Naive dim analysis
A.M., Georgi NP B 234 (1984) 189 : track $\frac{1}{16 \pi^{2}}$ for each Gavel it al EPJC (2016) $76: 485$ loop
$\pi-\pi$ scattering at p^{4} :

$$
\sum I \sim \int\left(\frac{d^{4} p}{2 \pi^{4}}\right) \frac{1}{p^{2}} \cdot \frac{1}{p^{2}} \cdot \frac{p^{2}}{f^{2}} \cdot \frac{p^{2}}{f^{2}} \sim \frac{p^{4}}{16 \pi^{2} f^{4}}(\log p / \mu)
$$

$$
V_{4} \sim L\left\langle\partial_{\mu \Sigma} \partial_{r} \Sigma^{t} \partial_{v} \partial_{v} \Sigma_{v}^{t}\right\rangle \sim L \cdot \frac{p^{4} \pi^{4}}{f^{4}}
$$

$L>\frac{1}{16 \pi^{2}}$ since L shifts $k y \frac{1}{16 \pi^{2}}$ when μ changes by order 1
[fits to L_{i} give numbers of this size a 510^{-3}] Pish Rep Prog Phys 58(1995)563

$$
\begin{aligned}
L= & \frac{f^{2}}{4}\left[\left\langle\partial \Sigma \partial^{+}\right\rangle+\frac{1}{\Lambda_{x}^{2}}\left\langle\partial \Sigma \partial^{+}+\partial \Sigma^{t}\right\rangle+\cdots\right] \\
& \Lambda_{x} \leqslant 4 \pi f
\end{aligned}
$$

holds to all arles.
General tern :

$$
\begin{aligned}
L \sim & \frac{\Lambda^{4}}{16 \pi^{2}}\left[\frac{\partial}{\Lambda}\right]^{a}\left[\frac{4 \pi \phi}{\Lambda}\right]^{b}\left[\frac{4 \pi \psi}{\Lambda^{3 / 2}}\right]^{c}\left(\frac{4 \pi A}{\Lambda}\right)^{d} \\
& \left(\frac{9}{4 \pi^{2}}\right)^{e}\left(\frac{\lambda}{16 \pi^{2}}\right)^{f}\left(\frac{y}{4 \pi}\right)^{h}
\end{aligned}
$$

XPT: $\quad \phi \rightarrow \pi$

$$
\begin{aligned}
& L \sim f^{2} \Lambda_{x}^{2}\left(\frac{\partial}{\Lambda x}\right)^{a}\left(\frac{\pi}{f}\right)^{b} \\
& U \sim \exp (2 i \pi / f) \sim O(1)
\end{aligned}
$$

XPT valid $P \leqq \Lambda_{x} \sim 1 G V$
much larger than $p \leqslant f \simeq 93 \mathrm{MeV}$
Λ_{x} also the sale of resonances $m_{p} \sim 770 \mathrm{Gel}$

Symmetry Breaking
Explicit symmetry breading due to quark mass matrix

$$
\begin{aligned}
L= & -\bar{q}_{R} M^{f} q_{L}-\bar{q}_{L} M q_{R} \\
M= & {\left[\begin{array}{lll}
m_{u} & & \\
& n_{d} & \\
& & m_{s}
\end{array}\right] }
\end{aligned}
$$

Treat M as a field. Then chiral symmetry is preserved provided $M \rightarrow L M R^{\dagger}$

LEFT: one insertion of M

$$
\begin{array}{ll}
L=\underbrace{}_{\operatorname{dim}^{\frac{f^{2}}{2} B}} \quad \operatorname{tr}\left(M \Sigma^{f}+M^{+} \Sigma\right) \\
\operatorname{dim}) & B \sim \operatorname{din} 1 . \\
B M^{f}=X & \alpha \quad \text { mass matrix. }
\end{array}
$$

expanding in π

$$
\begin{aligned}
& L=-2 B \operatorname{tr} M \pi^{2} \\
& M_{\pi \pm}^{2}=B\left(m_{u}+m_{d}\right)+\Delta M_{E M}^{2} \\
& M_{K}^{2} \pm=B\left(m_{u}+m_{s}\right)+\Delta M_{E M}^{2} \\
& M_{K^{0}, \overline{K O}}^{2}=B\left(m_{d}+m_{s}\right)
\end{aligned}
$$

$$
\pi 0^{0} \eta \quad \operatorname{matix} \quad B\left[\begin{array}{cc}
m_{n}+m_{d} & \frac{m_{u}-m_{d}}{\sqrt{3}} \\
\frac{m_{u}-m_{d}}{\sqrt{3}} & \frac{1}{3}\left(m_{u}+m_{d}+4 m_{s}\right)
\end{array}\right]
$$

