Crossing Probabilities for 2D Lattice Models

Hao Wu Tsinghua University, China

2023. 4. 25

Hao Wu Tsinghua University, China (THU)

E▶ E ∽Q@ 2023. 4. 25 1/14

・ロト ・回ト ・ヨト ・ヨト

Hao Wu Tsinghua University, China (THU)

<ロ> <同> <同> < 同> < 同>

Table of contents

2 Pure Partition Functions

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Ising Model [Lenz 1920]

A model for ferromagnet, to understand the phase transition.

• G = (V, E) a finite graph

•
$$\sigma \in \{\ominus, \oplus\}^{V}$$

• $\sigma \in \{\ominus, \oplus\}^V$ • $H(\sigma) = -\sum_{x \sim y} \sigma_x \sigma_y$

Ising model is the probability measure of inverse temperature $\beta > 0$:

 $\mu_{\beta,G}[\sigma] \propto \exp(-\beta H(\sigma))$

Ising Model [Lenz 1920]

A model for ferromagnet, to understand the phase transition.

• G = (V, E) a finite graph

•
$$\sigma \in \{\ominus, \oplus\}^{V}$$

•
$$H(\sigma) = -\sum_{x \sim y} \sigma_x \sigma_y$$

Ising model is the probability measure of inverse temperature $\beta > 0$:

$$\mu_{\beta,G}[\sigma] \propto \exp(-\beta H(\sigma))$$

Ising Model

- $\beta \approx \beta_c$: critical
- $\beta < \beta_{\rm C}$: chaotic

・ロト ・回ト ・ヨト ・ヨト

Question

Critical phase?

Ising Model

・ロト ・回ト ・ヨト ・ヨト

Ising Model

・ロン ・回 と ・ ヨン・

Conformal Invariance of Interfaces

イロト イヨト イヨト イヨト

Conformal Invariance of Interfaces

イロト イヨト イヨト イヨト

Hao Wu Tsinghua University, China (THU)

2023. 4. 25 6/14

Conformal Invariance of Interfaces

Stanislav Smirnov

Theorem [Chelkak-Smirnov et al. Invent. '12]

The interface in critical Ising model on \mathbb{Z}^2 with Dobrushin boundary conditions converges weakly to SLE₃.

• □ ▶ • □ ▶ • □ ▶ •

Crossing Probabilities for Ising Model

Theorem [Peltola-W. AAP23+]

The connection of Ising interfaces forms a planar link pattern A_{δ} .

$$\lim_{\delta \to 0} \mathbb{P}[\mathcal{A}_{\delta} = \alpha] = \frac{\mathcal{Z}_{\alpha}(\Omega; x_1, \dots, x_{2N})}{\mathcal{Z}_{lsing}(\Omega; x_1, \dots, x_{2N})}, \quad \mathcal{Z}_{lsing} = \sum_{\alpha \in \mathsf{LP}_N} \mathcal{Z}_{\alpha},$$

where $\{\mathcal{Z}_{\alpha}\}$ is the pure partition functions for multiple SLE₃.

Crossing Probabilities for Ising Model

Theorem [Peltola-W. AAP23+]

The connection of Ising interfaces forms a planar link pattern A_{δ} .

$$\lim_{\delta \to 0} \mathbb{P}[\mathcal{A}_{\delta} = \alpha] = \frac{\mathcal{Z}_{\alpha}(\Omega; x_1, \dots, x_{2N})}{\mathcal{Z}_{lsing}(\Omega; x_1, \dots, x_{2N})}, \quad \mathcal{Z}_{lsing} = \sum_{\alpha \in \mathsf{LP}_N} \mathcal{Z}_{\alpha},$$

where $\{\mathcal{Z}_{\alpha}\}$ is the pure partition functions for multiple SLE₃.

- Conjectured in [Bauer-Bernard-Kytölä, JSP'05].
- Partially solved in [Izyurov, CMP'15].

