{R} i \not p q_{R}-\bar{q}_{L} M q_{R}-\bar{q}_{R} M^{\dagger} q_{L}
$$

treat $M=\left(\begin{array}{ll}m_{n} & \\ m_{d} & \\ & \end{array}\right)$ as a perturbation
can include geneal background sources: gauge fields, mazes
Gasser, Leutwyler: Ann. My \& 158 (1984) 142
notation: Bijnens, Colangelo, Ecker JHEP O2(1999)020
come back to this.

$$
\begin{aligned}
& G / H= \frac{\operatorname{SV}(B)_{L} \times S U(1)_{R}}{\operatorname{SU}(3)_{V}} \sim \operatorname{SU}(3) \text { is a group } \\
& \text { CHin is a special case) }
\end{aligned}
$$

CCWZ formalism: $\quad g=(L, R)=\operatorname{SV}(3)_{L} \times \operatorname{SV}(3)_{R}$ transformation

$$
h=(h, h)=S v(3)_{V} \text { transformation }
$$

G generators $T_{L}^{a}=T^{a} \otimes 1 \quad T_{R}^{a}=1 \otimes T^{a}$ fl generators $T^{a}=T_{L}^{a}+T_{R}^{a}$
Broken generators $\quad X^{a}=T_{L}^{a}-T_{R}^{a}$
1 no unique definition. can always shift by an unbroken generator.
unbroken generators form a rector space: $T^{a}|\Omega\rangle=0$ Normalise so that $\operatorname{tr} T^{a} T^{b}=\frac{1}{2} \delta^{a b}$

$$
\begin{aligned}
& \bar{\equiv}=e^{i x^{a} \pi^{a} / f}=\left(\xi, \xi^{+}\right) \quad \xi=e^{i T^{a} \pi^{a} / f} \\
& \pi^{a}=\frac{1}{\sqrt{2}}\left[\begin{array}{ccc}
\frac{\pi^{0}}{\sqrt{2}}+\frac{\eta}{\sqrt{6}} & \pi^{+} & k^{+} \\
\pi^{-} & -\frac{1}{\sqrt{2}} \pi^{0}+\frac{\eta}{\sqrt{6}} & k^{0} \\
k^{-} & \bar{k}^{0} & -\frac{2 \eta}{\sqrt{6}}
\end{array}\right]
\end{aligned}
$$

[isospin multiplets are $\left(\pi^{-}, \pi^{0},-\pi^{+}\right)$

$$
\begin{gathered}
\left(K^{0}, K^{+}\right) \\
\left(K^{-},-K^{0}\right) \\
\left.\eta^{0}\right]
\end{gathered}
$$

$$
\begin{aligned}
& \equiv=g \equiv h^{\prime} \quad\left(\xi^{\prime}, \xi^{\prime+}\right)=(L, R) \cdot(\xi, \xi) \cdot\left(h^{+}, h^{\dagger}\right) \\
& \xi^{\prime}=L \xi h^{+} \\
& \xi^{\prime+}=R \xi^{+} h^{+} \Rightarrow \xi^{\prime}=L \xi h^{\dagger} \\
& \Sigma=\xi^{2}=e^{2 i T^{a} \pi^{a} / f} \\
& \sum(x) \rightarrow L \Sigma(x) R^{\dagger}
\end{aligned}
$$

Bijnens et al: $\quad u=e^{i \pi / r} \quad U=u^{2}=e^{2 i \pi / s}$
and $\quad u \rightarrow R U L^{\dagger} \quad u^{\prime}=R u h^{+}=h u L^{+}$
So $\xi=u^{+} \quad \Sigma=u^{\dagger}$ and $\pi \leftrightarrow-\pi$
parity $L \leftrightarrow \beta \quad \pi \leftrightarrow-\pi \quad V \leftrightarrow u^{\dagger} \quad u \leftrightarrow u^{\dagger}$
(1) Write down most general Lagrangian with thus trusformation law.
(2) Make field redefs and use IBP to simplify Lagrangian
(3) Coyly - Hamilton identities (see below)
(4) Need a power counting: powers of p.

$$
\begin{aligned}
& u \sim 1 \quad U \sim 1 \\
& \partial \sim p \\
& M \sim p^{2} \quad\left(m_{n}^{2} \propto m_{q} \alpha p^{2}\right)
\end{aligned}
$$

