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Introduction

Several of my recent contributions , mostly with Edriss Titi and more
recently with E. Wiedemann , A. and P. Gwiadza, were motivated by the
following issues:
The role of boundary effects in mathematical theory of fluid mechanic and
the similarity , in presence of these effects, of the weak convergence in the
zero viscosity limit with the anomalous energy dissipation in the statistical
theory of turbulence.
As consequences.

I will recall the Kolmogorov 1/3 law and the Onsager conjecture and
compare them to the issue of anomalous energy dissipation.

Give extensions : For general systems with an extra conservation laws
about local and global conservation.

Give several forms of a basic theorem of Kato in the presence of a
Lipschitz solution of the Euler equations. Insisting that in such case
the absence of anomalous energy dissipation is equivalent to the
persistence of regularity in the zero viscosity limit.
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The magic number 1
3

Energy Balance and Kolmogorov 1/3 law

d

dt

∫
Ω

1

2
|uν |2dx + ν

∫
Ω
|∇xuν |2dx = 0

compare the two points correlation and the rate of energy dissipation:

δuν(x , l , t)

lβ
=

uν(x + l , t)− uν(x , t)

lβ

And ε(t) = − d

dt

∫
Ω

1

2
|uν |2dx = ν

∫
Ω
|∇xuν |2dx

Assuming Isotropy and Homogeneity by dimensional analysis :

Kolmogorov Law 〈uν(x + l , t)− uν(x , t)

|l |
1
3

〉 ' 〈ν
∫

Ω
|∇xuν |2dx〉

1
3 .

Assuming only Homogeneity, Karman-Howard-Monin (cf. Frisch page
77) derived the 4/5 law:

〈(uν(x + l , t)− u(x , t)) · l

|l |
)3〉 = −4

5
ε|l |
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The magic number 1
3

The Onsager Conjecture. Deterministic version of
Komogorov law

Any weak solution which belongs to the space C 0,α with α > 1
3 conserves

the energy.

1 Complete mathematical proofs were given in (1994) by Eyink then
Constantin , E, Titi. in 1994 and several other extensions A
Cheskidov, Constantin, Friedlander, and Shvydkoy. (2008).

2 Recent papers (2017) Buckmaster, Isett , De Lellis, Szkelyhidi and
Vlad Vicol have shown, for α < 1

3 , the existence of wild solutions in
C 0,α((0,T )× T3) . Hence α > 1

3 , is a necessary and sufficient
condition for all solutions of the 3d Euler equation to conserve
energy.
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The magic number 1
3

More Remarks

1 Simple examples (shear flows for instance) which are not regular but
nevertheless at the Euler level conserve the energy and at the zero
viscosity limit no anomalous energy dissipation(C.B, E. Titi).

2 The condition α > 1
3 generalized to the class of systems of

conservation laws is also a sufficient condition for the conservation of
extra (entropy) conservation law. However there are examples for this
which condition can be relaxed . Cf. For many examples CB. ...
arXiv:1806.02483 and for Vlasov Maxwell Eyink arXiv:1803.03691 .

3 Very useful to analyze first the local validity of a companion law in a
sub domain following Duchon and Robert and then to extend this
result to a domain with boundary, controlling the effect of the
boundary.
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Local Extension of Onsager Condition

With Q ⊂ Rd+1 a system of conservation laws, x 7→ u(x) is defined in Q
with values in an open convex set M⊂⊂ Rk .
Ai , i = 0, 1, · · · , d ∈ C 2(M;Rl) , Aj

i , for j = 1, · · · , l , denotes the j-th
component of Ai . ∑

0≤i≤d
∂xiAi (u) = 0 , (1)

Theorem 1 Let
u 7→ B(u) ∈ C1(M; L(Rl ;R)) : B(u) = (b1(u), b2(u), · · · , bl(u)), be a
generalized entropy: for i = 0, 1, · · · , d

B(u) · ∇uAi (u) = ∇uqi (u)⇔∑
ij

bk(u)∂ujA
k
i ∂xiuj =

∑
j

∂ujqi (u)∂xiuj .
(2)

Suppose that u is a weak solution of (1). Suppose also that for every
K ⊂⊂ Q u ∈ C 0,α(K)(K) with α(K) > 1

3 then in D′(Q)∑
0≤i≤d

∂xiqi (u) = 0 . (3)

Claude Bardos (Uni. Denis-Diderot) Onsager Conjecture, and the Kolmogorov 1/3 law 7 / 30