Crossing Probabilities for Ising Model

Theorem [Peltola-W. AAP23+]

The connection of Ising interfaces forms a planar link pattern A_{δ} .

$$\lim_{\delta \to 0} \mathbb{P}[\mathcal{A}_{\delta} = \alpha] = \frac{\mathcal{Z}_{\alpha}(\Omega; x_1, \dots, x_{2N})}{\mathcal{Z}_{lsing}(\Omega; x_1, \dots, x_{2N})}, \quad \mathcal{Z}_{lsing} = \sum_{\alpha \in \mathsf{LP}_N} \mathcal{Z}_{\alpha},$$

where $\{\mathcal{Z}_{\alpha}\}$ is the pure partition functions for multiple SLE₃.

- Conjectured in [Bauer-Bernard-Kytölä, JSP'05].
- Partially solved in [Izyurov, CMP'15].
- Related to correlation functions in CFT.

Table of contents

Hao Wu Tsinghua University, China (THU)

≣ ▶ ≣ •⁄> ৭.ে 2023. 4. 25 8/14

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Pure Partition Functions

 $\{Z_{\alpha} : \alpha \in \mathsf{LP}\}$ is a collection of smooth functions satisfying PDE, COV, ASY.

$$\begin{aligned} & \mathsf{PDE} : \left[\frac{\kappa}{2} \partial_i^2 + \sum_{j \neq i} \left(\frac{2}{x_j - x_i} \partial_j - \frac{2h}{(x_j - x_i)^2} \right) \right] \mathcal{Z}(x_1, \dots, x_{2N}) = 0, \text{ where } h = (6 - \kappa)/2\kappa. \\ & \mathsf{COV} : \mathcal{Z}(x_1, \dots, x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1), \dots, \varphi(x_{2N})). \\ & \mathsf{ASY} : \lim_{x_j, x_{j+1} \to \xi} \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{(x_{j+1} - x_j)^{-2h}} = \begin{cases} \mathcal{Z}_{\alpha/\{j, j+1\}}(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N}), & \text{if } \{j, j+1\} \in \alpha; \\ 0, & \text{else.} \end{cases} \end{aligned}$$

イロト イヨト イヨト イヨト

Pure Partition Functions

 $\{Z_{\alpha} : \alpha \in \mathsf{LP}\}$ is a collection of smooth functions satisfying PDE, COV, ASY.

$$\begin{aligned} & \mathsf{PDE} : \left[\frac{\kappa}{2} \partial_i^2 + \sum_{j \neq i} \left(\frac{2}{x_j - x_i} \partial_j - \frac{2h}{(x_j - x_i)^2} \right) \right] \mathcal{Z}(x_1, \dots, x_{2N}) = 0, \text{ where } h = (6 - \kappa)/2\kappa. \\ & \mathsf{COV} : \mathcal{Z}(x_1, \dots, x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1), \dots, \varphi(x_{2N})). \\ & \mathsf{ASY} : \lim_{x_j, x_{j+1} \to \xi} \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{(x_{j+1} - x_j)^{-2h}} = \begin{cases} \mathcal{Z}_{\alpha/\{j, j+1\}}(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N}), & \text{if } \{j, j+1\} \in \alpha; \\ 0, & \text{else.} \end{cases} \end{aligned}$$

Probability

- PDE : Itô's formula
- ASY : compatible

Pure Partition Functions

 $\{Z_{\alpha} : \alpha \in \mathsf{LP}\}$ is a collection of smooth functions satisfying PDE, COV, ASY.

$$\begin{aligned} & \mathsf{PDE} : \left[\frac{\kappa}{2} \partial_i^2 + \sum_{j \neq i} \left(\frac{2}{x_j - x_i} \partial_j - \frac{2h}{(x_j - x_i)^2} \right) \right] \mathcal{Z}(x_1, \dots, x_{2N}) = 0, \text{ where } h = (6 - \kappa)/2\kappa. \\ & \mathsf{COV} : \mathcal{Z}(x_1, \dots, x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1), \dots, \varphi(x_{2N})). \\ & \mathsf{ASY} : \lim_{x_j, x_{j+1} \to \xi} \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{(x_{j+1} - x_j)^{-2h}} = \begin{cases} \mathcal{Z}_{\alpha/\{j, j+1\}}(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N}), & \text{if } \{j, j+1\} \in \alpha; \\ 0, & \text{else.} \end{cases} \end{aligned}$$

Probability

CFT

- PDE : Itô's formula
- ASY : compatible

- PDE : BPZ equations
- ASY : fusion rules

Pure Partition Functions

 $\{Z_{\alpha} : \alpha \in \mathsf{LP}\}$ is a collection of smooth functions satisfying PDE, COV, ASY.

