Phase Separation of Fluids in Confined Geometry – Partial and Complete Wetting

Daniya Davis

Department Of Physics School of Advanced Sciences Vellore Institute of Technology Vellore, TN

Work with: Dr. Bhaskar Sen Gupta Department Of Physics School of Advanced Sciences Vellore Institute of Technology Vellore, TN

*PRE 108 (2023) 064607

What is Phase Separation?

and Plasma RBC

Water and Petrol

Phase Separation of Fluid Mixtures – Computer Simulation

DOMAIN Size Estimation

> Domain size (Length scale) ~ l(t)

 $l(t) \sim \mathbf{A}^* t^{\alpha}$

 α = growth exponent, A = Pre-factor

$$\varphi = \frac{N_A - N_B}{N_A + N_B} \qquad \varphi = \{+1, -1\}$$

 N_A , N_B = No of A and B particles

DOMAIN Size Estimation

First zero crossing of the Correlation function $C(\vec{r}, t)$ gives l(t)

Domain Growth Laws

□ Initial time diffusive growth Lifshitz-Slyozov law: $l(t) \sim t^{\frac{1}{3}}$

□ Intermediate hydrodynamic growth Viscous hydrodynamics: $l(t) \sim t$

□ Late time growth Inertial hydrodynamic: $l(t) \sim t^{\frac{2}{3}}$ What happens if the system is **CONFINED** instead of BULK

e.c.rongvillo

Phase Separation In Confined Geometry

Neutral Wall

Complex Topology

Simple Pore

- Plug-like domains are formed
- Metastable state is obtained
- Full phase separation not possible

*PRL **65** (1990) 1897 *PRL **69** (1992) 1548 *EPL **116** (2016) 56003

- Domain growth slows down
- Domain size depended on pore size *EPL 140 (2022) 47002

MOTIVATION FOR THE WORK

What happens in a real system where the fluids interact with the container?

PARTIAL or COMPLETE WETTING

Phase Separation in Cylindrical Pore

Whether it is POSSIBLE to – Break the Metastable State? Achieve the Full Phase Separation?

Partial and Complete Wetting Scenario

Interaction Potential : LENNARD JONES

PW: Different Wetting Strength

PW: CORRELATION

Order Parameter and Correlation functions are calculated along the axis of the cylinder.

 $C(x,t) = \langle \varphi(0,t)\varphi(x,t) \rangle - \langle \varphi(0,t) \rangle \langle \varphi(x,t) \rangle$

PW: C(x,t) for different \in_{w}

- □ Scaling behavior violated for higher values of \in_w .
- □ Self similarity nature broken
 once zero crossed shows the
 change in domain behavior for
 different ∈_w

PW: Structure Factor

- ♦ S(k, t) ≈ $k^{-(d+1)}$, here

 d=1
- ✤ Porod law violated for higher values of \in_w .
- ❖ Second peak at kl ≈ 10
 implies sharp domain
 boundaries.
- ✤ Peak almost vanishes for higher \in_w ($\in_w = 0.5$).

PW: Growth Dynamics

- Domain growth with time is represented using the lengthscale *l(t)*
- With increasing strength of interaction with wall, the size of domains increases.

PW: Final Configuration

COMPLETE WETTING (CW)

 $\in_{W} \geq 0.6$

Metastable state broken and complete phase separation obtained

COMPLETE WETTING (CW)

CW: Structure Factor

CW: Domain Growth

SUMMARY

- Surface-directed spinodal decomposition of binary liquid inside a cylindrical pore is studied
- ***** Type A particles \rightarrow wetting interaction and Type B particles \rightarrow inert to wall.
- Partial Wetting : -
 - ✓ Domains → Metastable with increasing domain size w.r.t increasing \in_w
 - Growth laws \rightarrow Diffusive LS law ~ $t^{1/3}$, Inertial hydrodynamic law ~ $t^{2/3}$
- Complete Wetting:-
 - ✓ Domains → Cylindrical or Tube like fully separated domains
 - ✓ Growth laws → Viscous hydrodynamic growths:
 - Type A ~ $t^{1/2}$ (= 2D Growth)
 - Type B ~ t (= 3D Growth)

ACKNOWLEDGEMENT: SOFT CONDENSED MATTER GROUP

Parameswaran A

Dr. Bhaskar Sen Gupta

Department of Physics School of Advanced Sciences Vellore Institute of Technology Vellore, Tamil Nadu, India 632014 Email: bhaskar.sengupta@vit.ac.in

PAST LAB MEMBERS:

ROUNAK BHATTACHARYA, SANTHOSH KUMAR, SUCHARITA NIYOGI

THANK YOU