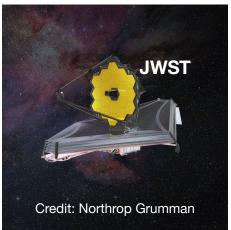

Forecasting the CO-21cm cross-correlation signal from the EoR using line-intensity mapping surveys

Chandra Shekhar Murmu (IIT Indore)

Collaborators: Bharat K. Gehlot (University of Groningen), L. V. E. Koopmans (University of Groningen), Suman Majumdar (IIT Indore), Kanan K. Datta (Jadavpur University), Garrelt Mellema (Stockholm University)

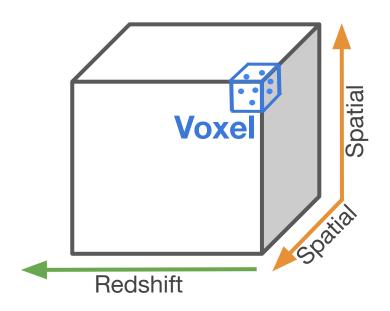
The Epoch of Reionization (EoR)

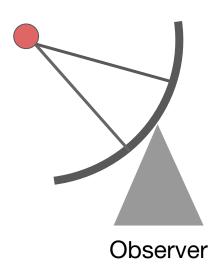

Credit: NAOJ

- First luminous sources (galaxies) were formed
- Ionizing radiation from the luminous sources reionized the neutral IGM

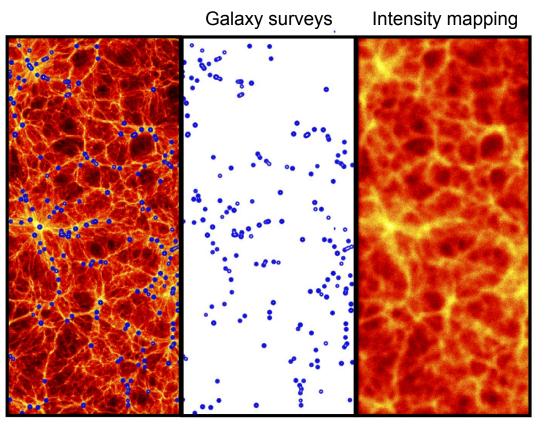
How to probe the EoR universe?

Probing the EoR: galaxies

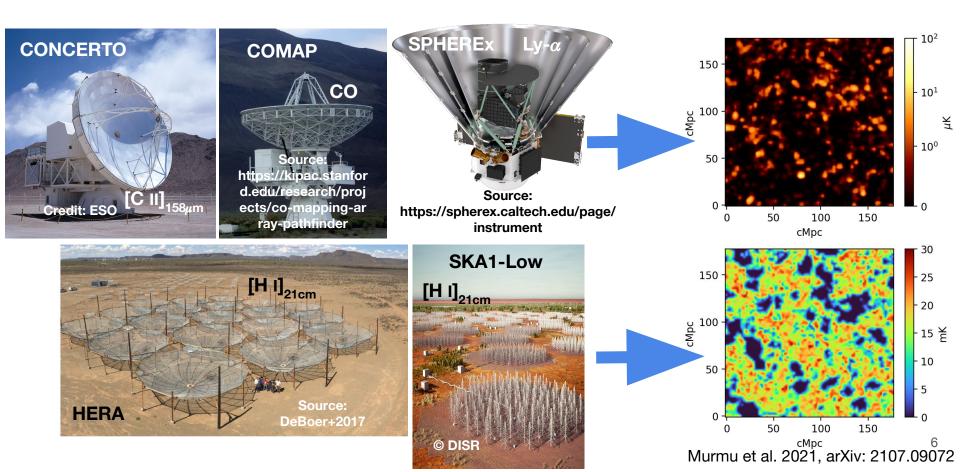



Challenges!