Exemple of the incompressible Euler equations

The Euler equation in the above Formalism

∂tv +∇ · (v ⊗ v) +∇p = 0 , ∇ · v = 0 .

u =

(
p
v

)
, B(u) = (0 , v),

x0 = t , A0(u) =

(
0
v

)
,

A0
i (u) = vi , Aj

i (u) =
(
vivj + pδij

)
for i , j = 1, 2, 3 .

q0(u) = η(u) =
|v |2

2
, qi (u) = ((

|v |2

2
+ p)vi ) .
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Extension and Mollifiers

For given test function φ ∈ D(Rd+1) with support compact in Q using
extension, mollifiers and Fubini theorem.∑

0≤i≤d
〈∂xiφ, qi (u)〉 = 0 ,T 7→ T , ρε(x) =

1

εd+1
ρ(
|x |
ε

)T
ε

= T ? ρε .

〈
∑

0≤i≤d
∂xiAi (u), ψ〉 = 0⇒ 〈

∑
0≤i≤d

Ai (u), ∂xiψ〉 = 0 .

Test function Ψε = φB((u)ε) ∈ C 2
c (Q1;L(Rl ,R)) :

〈
∑

0≤i≤d
Ai (u), ∂xiψε〉 = 0⇒ 〈

∑
0≤i≤d

Ai (u), ∂xiψε〉 = 0 .

(4)
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Extension and Mollifiers

Fubini 0 = 〈Ψε,
∑

0≤i≤d
∂xiAi (u)〉 = −

∑
0≤i≤d

〈(∂xi Ψ)ε,Ai (u)〉

= −
∑

0≤i≤d

∫
Rd+1
x

∂xi Ψ
ε(x) · (Ai (u))ε(x) dx

= −
∑

0≤i≤d

∫
Rd+1
x

∂xi Ψ
ε(x) · Ai ((u)ε)(x) dx

−
∑

0≤i≤d

∫
Rd+1
x

∂xi Ψ
ε(x) ·

(
(Ai (u))ε(x)− Ai ((u)ε)(x)

)
dx .

(5)
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The fluxes and the reminder

The right-hand side of (5) is the sum of two terms:

Jε = −
∑

0≤i≤d

∫
Rd+1
x

∂xi (φB((u)ε)(x) · Ai ((u)ε))(x) dx ,

Kε =
∑

0≤i≤d

∫
Rd+1
x

∂xi (φB((u)ε)(x) ·
(
Ai ((u)ε)(x)− (Ai (u))ε(x)

)
dx .

(6)
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The computation of the Fluxes

For the first term (u)ε being smooth one uses the chain rule and then the
Lebesgue theorem:

Jε = −
∑

0≤i≤d

∫
Rd+1
x

∂xi (φB((u)ε))(x) · Ai ((u)ε)(x) dx

=
∑

0≤i≤d

∫
Rd+1
x

(φB((u)ε))(x) · ∂xiAi ((u)ε)(x) dx =

∑
0≤i≤d

∫
Rd

φ(x)∂xiqi ((u)ε(x))dx = −
∑

0≤i≤d

∫
Rd

∂xiφ(x)qi ((u)ε(x))dx .

→ −
∑

0≤i≤d

∫
Q
∂xiφ(x)qi (u)dx =

∑
0≤i≤d

〈φ, ∂xiqi (u)〉 .
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The use of Holder α > 1
3

regularity

To complete the proof it remains to show that for α > 1
3 the term

Kε =
∑

0≤i≤d

∫
Rd+1
x

∂xi (φB((u)ε)(x) ·
(
Ai ((u)ε)(x)− (Ai (u))ε(x)

)
dx .

converges to 0 , as ε→ 0 .

1 ‖∂xi (φB((u)ε))‖L∞(Q1) ≤ C‖φ‖C1(Q1)‖B‖C2(M)‖u‖C0,α(Q2)εα(Q2)−1 .

2 ‖Ai ((u)ε)(x)− (Ai (u))ε(x)‖L∞ ≤ ε2α‖A‖C2(M))‖u‖2
C0,α(K)(K)

.