$$\begin{aligned} & \mathsf{PDE} : \left[\frac{\kappa}{2} \partial_i^2 + \sum_{j \neq i} \left(\frac{2}{x_j - x_i} \partial_j - \frac{2h}{(x_j - x_j)^2} \right) \right] \mathcal{Z}(x_1, \dots, x_{2N}) = 0, \text{ where } h = (6 - \kappa)/2\kappa. \\ & \mathsf{COV} : \mathcal{Z}(x_1, \dots, x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1), \dots, \varphi(x_{2N})). \\ & \mathsf{ASY} : \lim_{x_j, x_{j+1} \to \xi} \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{(x_{j+1} - x_j)^{-2h}} = \begin{cases} \mathcal{Z}_{\alpha/\{j, j+1\}}(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N}), & \text{if } \{j, j+1\} \in \alpha; \\ 0, & \text{else.} \end{cases} \end{aligned}$$

Probability

CFT

PDE

- PDE : Itô's formula
- ASY : compatible

- PDE : BPZ equations
- ASY : fusion rules

- PDE : 2N variables, 2N PDEs
- ASY : boundary value?

イロト イポト イヨト イヨト

Pure Partition Functions

 $\{Z_{\alpha} : \alpha \in \mathsf{LP}\}$ is a collection of smooth functions satisfying PDE, COV, ASY.

$$\begin{aligned} & \mathsf{PDE} : \left[\frac{\kappa}{2} \partial_i^2 + \sum_{j \neq i} \left(\frac{2}{x_j - x_i} \partial_j - \frac{2h}{(x_j - x_i)^2} \right) \right] \mathcal{Z}(x_1, \dots, x_{2N}) = 0, \text{ where } h = (6 - \kappa)/2\kappa. \\ & \mathsf{COV} : \mathcal{Z}(x_1, \dots, x_{2N}) = \prod_{i=1}^{2N} \varphi'(x_i)^h \times \mathcal{Z}(\varphi(x_1), \dots, \varphi(x_{2N})). \\ & \mathsf{ASY} : \lim_{x_j, x_{j+1} \to \xi} \frac{\mathcal{Z}_{\alpha}(x_1, \dots, x_{2N})}{(x_{j+1} - x_j)^{-2h}} = \begin{cases} \mathcal{Z}_{\alpha/\{j, j+1\}}(x_1, \dots, x_{j-1}, x_{j+2}, \dots, x_{2N}), & \text{if } \{j, j+1\} \in \alpha; \\ 0, & \text{else.} \end{cases} \end{aligned}$$

Uniqueness [Flores-Kleban, CMP'15]

Fix $\kappa \in (0, 8)$. If there exist collections of smooth functions satisfying PDE, COV and ASY, they are (essentially) unique.

Image: A matched and A matc

Uniqueness [Flores-Kleban, CMP'15]

Fix $\kappa \in (0, 8)$. If there exist collections of smooth functions satisfying PDE, COV and ASY, they are (essentially) unique.

Existence

- $\kappa \in (0, 8) \setminus \mathbb{Q}$ [Kytölä-Peltola, CMP'16]
- $\kappa \in (0, 4]$ [Peltola-W. CMP'19, Beffara-Peltola-W. AOP'21]
- κ ∈ (0,6] [W. CMP'20]

- Coulumb gas techniques
- Global multiple SLEs
- Hypergeometric SLE

イロト イポト イヨト イヨト

Uniqueness [Flores-Kleban, CMP'15]

Fix $\kappa \in (0, 8)$. If there exist collections of smooth functions satisfying PDE, COV and ASY, they are (essentially) unique.