- Demanding sensitivity limits and angular resolutions
- Expensive to operate, therefore it becomes impractical to map large galaxy samples


Line-intensity mapping (LIM)

LIM can probe the large-scale structures by detecting the integrated flux of numerous sources from a comparatively small region (Voxel)



Line-intensity mapping (LIM)

(Source: https://spherex.caltech.edu/page/the-origin-and-history-of-galaxies)

Probing the EoR with Intensity Mapping: galaxies and IGM

Observable summary statistics

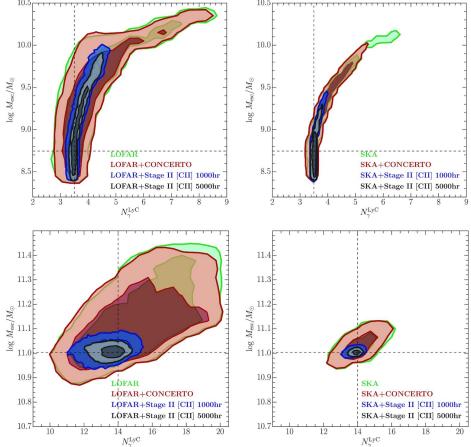
Modelling (analytical/numerical) of observable summary statistics (e.g. power spectrum, cross-power spectrum etc.) is essential to interpret these LIM observations

Cross-correlation signal

$$\langle ilde{A}(k) ilde{B}^*(k')
angle = V \delta_{k,k'} P_{AB}(k)$$

Cross-correlation can capture information about the relative phase difference between the two signals observed

Cross-correlation signal


Observed lines will consist of signal, instrumental noise and foregrounds

$$A\equiv s_a + n_a + f_a$$
 $B\equiv s_b + n_b + f_b$ Signal Noise Foreground

Cross-correlation signal

Constraints from [C II]_{158µm}x [H I]_{21cm} cross-power

spectrum

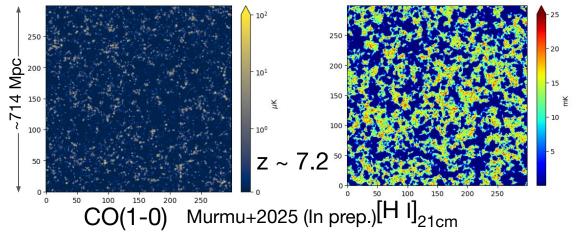
*M*_{esc} = Minimum halomass from which LyCphotons escape

 N_{γ}^{LyC} = Number of ionizing photons from halos

Dumitru et al 2019 MNRAS 485 3486-3498 10

CO LIM signal

- CO line emission traces molecular hydrogen (H₂) which fuels star formation in galaxies
- It is a potential candidate for probing the Universe with LIM instruments
- The CO Mapping Array Project (COMAP) has placed upper limits on the CO(1-0) power spectrum at z ~ 3 (Stutzer et al 2024 A&A 691 A336)
- The CO signal from the EoR Universe is not well probed yet


CO x [H I]_{21cm} cross-power spectrum

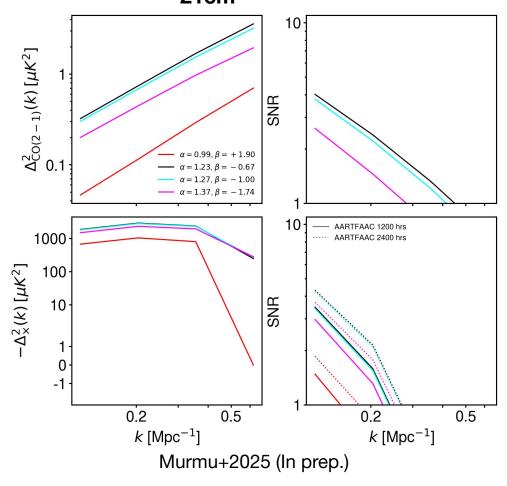
- Gridded density fields from N-body simulation (CUBEP3M) and ionization fields from C2Ray radiative transfer simulations are used to generate [H I]_{21cm} maps
- CO line luminosities are painted to the halos identified in the simulations using the following relations:

$$L_{
m FIR} \propto {
m SFR}(M_{
m h},z) ~~{
m and} ~~ \log L_{
m FIR} = lpha \log L_{
m CO}' + eta$$