F affine map ⇒ (F (v))ε − F (v ε) = 0 . Taylor formula ⇒

|(F (v))ε(x)− F (v ε(x))| = |
(∫

Rd
y

F (v(x − y))ρε(y)dy
)
− F (v ε(x))|

= |
∫
Rd
y

ρε(y)dy
(∫ 1

0

(
∇2

vF (sv(x − y) + (1− s)v ε(x))
)

(1− s)ds
)

≤ ‖F‖C2(M))

∫
Rd
y

|
∫
Rd
z

(
v(x − y)− v(x − z)

)
ρε(z)dz |2ρε(y)dy

≤ Cε2α . �
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Sufficient conditions for global entropy conservation

Consider in Q = (T1,T2)× Ω (Ω an open set with Lipschitz boundary)
solutions u ∈ L∞(Q) of the following:

∂tA0(u) +
∑

1≤i≤d
∂xi (Ai (u)) = 0 , (7)

Assume that this equation has an extra conservation law u 7→ η(u) (or
entropy as often called) with corresponding fluxes qj(u) , for
j = 1, 2, . . . d , satisfying

∇uη(u) · ∇uA0(u) = ∇uη(u)

and∇uη(u) · ∇uAj(u) = ∇uqj(u) for j = 1, 2, . . . d .
(8)

which gives formally the extra conservation law:

∂tη(u) +
∑

1≤i≤d
∂xiqi (u) = 0 (9)
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Sufficient conditions for global entropy conservation

With, x0 = t and (B(u) = ∇uη(u)) one has the following:
Theorem 2 Assume that u is a weak solution of (7) with the following
properties:
1. For any Q̃ ⊂ Q one has u|Q̃ ∈ C 0,α(Q̃) with α > 1

3 .

2. With δ ∈ (0, δ0
2 ), small enough x̂ being defined by x̂ = d(x , ∂Ω),

Qδ = (T1,T2)× Ωδ assume that:

lim
δ→0

1

δ

∫
[T1T2]×{ δ

4
<d(x)< δ

2
<
δ0
2
}
|
∑

1≤i≤d
qi (u(t, x))~ni (x̂)|dt = 0 ; (10)

Then in the sense of D′(T1,T2) the solution u conserves the total entropy

d

dt

∫
Ω
η(u(t, x))dx = 0 . (11)
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Sufficient conditions for global entropy conservation

Test functions φ(t, x) = θ(t)× χ
(
d(x ,∂Ω)

δ

)
, with δ ∈ (0, δ0) , and χ a C∞

cutoff function s 7→ χ(s) equal to 0 for s < 1
4 and equal to 1 for s > 1

2 :

〈φ(t, x), (∂tη(u) +
∑

1≤i≤d
∂xiqi (u))〉

= −
∫
Q
η(u(t, x))χ

(d(x , ∂Ω)

δ

) d

dt
θ(t)dxdt

−
∫
Qδ

θ(t)
( ∑

1≤i≤d
qi (u(t, x))~ni (x̂)

1

δ
χ′((

d(x , ∂Ω)

δ
)
)
dxdt .

(12)
Then let δ → 0 use the hypothesis (10) and the Lebesgue Dominant
Convergence theorem .
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No anomalous energy dissipation. With local Holder regularity

Theorem 3 Navier-Stokes Leray-Hopf in (0,T )× Ω with uν = 0 on ∂Ω:

∂tuν + (uν · ∇x)uν − ν∆uν +∇pν = 0 , uν(0, ·) = u0

1 There exists an open subset Vη0 = {x ∈ Ω , d(x) < η0}, and β <∞
(both being independent of ν):

No Holder hypothesis on p but sup
ν
‖pν‖L3/2((0,T );H−β(Vη0 )) <∞; (13)

2 For any Ω ⊂⊂ Ω there exists α = α(Ω) > 1
3 and a constant M(Ω) such

that for any ν > 0 one has:

Local hypothesis: ‖uν‖L3((0,T );C0,α(Ω)) ≤ M(Ω); (14)

3 Boundary Flux control

lim
η→0

lim
ν→0

∫ T

0

1

η

∫
{x∈Ω: η

4
<d(x)< η

2
<
η0
2
}
(
|uν |2

2
+ pν)uν(t, x) · ~n(σ(x)) dt ≤ 0 .