$\pi-y$ mixing due to $\left(m_{u}-m_{d}\right)$ a iso spin beating contribution to masses is second order in isospin breaking

$$
\begin{aligned}
& \Delta M_{\pi^{0}}^{2}=-B \frac{\left(m_{n}-m_{d}\right)^{2}}{3} \frac{1}{\frac{1}{3}\left(4 m_{s}-2 m_{n}-2 m_{d}\right)} \\
& \Delta M_{\eta}^{2}=+
\end{aligned}
$$

Neglecting tins

$$
\begin{aligned}
& M_{\pi^{0}}^{2}=B\left(m_{u}+m_{d}\right) \\
& M_{\eta}^{2}=B\left(\frac{1}{3} m_{u}+\frac{1}{3} m_{d}+\frac{4}{3} m_{s}\right)
\end{aligned}
$$

$\triangle_{E M} M^{2}$ is electromagnetic contribution and equal for $\left(\pi^{+}, K^{+}\right)$[Dasher's Thu
(1) $M_{G B}^{2} \propto m_{q}$
(2) Overall scale not determined because if

$$
B
$$

(3) Can get nos ratios (Weinberg)

$$
\frac{m_{a}}{m_{d}}=\frac{M_{k^{+}}^{2}-M_{k^{0}}^{2}+2 M_{\pi^{0}}^{2}-M_{\pi^{r}}^{1}}{M_{k^{0}}^{2}-M_{k^{+}}^{2}+M_{\pi^{+}}^{2}}=0.55
$$

$$
\frac{m_{s}}{m_{d}}=\frac{M_{k^{0}}^{2}+M_{k}^{2}-M_{\pi^{+}}^{2}}{M_{k^{0}}^{2}-M_{k+}^{2}+M_{\pi^{+}}^{2}}=20.1
$$

(4) Gell-Mann - Okubo formula

$$
\begin{aligned}
& 4 M_{k^{0}}^{2}=3 M_{\eta}^{2}+M_{\pi^{0}}^{2} \\
& 0.99 \mathrm{GeV}^{2}=0.92 \mathrm{GeV}^{2} \\
& \mathcal{L}_{\text {OCD }}=-\bar{q}_{L} M q_{R}-\bar{q}_{R} M^{+} q_{L} \\
& e^{i \omega}=\int e^{i \operatorname{Socs}} \\
& \left.\frac{\partial W_{Q C D}}{\partial M_{i j}}\right|_{M=0}-\left\langle\bar{q}_{L i} q_{R j}\right\rangle_{M=0} \\
& \mathscr{L}_{X P T}=\cdots \frac{f^{2}}{2} B \operatorname{tr}\left(M \Sigma^{+}+M^{\dagger} \Sigma\right) \\
& \left.\frac{\partial W_{x P T}}{\partial M_{i j}}\right|_{M=0}=\quad \frac{f^{2}}{2} B\left(\left(\Sigma^{\dagger}\right)_{j i}\right\rangle_{M=0}=\frac{f^{2}}{4} B \delta_{i j}
\end{aligned}
$$

since $\left\langle\pi^{2}\right\rangle=0$ in massless limit $\overline{L R}+\tilde{R} L$

$$
\begin{aligned}
&\left\langle\bar{q}_{i i} q_{f j}\right\rangle=-\frac{f^{2}}{2} B \delta_{i j} \quad\left\langle\bar{q}_{i} q_{j}\right\rangle=-f^{2} B \delta_{i j} \\
& f_{\pi}^{2} m_{\pi^{0}}^{2}=f^{2} B\left(m_{n}+m_{d}\right)=-\langle\bar{q} q\rangle\left(m_{n}+m_{b}\right) \quad \text { Gell-Mann Oakes } \\
& \text { Renner } 1968 \\
& {\left[f_{\pi}^{2} m_{\pi}^{2} \sim f_{a}^{2} m_{a}^{2} \times 0(1) \text { constants }\right] } \\
& \bar{m}=\frac{1}{2}\left(m_{n}+m_{b}\right)=3.45+0.35 \mathrm{MeV} \text { al } \mu=2 \mathrm{GeV} . \\
&-\langle\overline{99}\rangle \simeq(280 \mathrm{MeV})^{3} \quad 0 \quad \wedge f^{2} \sim(220 \mathrm{MeV})^{3}
\end{aligned}
$$

$$
\begin{aligned}
M & \rightarrow L M R^{\dagger}
\end{aligned} \quad \operatorname{det} M \rightarrow \operatorname{det} M 1+L\left(M^{\dagger}\right)^{-1} R^{\dagger}
$$

(Let $M)\left(M^{+}\right)^{-1}$ transforms just like M.
Kaphan, A.M. PRL 56 (1986) 2004

$$
X P T: \quad M \rightarrow M+\lambda \quad \operatorname{det} M\left(M^{t}\right)^{-1}
$$

cannot tell the two apart.