Exad chiral symmetry with no sources

Frost start with no extemal sources. Then L, R are global and do not depend on x.
$N_{f}=$ number of flans

$$
\begin{array}{llll}
N_{f}=2 & \operatorname{sv}(2) & \chi P T & \pi \\
N_{f}=3 & s v(3) & \chi P T & \pi, K, \eta
\end{array}
$$

N_{f} arbitrary
zen derivatives: $\left\rangle\right.$ Brace $\left\langle\Sigma \Sigma^{f}\right\rangle=\langle\mathbb{1}\rangle=$ constañl, etc
there are all constant \Rightarrow all interactions involve derivatives.

Eater to wort with \sum since h depends on x. $y=\frac{f^{2}}{4}\left\langle\partial_{\mu} \Sigma^{\dagger} \partial^{\mu} \Sigma\right\}$ is only form at viler p^{2}

$$
\begin{aligned}
& \Sigma=e^{x}=1+x \cdots \quad \partial_{\mu} \Sigma=\partial_{\mu} x+\cdots \quad x=\frac{2 i \pi}{f} \\
& L=\frac{f^{2}}{4} \operatorname{tr}\left(-2 i \frac{\partial \pi}{f}\right)\left(2 i \frac{\partial \pi}{f}\right) \\
& =\operatorname{tr} \partial \pi \partial \pi=\frac{1}{2}\left(\partial_{\mu} \pi\right)^{a}\left(\partial_{\mu} \pi\right)^{a}+\cdots \\
& L=\operatorname{Tr} \partial_{\mu} \pi \partial^{\mu} \pi+\frac{1}{3 f^{2}} \underbrace{\operatorname{Tr}\left[\pi, \partial_{\mu} \pi\right]^{2}}+\cdots \cdot \\
& \partial^{\prime}+1^{\prime}+\frac{1}{\prime}+\cdots\left(-\frac{1}{6 f^{2}}\right) f^{a b c} f^{a g h} \pi^{b} \partial_{\mu} \pi^{c} \pi^{a} \partial_{\mu} \pi^{h} \\
& \text { for SU(2) }+\frac{1}{6 f^{2}}\left[(\pi-\partial \pi)^{2}-(\pi \cdot \pi)(\partial \pi \cdot \partial \pi)\right\}
\end{aligned}
$$

$4 \pi, 6 \pi, \ldots$ all interactions determined in terms of F. non-linear realization of symmetry relates processes with different numbers of pions.

$$
L=\underbrace{\frac{1}{2}} \underbrace{g_{a b}(\pi)} \partial_{\mu} \pi^{a} \partial_{\mu} \pi^{b}
$$

non-trivial metric

$$
g_{a b}=\delta_{a b}-\frac{1}{3 f^{2}} f^{g a c} f^{g b d} \pi^{c} \pi^{d}+\cdots
$$

At P^{4} for $S U(N)$ XP

$$
\begin{aligned}
L= & \hat{L_{1}}\left\langle\partial_{\mu} \Sigma^{+} \partial^{\mu} \Sigma\right\rangle^{2}+\hat{L}_{2}\left\langle\partial_{\mu} \Sigma^{+t} \partial_{\Sigma} \Sigma\right\rangle\left\langle\partial_{\mu} \Sigma^{t} \partial_{r} \Sigma\right\rangle \\
& +\hat{L}_{3}\left\langle\partial_{\mu} \Sigma^{t} \partial^{\mu} \Sigma \partial_{\nu} \Sigma^{+} \partial_{\nu} \Sigma\right\rangle+\hat{L}_{0}\left\langle\partial_{\mu} \Sigma^{+} \partial_{\nu} \Sigma \partial_{\mu} \Sigma^{t} \partial_{\nu} \Sigma\right\rangle
\end{aligned}
$$