(15)
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Absence of anomalous energy dissipation. Conclusion

Modulo subsequence uν converges weak−∗ in L∞((0,T ); L2(Ω)) to a a
weak solution of the Euler equations uν ∈ Cweak([0,T ); L2(Ω)) with the
same initial data u0(·) and which also satisfies the hypotheses of Theorem
II .
Moreover, uν belongs to C ([0,T ); L2(Ω)) and conserves the energy.
Eventually , there is no anomalous energy dissipation in the vanishing
viscosity limit, i.e., for every T ∗ ∈ (0,T ) one has:

lim
ν→0

ν

∫ T∗

0

∫
Ω
|∇xuν(t, x)|2dxdt = 0. (16)
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Proof of the Theorem 3

(13) is used to prove on a very weak assumption the local C 0,α regularity
of the pressure with (14) this gives the convergence to a weak solution of
the Euler equations which satisfies the hypothesis of the theorem I .
Then with (15) which describes the vanishing of the Bernouilli pressure on
the boundary one obtains the global conservation of energy.
Eventually the absence of anomalous energy dissipation follows from the
Leray-Hopf energy inequality and from the relation:

‖uν‖2
L2(Ω) ≤ lim

ν→0
‖uν‖2

L2(Ω)
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Remarks and Kato Theorem

• The uniform no flux hypothesis concerns the normal component of
the velocity. This hypothesis is not in contradiction with a Prandlt type
boundary layer.
• This hypothesis is not redundant. In the presence of boundary there
exists dissipative wild solutions that do not conserve the energy and that
are not characterized by their value at t = 0 B. Szkelyhidi and Wiedemann.
• It is only in the presence of a smooth (Lispchitz) solution of the Euler
equation that weak convergence to such solution turns out to be
equivalent to the absence of anomalous energy dissipation. This is an
avatar (in the sense of weak convergence) of the Kolmogorov 1/3 law and
the object of the Kato theorem.
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The Kato Theorem

Relative estimate with ∇u ∈ L∞((0,T )× Ω)

∂t(uν − u) + uν · ∇uν − u · ∇u − ν∆uν +∇pν −∇p = 0

(uν · ∇uν − u · ∇u, uν − u) = (uν − u, S(u)(uν − u)) ;

S(u) =
∇u + (∇u)t

2
∈ L∞((0,T )× Ω) ;

d

dt

1

2
|uν − u|2L2(Ω) + ν

∫
Ω
|∇uν |2dx ≤ |(uν − u,S(u)(uν − u))|

+ ν

∫
Ω

(∇uν · ∇u)dx−ν
∫
∂Ω

(∂~nuν)τudσ . The bad term! .

Without physical boundary uν converges to u in C ((0,T ); L2(Ω)) and

limν→0

∫ T
0 ‖∇uν‖

2
L2(Ω)dt = 0 . Otherwise the situation is much more

subtle!!!
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The Kato Theorem ; 1 Recirculation and Vorticity Control

It is enough to have a moderate recirculation:

lim
ν→0

ν

∫ T

0

∫
∂Ω

(
(
∂uν
∂~n

(σ, t))τuτ (σ, t)

)
−

dσdt = 0

or a moderate backward vorticity using:

(uν = 0, u · ~n = 0)⇒ ν(
∂uν
∂~n

(σ, t))τuτ = ν((∇∧ uν) ∧ ~n) · u

1
! ! !" 

Laminar regime

Prandlt Boundary layer Recirculation and TripleDeck ansatz.
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The B. Titi version of the 1984 Kato Theorem

Theorem 4 Are equivalent:

∀w(x , t) ∈ L∞((0,T )× ∂Ω) with w · ~n = 0 ,

lim
ν→0

ν

∫ T

0

∫
∂Ω

(
∂uν
∂~n

(σ, t))τw(σ, t)dσdt = 0 (17)

lim
ν→0

ν

∫ T

0

∫
∂Ω

((
∂uν
∂~n

(σ, t))τuτ (σ, t))−dσdt = 0 (18)

uν(t)→ u(t) in L2(Ω) uniformly in t ∈ [0,T ] , (19)

uν(t)→ u(t) weakly in L2(Ω) for each t ∈ [0,T ] , (20)

lim
ν→0

ν

∫ T

0

∫
Ω
|∇uν(x , t)|2dxdt = 0 , (21)

lim
ν→0

ν

∫ T

0

∫
Ω∩{0<d(x ,∂Ω)< ν

2
}
|∇uν(x , t)|2dxdt = 0 . (22)

lim
ν→0

1

ν

∫ T

0

∫
Ω∩{ ν

4
<d(x ,∂Ω)< ν

2
}
|uν(x , t)|2dxdt = 0 . (23)
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The B. Titi version of the 1984 Kato Theorem

The fact (17) implies (18) is trivial then that it implies (19) has already
been observed. It implies (20) which gives (21) with the energy inequality

‖uν(t)‖2
L2(Ω) + 2ν

∫ t

0

∫
Ω
|∇uν(s)|2ds ≤ ‖u0‖2

L2(Ω) (24)

and of course (22).
With Poincaré inequality (22) implies (23).
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(23) implies (17) : The dual of the Kato corrector

∀w ∈ Llip(∂Ω× (0,T )) , w · ~n = 0 ; s 7→ Θ(s) = 1− χ(s) ,

ŵν(x , t) = ∇∧ ((~n(σ(x)) ∧ w(σ(x), t)d(x , ∂Ω)Θ(
d(x , ∂Ω

ν
))

⇒ On ∂Ω ŵν(x , t) = w(x , t) and , in Ω , ∇ · ŵν = 0 .