• $L_{\rm FIR}$ and $L_{\rm CO}$ are proxies for star-formation and presence of molecular gas (H₂) in

galaxies

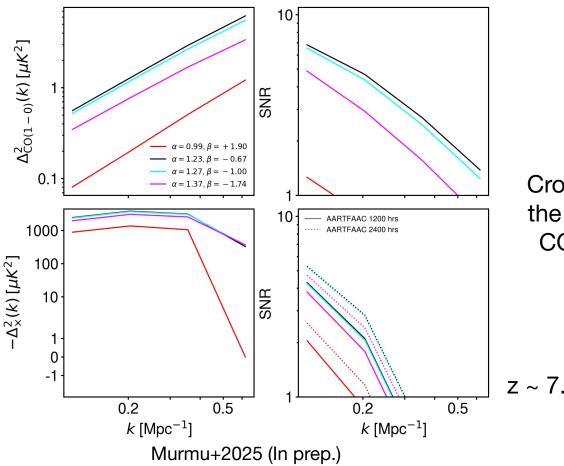
Uncertainty in cross-power spectrum


CO survey with COMAP and [H I]_{21cm} survey with AARTFAAC is assumed with an overlap of 12 deg² survey area

$$ext{var}[P_ imes] = rac{1}{2} \Big(rac{P_ imes^2 + (P_{21 ext{cm}} + P_{ ext{N,21 ext{cm}}})(P_{ ext{CO}} + P_{ ext{N,CO}})}{N_{ ext{modes}}} \Big)$$

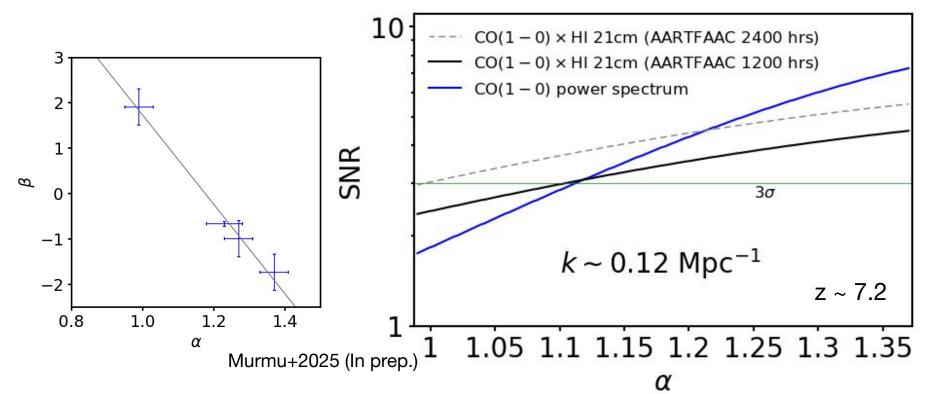
 $P_{\rm N,21cm}$ is estimated using "ps_eor" (https://gitlab.com/flomertens/ps_eor)

 $P_{\rm N,CO}$ is estimated using analytic formalisms (Breyesse et al. 2022, ApJ, 933, 188)


$CO(2-1) \times [H \ I]_{21cm}$ cross-power spectrum

Cross-correlation can improve the detection prospects of the CO LIM signal from the EoR

 $z \sim 7.2$


CO(1-0) x [H I]_{21cm} cross-power spectrum

Cross-correlation can improve the detection prospects of the CO LIM signal from the EoR

 $z \sim 7.2$

$CO(1-0) \times [H \, I]_{21cm}$ cross-power spectrum

Cross-correlation can improve detectability for the weak CO emission models

Summary

- Line intensity mapping is novel technique to probe the large-scale structures of the Universe, which provides a unique way to peer into the Epoch of Reionization
- The CO line emission is a potential candidate for LIM tracer for surveys such as COMAP
- Cross-correlations can boost the detectability of the CO LIM signal from the EoR

Future scope

- Constrain the CO emission models and galaxy populations considering various survey scenarios with power spectrum and cross-power spectrum
- Investigate these prospects further for various reionization histories