(1) can integrate by parts.
(2) Cayley - Hamilton theorem

$$
\begin{aligned}
\frac{\delta}{\delta A} & \Rightarrow A^{2}-A\langle A\rangle-\frac{1}{2}\left\langle A^{2}\right\rangle I+\frac{1}{2}\langle A\rangle^{2} 1=0 \\
& A B+B A-A\langle B\rangle-B\langle A\rangle-\langle A B\rangle+\langle A\rangle\langle B\rangle 1=0
\end{aligned}
$$

using $\quad A \longrightarrow A+B$
For 3×3 :

$$
\left\langle A^{4}\right\rangle-\frac{4}{3}\left\langle A^{3}\right\rangle\langle A\rangle-\frac{1}{2}\left\langle A^{2}\right\rangle^{2}+\left\langle A^{2}\right\rangle\langle A\rangle^{2}-\frac{1}{6}\langle A\rangle^{4}=0
$$

and similar identities. $\quad B C E E 9$ (3.C)

$$
\text { For sU(3): } \begin{aligned}
L_{1} & =\frac{\hat{L}_{0}}{2}+\hat{L}_{1} \\
L_{2} & =\hat{L}_{0}+\hat{L}_{2} \\
L_{3} & =-2 \hat{L}_{0}+\hat{L}_{3}
\end{aligned}
$$

For su(2)

$$
\begin{aligned}
& l_{1}=-2 \hat{L}_{0}+4 \hat{L}_{1}+2 \hat{L}_{3} \\
& l_{2}=4\left(\hat{L}_{0}+\hat{L}_{2}\right)
\end{aligned}
$$

$$
L=\frac{l_{1}}{4}\left\langle\partial_{\mu} \Sigma \partial^{\mu} \Sigma^{\dagger}\right\rangle^{2}+\frac{l_{2}}{4}\left\langle\partial_{\mu} \Sigma^{\dagger} \partial_{r} \Sigma\right\rangle\left\langle\partial_{\mu} \Sigma^{\dagger} \partial_{r} \Sigma\right\rangle
$$

$$
\begin{aligned}
& q_{L} \rightarrow e^{i \epsilon_{c}^{\frac{\text { curents }}{a} T^{a}} q_{L}} \\
& \delta \mathscr{L}=-\partial_{\mu} \epsilon_{L} \bar{q}_{L} \gamma^{\mu} T^{a} q_{L}=-\partial_{\mu} \epsilon_{L}^{a} j_{L}^{\mu a} \\
& j_{L}^{\mu a}=\bar{q}_{L} \gamma^{t} T^{a} q_{L} \quad j_{R}^{\mu a}=\bar{q}_{L} \gamma^{\mu} T^{a} q_{L} \\
& \delta \mathcal{L}_{\text {EFT }}=\delta \frac{f^{2}}{4}\left\langle\partial_{\mu} u^{\dagger} \partial^{r} u\right\rangle \\
& j_{R}: u \rightarrow u e^{-i \epsilon_{R}^{a}} T^{a} \quad u \quad u^{f} \rightarrow e^{i \epsilon_{R}^{a} T^{a}} u^{+} \\
& \delta \mathscr{L}=\frac{f^{2}}{4} \quad i \partial_{\mu} \epsilon_{R}^{a}\left\langle T^{a} U^{t} \partial^{\mu} u-\partial^{\mu} u^{\dagger} u T^{a}\right\rangle \\
& j_{k}^{k r a}=\frac{i f^{2}}{4}\left\langle-T^{a} u^{+} \partial^{\mu} u+T^{a} \partial_{\mu} u^{\dagger} u\right\rangle \\
& =-\frac{i f^{2}}{2}\left\langle T^{a} u^{t} \partial_{\mu} u\right\rangle \\
& j_{L}^{\mu a}=-\frac{1 f^{2}}{2}\left\langle T^{a} u \partial_{\mu} u^{+}\right\rangle=\frac{i f^{2}}{2}\left\langle T^{a} \partial_{\mu} u u^{+}\right\rangle \\
& j_{R}^{\mu}=f\left\langle T^{a} \partial_{\mu} \pi\right\rangle-i\left\langle T^{a}\{\pi, \partial \pi]\right\rangle-\frac{2}{3 f}\left\langle T^{a}[\pi,[\pi, \partial \pi]]\right\rangle+ \\
& =\frac{f}{2} \partial_{\mu} \pi^{a}+\frac{1}{2} f^{a b c} \pi^{b} \partial \pi^{c}+\frac{1}{3 f} f^{g a b} f^{g c d} \pi^{b} \pi^{c} \partial \pi^{d}
\end{aligned}
$$