Multiplication of the Navier-Stokes equation by ŵν integration, use of the
Kato estimates on ŵν shows that (23) implies (17):

ν

∫
∂Ω

(
∂uν
∂~n

(σ, t))τw(σ, t)dσ =

ν(∇uν ,∇ŵν)L2(Ω) − (uν ⊗ uν ,∇ŵν)L2(Ω) + (∂tuν , ŵν)L2(Ω)

|∇p
x ŵν |∞ ≤ Cν−pand = 0 for {x /∈ ν

4
< d(x , ∂Ω) <

ν

2
}

(23) lim
ν→0

1

ν

∫ T

0

∫
Ω∩{ ν

4
<d(x ,∂Ω)< ν

2
}
|uν(x , t)|2dxdt = 0

⇒
∫ T

0
(uν ⊗ uν ,∇ŵν)L2(Ω)dt = 0 and

∫ T

0
|ν(uν ,∆ŵν)L2(Ω)|dt → 0 .
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Conclusion

• If the notion of vorticity on the boundary which appears in (17) is not
(experimentally ) well defined, the condition (19) means that moderate
recirculation (o(ν−1)) does not create turbulence or anomalous energy
dissipation.
• (20) means that in presence of a smooth solution of the Euler
equations the absence of anomalous energy dissipation in the vanishing
vsicosity limit is equivalent to the persistence of regularity in this limit.
• (23) involve the behaviour of the fluid in a subregion
Ω ∩ {ν4 < d(x , ∂Ω) < ν

2} cf. Drivas and Nguyen SIAM J. Math. Anal.
50(5): 4785–4811, 2018
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Conclusion

• On one hand the Kato criteria is consistent with situation which can
be described by the (1904) Prandlt ansatz.
• On the other hand cases where it is not valid agrees with experimental
and numerical experiment (Farge , Klein, Nguyen, Schneider ) about
Energy dissipating structures produced by walls in two-dimensional flows
at vanishing viscosity. Phys. Rev. Lett. 106.18 (2011) where it is observed
that turbulent vorticity is generated in such boundary layer .
• With the introduction of a sub layer {x ∈ Ω/0 ≤ d(x , ∂Ω ≤ ν

4U? } this
is also in agreement with the wall law proposed in (1930) by Prandlt and
Von Karman under the name of turbulent layer cf. Landau and Lifshitz
Fluid Mechanics 42 .
• This raises the issue of a very localised asymptotic singularity of the
Navier-Stokes equations (cf. for Prandlt E and Enquist).
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Conclusion

• The above derivation underline the importance of no slip boundary
condition in the generation of boundary turbulence. For instance if the no
slip boundary condition is relaxed in the following boundary condition

uν · ~n = 0 , and ν∂~nuν + λνuν = 0

With 0 ≤ λν <∞
(25)

the Kato criteria is satisfied and the limit is the smooth solution of the
Euler equation.
This indicates that situations where this criteria is not satisfied,( keeping
in mind the d’Alembert paradox for potential solutions of the Euler
equation ) would be the common case.
• The no slip boundary condition is justified by the fact that it generates
observed turbulence
• It May contribute also to the Kutta Joukowski condition.
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Conclusion

Computation of lift and drag via the Kutta Joukowski formulation
introduces a solution with line or plane of discontinuity Γ which is called
the Treffz plane.
1 The flow is potential outside Γ but not every where. A Kelvin Helmoltz
problem which is an approximation of the reality as explained in
Landau−Lifshitz.
2 Such solution is not the regular one and hence may be generated by a
zero viscosity limit in the presence of no slip boundary condition.
Is it related to one of the wild solutions constructed by Francisco Mengual
and Laslo Szkelyhidi???
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The use of Holder α > 1
3

regularity

THANKS FOR INVITATION AND ATTENTION.
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