$$
M=\left(\begin{array}{lll}
m_{n} & & \\
& m_{d} & \\
& & m_{s}
\end{array}\right) \quad \operatorname{det} M\left(M^{\top}\right)^{-1}=\left[\begin{array}{lll}
m_{d} m_{s} & & \\
& m_{a} m_{s} & \\
& & m_{c} m_{d}
\end{array}\right]
$$

so if $m_{u}=0$ can get $\left(m_{u}\right)_{\text {eff }} \propto m_{d} m_{s}$ can tell them apart by doing a lattice computation and varying m.
$\pi \pi$ Scattering Lengths

$$
\begin{aligned}
& L=\frac{1}{3 f^{2}} \operatorname{tr}[\pi, \underset{r}{r}]^{2}+\frac{2}{3 f^{2}} \operatorname{tr} M \pi^{4} \\
& \pi=\pi^{a} T^{a} \quad \pi^{2}=\frac{1}{4} \pi^{a} \pi^{a} \mathbb{1} . \\
& {\left[\pi, \partial_{\mu} \pi\right]=i \epsilon^{a b c} \pi^{a} \partial_{\mu} \pi^{b} T^{c}} \\
& L=\frac{1}{3 f^{2}}\left(-\frac{1}{2}\right)\left[(\pi \cdot \pi)(\partial \pi \cdot \partial \pi)-(\pi \cdot \partial \pi)^{2}\right] \\
& +\frac{2}{3 f^{2}} B\left(m_{u}+m_{d}\right) \frac{(\pi \cdot \pi)^{2}}{16} \\
& L=\frac{1}{6 f^{2}}\left[(\pi \cdot \partial \pi)^{2}-(\pi \cdot \pi)(\partial \pi \cdot \partial \pi)\right] \\
& +\frac{\pi n_{\pi}{ }^{2}}{24 f^{2}}(\pi \cdot \pi)^{2}+\cdots \\
& A=\frac{i}{f^{2}}\left(s-m_{\pi}{ }^{2}\right) \delta_{a b} \delta_{c d}+\frac{i}{f^{2}}\left(t-m_{\pi}{ }^{2}\right) \delta_{a c} \delta_{b d} \\
& +\frac{i}{f^{2}}\left(u-m_{\pi^{2}}\right) \delta_{a d} \delta_{b c} \\
& S=\left(P_{a}+P_{b}\right)^{2} \quad t=\left(P_{a}-P_{c}\right)^{2} \quad u=\left(P_{a}-P_{d}\right)^{2}
\end{aligned}
$$

A is Bose symmetric and crossing symmetric.

$$
\begin{aligned}
& A_{I=0}=\frac{i}{f^{2}}\left(3 s+t+u-5 m_{\pi}^{2}\right) \quad \alpha \delta_{a b} \\
& A_{I=1}=\frac{i}{f^{2}}(t-u) \quad A_{a b}=-A_{b a}
\end{aligned}
$$

$$
A_{I=2}=\frac{\hat{i}}{f^{2}}\left(t+u-2 m_{\pi^{2}}\right) \quad A a b=A b a b \quad A a a=0
$$

at threshold $\quad s=4 m_{\pi}^{2} \quad t=u=0$

$$
\left.\begin{array}{rl}
A_{I}=0= & \frac{i}{f^{2}}\left(7 m_{\pi}^{2}\right) \\
A_{ \pm}=1=0 \\
A_{I}=2= & \frac{i}{f^{2}}\left(-2 m_{\pi}^{2}\right) \\
L=\frac{m_{\pi}}{8 \pi f^{2}} & a_{I=0}=\frac{7}{4} L \\
& a_{I=1}=0 \\
& a_{I}=2=-\frac{1}{2} L
\end{array}\right\} \begin{aligned}
& \text { scattening } \\
& \text { lengths }
\end{aligned}
$$

one-loop

$$
\begin{aligned}
& A \sim \frac{c}{16 \pi^{2}} p^{4} \log p^{2} / \mu^{2}+L(\mu) p^{4} \\
& \mu \frac{d}{d \mu} A=0 \Rightarrow \mu \frac{d \hat{L}}{d r}=-\frac{\Gamma_{i}}{16 \pi^{2}}
\end{aligned}
$$

$p^{4} \log p^{2} / m^{2}$ or $m^{2} \log m^{2} / r^{2}$ called chiral logs.

$$
\log (-s-i 6)=\log s-i \pi
$$

fixed by unitarily

$$
R G E: r \frac{d L_{\varphi}}{d \mu} \propto L_{2}^{2}
$$

$$
r \frac{d L_{6}}{d \mu} \propto \quad L_{2} L_{4}
$$

No $\frac{d L_{4}}{d r} \propto L_{4}$ because of the $+2 L$ in weinberg formula for power courting.
RGE consistent with naive dim analysis estimate.