For SV(2): $j_{R}^{\mu}=\frac{f}{2} \partial \pi^{a}+\frac{1}{2} \epsilon^{a b c} \pi^{b} \partial \pi^{c}+\frac{1}{3 f}\left(\pi^{a}(\pi \cdot \partial \pi)-(\pi \cdot \pi) \partial \pi^{a}\right)$

$$
j_{L}^{\mu}: \quad \pi \rightarrow-\pi
$$

$$
\begin{aligned}
& j_{v}^{\mu a}=f^{a b c} \pi^{b} \partial \pi^{c}+\cdots \text { even in } \pi \\
& =\epsilon^{a b c} \pi^{b} \partial \pi^{c}+\cdots \text { for } S V(2) \\
& j_{A}^{\mu a}=f \partial_{\mu} \pi^{a}+\frac{2}{3 f} f^{g a b} f^{g c d} \pi^{b} \pi^{c} \partial^{d}+\ldots \text { odd in } \pi \\
& =f \partial_{\mu} \pi^{a}+\frac{2}{3 f}\left[\pi^{a}(l \cdot \partial \pi)-\partial \pi^{a}(\pi \cdot \pi)\right]+\cdots \\
& \langle 0| j_{A}^{m a}\left|\pi^{b}(p)\right\rangle=- \text { if } p^{\mu} \delta^{a b} \quad \begin{array}{l}
f \\
\simeq 93 \mathrm{MeV} \text {. } \\
\approx \text { from vacuum }
\end{array} \\
& \pi \rightarrow \ell \nu \\
& \mathscr{L}=-\frac{4 G_{F}}{\sqrt{2}} V_{u d} \quad\left(\bar{u} \gamma^{\mu} P_{L} d\right)\left(\bar{l} \gamma^{\mu} P_{L} \nu_{l}\right) \quad l=e, \mu \\
& A=-\frac{i 4 G_{F}}{\sqrt{2}} V_{n d}\left\langle 0 \mid \bar{u} \gamma^{\mu} P_{L} d / \pi\right\rangle \bar{\pi}\left(P_{1}\right) \gamma_{\mu} P_{L} \vee\left(P_{2}\right) \\
& \rightarrow-0 T^{l} T^{l}+i T^{2}=\frac{1}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+\frac{i}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \\
& j_{L}^{\mu}=j_{L}^{\mu 1}+i j_{L}^{\mu 2} \quad \pi^{-}=\frac{\pi^{\prime}-i \pi^{2}}{\sqrt{2}} \\
& \left\langle 0 \mid \bar{u} \gamma^{\mu} p_{L} d / \pi^{-}\right\rangle=-i \frac{f}{2} p_{\pi}^{\mu} \cdot \sqrt{2} \\
& A=\frac{4 G_{F}}{\sqrt{2}} V_{n d} f\left(-\frac{1}{\sqrt{2}}\right) \underbrace{P_{\pi}^{\mu}}_{\left(P_{1}+P_{2}\right)^{\mu}} \bar{u}\left(P_{1}\right) \gamma_{\mu} P_{L} \vee\left(P_{2}\right) \\
& =-2 G_{F} f V_{n d} \quad \bar{u}\left(P_{1}\right) \underbrace{\left(P_{1}+P_{2}\right)}_{\left.m_{l}\right)} P_{L} V\left(P_{1}\right) P_{L} V\left(p_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{\operatorname{Sin} \mid}|A|^{2}=4 G_{F}^{2} f^{2}\left|V_{u d}\right|^{2} m_{e}^{2} \operatorname{Tr}\left(P_{1}+m_{l}\right) P_{L} P_{L} P_{R} \\
& 2 P_{1} \cdot P_{2} \\
& =\left(P_{1}+p_{2}\right)^{2}-P_{1}^{2}-P_{2}^{2} \\
& =m_{\pi}^{2}-m_{l}^{2} \\
& =4 a_{p}^{2} f^{2}\left|V_{u d}\right|^{2} m_{\pi}{ }^{2} m_{l}{ }^{2}\left(1-\frac{m_{l}{ }^{2}}{m_{\pi}{ }^{2}}\right) \\
& \Gamma=\frac{G_{F}}{4 \pi} f^{2}\left|V_{\text {ad }}\right|^{2} m_{\pi} m_{l}{ }^{2}\left(1-\frac{m_{L}{ }^{2}}{m_{\pi^{2}}}\right)^{2} \\
& \begin{array}{l}
\frac{\Gamma(\pi \rightarrow k v)}{\Gamma(\pi \rightarrow e v)}=\left(\frac{m_{\mu}}{m_{e}}\right)^{2} \frac{\left(1-\frac{m_{\mu}{ }^{2}}{m_{\pi}^{2}}\right)^{2}}{\left(1-\frac{m_{e}^{2}}{m_{\pi}^{2}}\right)^{2}}>1 . \\
\Leftrightarrow \Leftrightarrow
\end{array} \\
& \bar{\nu} \leftrightarrows \mathbb{I} \leftrightarrows \text { need a felicity flip }
\end{aligned}
$$