Existence

- $\kappa \in (0,8) \setminus \mathbb{Q}$ [Kytölä-Peltola, CMP'16]
- $\kappa \in (0, 4]$ [Peltola-W. CMP'19, Beffara-Peltola-W. AOP'21]

- Coulumb gas techniques
- Global multiple SLEs
- Hypergeometric SLE

Theorem [W. CMP'20]

Fix $\kappa \in (0, 6]$. The pure partition functions are the recursive collection $\{Z_{\alpha} : \alpha \in \cup_N LP_N\}$ of smooth functions $Z_{\alpha} : \mathfrak{X}_{2N} \to \mathbb{R}$ uniquely determined by the following properties :

PDE, COV, ASY as well as PLB :

$$0 < \mathcal{Z}_{\alpha}(x_1, \ldots, x_{2N}) \leq \prod_{\{a,b\} \in \alpha} |x_b - x_a|^{-2h}, \quad \forall (x_1, \ldots, x_{2N}) \in \mathfrak{X}_{2N}.$$

 $\{\mathcal{Z}_{\alpha} : \alpha \in \mathsf{LP}_{N}\}$ is linearly independent and forms a basis for the solution space.

Crossing Probabilities for Ising Model

Theorem [Peltola-W. AAP23+]

The connection of Ising interfaces forms a planar link pattern A_{δ} .

$$\lim_{\delta \to 0} \mathbb{P}[\mathcal{A}_{\delta} = \alpha] = \frac{\mathcal{Z}_{\alpha}(\Omega; x_1, \dots, x_{2N})}{\mathcal{Z}_{lsing}(\Omega; x_1, \dots, x_{2N})}, \quad \mathcal{Z}_{lsing} = \sum_{\alpha \in \mathsf{LP}_N} \mathcal{Z}_{\alpha},$$

where $\{\mathcal{Z}_{\alpha}\}$ is the pure partition functions for multiple SLE₃.

Conformal Invariance in 2D Lattice Model

• Loop-erased random walk (LERW) : $\kappa = 2$ [Lawler-Schramm-Werner, AOP'04]

Conformal Invariance in 2D Lattice Model

- Loop-erased random walk (LERW) : $\kappa = 2$ [Lawler-Schramm-Werner, AOP'04]
- Ising model : $\kappa = 3$ [Chelkak-Smirnov et al.'12]

Conformal Invariance in 2D Lattice Model

- Loop-erased random walk (LERW) : $\kappa = 2$ [Lawler-Schramm-Werner, AOP'04]
- Ising model : $\kappa = 3$ [Chelkak-Smirnov et al.'12]
- Level lines of GFF : $\kappa = 4$ [Schramm-Sheffield, ACTA'09]

Conformal Invariance in 2D Lattice Model

- Loop-erased random walk (LERW) : $\kappa = 2$ [Lawler-Schramm-Werner, AOP'04]
- Ising model : κ = 3 [Chelkak-Smirnov et al.'12]
- Level lines of GFF : $\kappa = 4$ [Schramm-Sheffield, ACTA'09]
- FK-Ising model : $\kappa = 16/3$ [Chelkak-Smirnov et al.'12]

Conformal Invariance in 2D Lattice Model

- Loop-erased random walk (LERW) : $\kappa = 2$ [Lawler-Schramm-Werner, AOP'04]
- Ising model : $\kappa = 3$ [Chelkak-Smirnov et al.'12]
- Level lines of GFF : $\kappa = 4$ [Schramm-Sheffield, ACTA'09]
- FK-Ising model : κ = 16/3 [Chelkak-Smirnov et al.'12]
- Percolation : $\kappa = 6$ [Smirnov'01]

Conformal Invariance in 2D Lattice Model

- Loop-erased random walk (LERW) : $\kappa = 2$ [Lawler-Schramm-Werner, AOP'04]
- Ising model : $\kappa = 3$ [Chelkak-Smirnov et al.'12]
- Level lines of GFF : $\kappa = 4$ [Schramm-Sheffield, ACTA'09]
- FK-Ising model : $\kappa = 16/3$ [Chelkak-Smirnov et al.'12]
- Percolation : $\kappa = 6$ [Smirnov'01]
- Uniform spanning tree (UST) : κ = 8 [Lawler-Schramm-Werner, AOP'04]

• Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP'19]

(日) (日) (日) (日) (日)

- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP'19]
- Multiple Ising interfaces : $\kappa = 3$. [Peltola-W. AAP'23+]

Image: Image:

.

- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP'19]
- Multiple Ising interfaces : $\kappa = 3$. [Peltola-W. AAP'23+]
- Multiple level lines of GFF : κ = 4. [Peltola-W. CMP'19], [Ding-Wirth-W. AIHP'22], [Liu-W. EJP'21]

- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP'19]
- Multiple Ising interfaces : κ = 3. [Peltola-W. AAP'23+]
- Multiple level lines of GFF : κ = 4. [Peltola-W. CMP'19], [Ding-Wirth-W. AIHP'22], [Liu-W. EJP'21]
- Multiple FK-Ising interfaces : $\kappa = 16/3$. [Feng-Peltola-W.'22]

- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP'19]
- Multiple Ising interfaces : κ = 3. [Peltola-W. AAP'23+]
- Multiple level lines of GFF : κ = 4. [Peltola-W. CMP'19], [Ding-Wirth-W. AIHP'22], [Liu-W. EJP'21]
- Multiple FK-Ising interfaces : $\kappa = 16/3$. [Feng-Peltola-W.'22]
- Multiple percolation interfaces : κ = 6. [Liu-Peltola-W.'21]

Image: A matrix

- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP'19]
- Multiple Ising interfaces : κ = 3. [Peltola-W. AAP'23+]
- Multiple level lines of GFF : κ = 4. [Peltola-W. CMP'19], [Ding-Wirth-W. AIHP'22], [Liu-W. EJP'21]
- Multiple FK-Ising interfaces : $\kappa = 16/3$. [Feng-Peltola-W.'22]
- Multiple percolation interfaces : $\kappa = 6$. [Liu-Peltola-W.'21]
- Multiple Peano curves in UST : κ = 8. [Han-Liu-W.'20], [Liu-Peltola-W.'21], [Liu-W. Bernoulli'23]

- Multiple LERWs in UST : $\kappa = 2$. [Karrila-Kytölä-Peltola, CMP'19]
- Multiple Ising interfaces : κ = 3. [Peltola-W. AAP'23+]
- Multiple level lines of GFF : κ = 4. [Peltola-W. CMP'19], [Ding-Wirth-W. AIHP'22], [Liu-W. EJP'21]
- Multiple FK-Ising interfaces : $\kappa = 16/3$. [Feng-Peltola-W.'22]
- Multiple percolation interfaces : $\kappa = 6$. [Liu-Peltola-W.'21]
- Multiple Peano curves in UST : κ = 8. [Han-Liu-W.'20], [Liu-Peltola-W.'21], [Liu-W. Bernoulli'23]
 - Eveliina Peltola (Aalto University)
 - Jian Ding (Peking University)
 - Mateo Wirth (UPenn)

- Yu Feng (Tsinghua University)
- Mingchang Liu (Tsinghua University)

Thanks!

- [Peltola-W. CMP'19] Global and local multiple SLEs for κ ≤ 4 and connection probabilities for level lines of GFF. Comm. Math. Phys. 366(2) : 469-536, 2019.
- [9] [W. CMP'20] Hypergeometric SLE : conformal Markov characterization and applications Comm. Math. Phys. 374(2) : 433-484, 2020.
- [Beffara-Peltola-W. AOP'21] On the uniqueness of global multiple SLEs Ann. Probab. 49(1): 400-434, 2021.
- [Liu-W. EJP'21] Scaling limits of crossing probabilities in metric graph GFF Electron. J. Probab. 26 : article no. 37, 1-46, 2021.
- [Ding-Wirth-W. AIHP'22] Crossing estimates from metric graph and discrete GFF Ann. Inst. H. Poincaré Probab. Statist. 58(3) :1740-1774, 2022.
- [Liu-W. Bernoulli'23] Loop-erased random walk branch of uniform spanning tree in topological polygons. Bernoulli. 29(2): 1555-1577, 2023.
- [Peltola-W. AAP'23+] Crossing probabilities of multiple Ising interfaces Ann. Appl. Probab. to appear. 2023+
- [9] [Han-Liu-W.'20] Hypergeometric SLE with κ = 8 : convergence of UST and LERW in topological rectangles. arXiv :2008.00403 (submitted). 2020.
- ILiu-Peltola-W.'21] Uniform spanning tree in topological polygons, partition functions for SLE(8), and correlations in c = −2 logarithm CFT. arXiv :2108.04421 (submitted). 2021.
- [Feng-Peltola-W'22] Connection probabilities of multiple FK-Ising interfaces. arXiv :2205.08800 (submitted). 2022.