right handed left-hounded
gives $f \sim 93 \mathrm{MeV}$
corrections: ' \otimes '- etc to chiral matrix element

Weinberg Power Counting
$\alpha=\sum_{k \geqslant 2} \mathcal{L}_{k} \quad \alpha_{k}$ terms of order p^{k}

$$
\begin{aligned}
& \text { generic loop graph } \\
& A \sim \int\left[\frac{d^{4} p}{(2 \pi)^{4}}\right]^{L} \frac{1}{\left(p^{2}\right)^{I}} \cdot \pi_{k}\left(p^{k}\right)^{V_{k}}
\end{aligned}
$$

V_{k} vertices of adder p^{k}. $p \sim$ internal or external moment am
In dim reg, μ only enters as $\log \mu$ for expanding μ^{ϵ}. Therefore $A \sim p^{D}$ (p some external momentum)

$$
D=4 L-2 I+\sum k V_{k}
$$

Now $V-I+L=1$ for any connected gauph

$$
\begin{aligned}
& D=2 L+2-2 V+\sum k V_{k} \\
& D-2=2 L+\sum(k-2) V_{k}
\end{aligned}
$$

since $k \geqslant 2$ all terms on r.h.s. $\geqslant 0$.

$$
\Rightarrow D \geqslant 2
$$

$D=2 \Rightarrow$ tree graphs with insertions of V_{2}
$D=4 \Rightarrow 1$-Coop graphs with V_{2} or tree grap with ore V_{4} and V_{2}
$D=6 \Rightarrow 2$ loop graphs with V_{2}
1 Sop graphs with one V_{4} tree graphs with $2 V_{2}$ or one V_{6}.

The loop expansion is combined with the p expansion.
one loop from $\Delta\left(p^{2}\right)$ Lagrangian is running of $O\left(p^{4}\right)$

$$
\begin{aligned}
& \mu \frac{d \hat{L}_{i}}{d \mu}=-\frac{\hat{\Gamma}_{i}}{16 \pi^{2}} \quad \hat{\Gamma}_{0}=\frac{n_{f}}{48} \quad \hat{\Gamma}_{1}=\frac{1}{16} \quad \hat{\Gamma}_{2}=\frac{1}{8} \quad \hat{\Gamma}_{3}=\frac{n_{f}}{24} \\
& \mu \frac{d L_{i}}{d \mu}=-\frac{\Gamma_{i}}{16 \pi^{2}} \quad \Gamma_{1}=\frac{3}{32} \quad \Gamma_{2}=\frac{3}{16} \quad \Gamma_{3}=0 \\
& \mu \frac{d l_{i}}{d_{\mu}}=-\frac{\gamma_{i}}{16 \pi^{2}} \quad \gamma_{1}=\frac{1}{3} \quad \gamma_{2}=\frac{2}{3}
\end{aligned}
$$

anomalous dim are pure numbers.
Large $N_{c} f \propto \sqrt{N_{c}} \quad \mathcal{L}=\frac{N_{c}}{\hbar}\left\langle\partial_{\mu} \Sigma \gamma \Sigma^{+}\right\rangle$
The loop expansion $=\frac{1}{N_{c}}$ expansion
see Les Couches lectures hep-ph/9802419

